1
|
Wu Z, Yin Y, Liu R, Li X, Sun Y, Yau SY, Wu L, Liu Y, Adzic M, Zhang H, Chen G. A refined formula derived from Jiawei-Xiaoyao pill exerts rapid antidepressant-like effects in LPS-induced depression by reducing neuroinflammation and restoring neuroplasticity signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118647. [PMID: 39094756 DOI: 10.1016/j.jep.2024.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Yan Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001 Belgrade, Serbia
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Yin YY, Yan JZ, Wei QQ, Sun SR, Ding YQ, Zhang LM, Li YF. Serotonergic transmission plays differentiated roles in the rapid and sustained antidepressant-like effects of ketamine. Br J Pharmacol 2024; 181:4874-4889. [PMID: 39238235 DOI: 10.1111/bph.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5-HT in the antidepressant effects of ketamine remains unclear. EXPERIMENTAL APPROACH The chronic restraint stress procedure was performed to induce depression-like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant-like effects of ketamine. Tph2 knockout or depletion of 5-HT by PCPA and 5,7-DHT were used to manipulate the brain 5-HT system. ELISA and fibre photometry recordings were used to measure extracellular 5-HT levels in the brain. KEY RESULTS 60 min after injection, ketamine (10 mg·kg-1, i.p.) produced rapid antidepressant-like effects and increased brain 5-HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5-HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant-like effects of ketamine were abrogated by PCPA and 5,7-DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg-1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5-HT levels and abolished the sustained antidepressant-like effects of ketamine in naïve or CRS-treated mice. CONCLUSION AND IMPLICATIONS This study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant-like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qian-Qian Wei
- School of Medicine, Nantong University, Nantong, China
| | - Si-Rui Sun
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kim JW, Kleinfelter B, Kavalali ET, Monteggia LM. Distinct synaptic mechanisms drive the behavioral response to acute stress and rapid correction by ketamine. Neuropsychopharmacology 2024; 49:1916-1924. [PMID: 38956176 PMCID: PMC11473657 DOI: 10.1038/s41386-024-01908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Prevailing hypotheses on the mechanisms of antidepressant action posit that antidepressants directly counteract deficiencies in major neurotransmitter signaling systems that underlie depression. The rapidly acting antidepressant ketamine has been postulated to correct excess glutamatergic signaling via glutamatergic antagonism leading to the rescue of neuronal structural deficits and reversal of behavioral symptoms. We studied this premise using systemic administration of the acetylcholinesterase inhibitor physostigmine, which has been shown to rapidly elicit a shorter-term period of depressed mood in humans via cholinergic mechanisms. We observed that physostigmine induces acute stress in tandem with long term depression of glutamate release in the hippocampus of mice. However, ketamine rapidly acts to re-establish glutamatergic synaptic efficacy via postsynaptic signaling and behaviorally masks the reduction in passive coping induced by physostigmine. These results underscore the divergence of synaptic signaling mechanisms underlying mood changes and antidepressant action and highlight how distinct synaptic mechanisms may underlie neuropsychiatric disorders versus their treatment.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA.
| |
Collapse
|
4
|
Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology 2024; 49:1758-1766. [PMID: 38898206 PMCID: PMC11399243 DOI: 10.1038/s41386-024-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.
Collapse
Affiliation(s)
- Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
5
|
Kavalali ET, Monteggia LM. Synaptic basis of rapid antidepressant action. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01898-6. [PMID: 39343821 DOI: 10.1007/s00406-024-01898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
The discovery of ketamine's rapid antidepressant action has generated intense interest in the field of neuropsychiatry. This discovery demonstrated that to alleviate the symptoms of depression, treatments do not need to elicit substantive alterations in neuronal circuitry or trigger neurogenesis, but rather drive synaptic plasticity mechanisms to compensate for the underlying pathophysiology. The possibility of a rapidly induced antidepressant effect makes therapeutic pursuit of fast-acting neuropsychiatric medications against mood disorders plausible. In the meantime, the accumulating clinical as well as preclinical observations raise critical questions on the nature of the specific synaptic plasticity events that mediate these rapid antidepressant effects. This work has triggered the current growing interest in alternative psychoactive compounds that are thought to have similar properties to ketamine and its action. This review covers our insight into these questions based on the work our group has conducted on this topic in the last decade.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
6
|
Brunello CA, Cannarozzo C, Castrén E. Rethinking the role of TRKB in the action of antidepressants and psychedelics. Trends Neurosci 2024:S0166-2236(24)00154-1. [PMID: 39304417 DOI: 10.1016/j.tins.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
Collapse
Affiliation(s)
| | | | - Eero Castrén
- Neuroscience Center - HILIFE, University of Helsinki, Finland.
| |
Collapse
|
7
|
Chang X, He Y, Liu Y, Fei J, Qin X, Song B, Yu Q, Shi M, Guo D, Hui L, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. Serum brain derived neurotrophic factor levels and post-stroke depression in ischemic stroke patients. J Affect Disord 2024; 361:341-347. [PMID: 38897298 DOI: 10.1016/j.jad.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and may be implicated in the pathophysiological process of depression. This study aimed to prospectively investigate the association between serum BDNF and post-stroke depression (PSD) at 3 months in a multicenter cohort study. METHODS A total of 611 ischemic stroke patients with serum BDNF measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Depression Rating Scale to assess depression status at 3 months after ischemic stroke, and PSD was defined as a score of ≥8. RESULTS Baseline serum BDNF was inversely associated with the risk of depression after ischemic stroke. The multivariable-adjusted odds ratio of PSD for the highest tertile of BDNF was 0.53 (95 % confidence interval, 0.34-0.82; P for trend = 0.004) compared with the lowest tertile. Multivariable-adjusted spline regression model also showed a linear does-response association between serum BDNF levels and PSD at 3 months (P for linearity = 0.006). In addition, adding serum BDNF to conventional risk factors significantly improved the risk reclassification of PSD (net reclassification improvement: 16.98 %, P = 0.039; integrated discrimination index: 0.93 %, P = 0.026). LIMITATIONS All patients in this study were Chinese, so our findings should be applied to other populations cautiously. CONCLUSIONS Higher serum BDNF levels at baseline were significantly associated with a decreased risk of PSD at 3 months, suggesting that BDNF might be a valuable predictive biomarker and potential therapeutic target for PSD among ischemic stroke patients.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiawen Fei
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoli Qin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Beiping Song
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Quan Yu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America.
| |
Collapse
|
8
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
9
|
He L, Mo X, He L, Ma Q, Cai L, Zheng Y, Huang L, Lin X, Wu M, Ding W, Zhou C, Zhang JC, Hashimoto K, Yao W, Chen JX. The role of BDNF transcription in the antidepressant-like effects of 18β-glycyrrhetinic acid in a chronic social defeat stress model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155332. [PMID: 38851983 DOI: 10.1016/j.phymed.2023.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain. STUDY DESIGN We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection. Furthermore, we explored the molecular mechanisms underlying the antidepressant-like effects of both XYS and 18β-GA. METHODS To investigate the antidepressant-like effects of XYS and elucidate the associated molecular mechanisms, we employed various methodologies, including cell cultures, the chronic social defeat stress (CSDS) model, behavioral tests, immunoprecipitation, quantitative PCR (qPCR) assays, Western blotting assays, luciferase assays, chromatin immunoprecipitation (ChIP) assays, immunofluorescence staining, and dendritic spine analysis. RESULTS We identified 18β-GA as the primary compound in the brain following XYS injection. In vitro, 18β-GA was found to bind with ERK (extracellular signal-regulated kinase), subsequently activating ERK kinase activity toward both c-Jun and cAMP response element binding protein (CREB). Moreover, 18β-GA activated brain-derived neurotrophic factor (BDNF) transcription by stimulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2), c-Jun, and CREB, while also inhibiting methyl CpG binding protein 2 (MeCP2) both in vitro and in vivo. Chronic intraperitoneal (i.p.) administration of 18β-GA exhibited prophylactic antidepressant-like effects in a CSDS model, primarily by activating BDNF transcription in the medial prefrontal cortex (mPFC). Interestingly, a single i.p. injection of 18β-GA produced rapid and sustained antidepressant-like effects in CSDS-susceptible mice by engaging the BDNF-tropomyosin receptor kinase B (TrkB) signaling pathway in the mPFC. CONCLUSION These findings suggest that the activation of BDNF transcription in the mPFC underlies the antidepressant-like effects of 18β-GA, a key component of XYS in the brain.
Collapse
Affiliation(s)
- Lujuan He
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lili Cai
- Department of Mental Rehabilitation, Mental Hospital of Guangzhou Civil Affairs Bureau, Guangzhou 510632, PR China
| | - Yi Zheng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xuanyu Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
10
|
Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, Tan Y, Duan C, Li H, Huang H, Li Y, Cao X, Lingle CJ, Yang Y, Hu H. Brain region-specific action of ketamine as a rapid antidepressant. Science 2024; 385:eado7010. [PMID: 39116252 DOI: 10.1126/science.ado7010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Ketamine has been found to have rapid and potent antidepressant activity. However, despite the ubiquitous brain expression of its molecular target, the N-methyl-d-aspartate receptor (NMDAR), it was not clear whether there is a selective, primary site for ketamine's antidepressant action. We found that ketamine injection in depressive-like mice specifically blocks NMDARs in lateral habenular (LHb) neurons, but not in hippocampal pyramidal neurons. This regional specificity depended on the use-dependent nature of ketamine as a channel blocker, local neural activity, and the extrasynaptic reservoir pool size of NMDARs. Activating hippocampal or inactivating LHb neurons swapped their ketamine sensitivity. Conditional knockout of NMDARs in the LHb occluded ketamine's antidepressant effects and blocked the systemic ketamine-induced elevation of serotonin and brain-derived neurotrophic factor in the hippocampus. This distinction of the primary versus secondary brain target(s) of ketamine should help with the design of more precise and efficient antidepressant treatments.
Collapse
Affiliation(s)
- Min Chen
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shuangshuang Ma
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Hanxiao Liu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yiyan Dong
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jingxiang Tang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chenchi Duan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200433, China
| | - Hui Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hefeng Huang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Yan Yang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
11
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Aouci R, Fontaine A, Vion A, Belz L, Levi G, Narboux-Nême N. The Antidepressant Action of Fluoxetine Involves the Inhibition of Dlx5/6 in Cortical GABAergic Neurons through a TrkB-Dependent Pathway. Cells 2024; 13:1262. [PMID: 39120293 PMCID: PMC11311550 DOI: 10.3390/cells13151262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and devastating illness that affects people of all ages. Despite the large use of antidepressants in current medical practice, neither their mechanisms of action nor the aetiology of MDD are completely understood. Experimental evidence supports the involvement of Parvalbumin-positive GABAergic neurons (PV-neurons) in the pathogenesis of MDD. DLX5 and DLX6 (DLX5/6) encode two homeodomain transcription factors involved in cortical GABAergic differentiation and function. In the mouse, the level of expression of these genes is correlated with the cortical density of PV-neurons and with anxiety-like behaviours. The same genomic region generates the lncRNA DLX6-AS1, which, in humans, participates in the GABAergic regulatory module downregulated in schizophrenia and ASD. Here, we show that the expression levels of Dlx5/6 in the adult mouse brain are correlated with the immobility time in the forced swim test, which is used to measure depressive-like behaviours. We show that the administration of the antidepressant fluoxetine (Flx) to normal mice induces, within 24 h, a rapid and stable reduction in Dlx5, Dlx6 and Dlx6-AS1 expression in the cerebral cortex through the activation of the TrkB-CREB pathway. Experimental Dlx5 overexpression counteracts the antidepressant effects induced by Flx treatment. Our findings show that one of the short-term effects of Flx administration is the reduction in Dlx5/6 expression in GABAergic neurons, which, in turn, has direct consequences on PV expression and on behavioural profiles. Variants in the DLX5/6 regulatory network could be implicated in the predisposition to depression and in the variability of patients' response to antidepressant treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Narboux-Nême
- Molecular Physiology and Adaption, UMR7221 CNRS, Museum National d’Histoire Naturelle, 75005 Paris, France; (R.A.); (A.F.); (L.B.); (G.L.)
| |
Collapse
|
13
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Chen X, Wang X, Li C, Zhang Y, Feng S, Xu S. A scientometric analysis of research on the role of NMDA receptor in the treatment of depression. Front Pharmacol 2024; 15:1394730. [PMID: 38974036 PMCID: PMC11224522 DOI: 10.3389/fphar.2024.1394730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| |
Collapse
|
15
|
Šabanović M, Lazari A, Blanco-Pozo M, Tisca C, Tachrount M, Martins-Bach AB, Lerch JP, Walton ME, Bannerman DM. Lasting dynamic effects of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) on cognitive flexibility. Mol Psychiatry 2024; 29:1810-1823. [PMID: 38321122 PMCID: PMC11371652 DOI: 10.1038/s41380-024-02439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Psychedelic drugs can aid fast and lasting remission from various neuropsychiatric disorders, though the underlying mechanisms remain unclear. Preclinical studies suggest serotonergic psychedelics enhance neuronal plasticity, but whether neuroplastic changes can also be seen at cognitive and behavioural levels is unexplored. Here we show that a single dose of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) affects structural brain plasticity and cognitive flexibility in young adult mice beyond the acute drug experience. Using ex vivo magnetic resonance imaging, we show increased volumes of several sensory and association areas one day after systemic administration of 2 mgkg-1 (±)-DOI. We then demonstrate lasting effects of (±)-DOI on cognitive flexibility in a two-step probabilistic reversal learning task where 2 mgkg-1 (±)-DOI improved the rate of adaptation to a novel reversal in task structure occurring one-week post-treatment. Strikingly, (±)-DOI-treated mice started learning from reward omissions, a unique strategy not typically seen in mice in this task, suggesting heightened sensitivity to previously overlooked cues. Crucially, further experiments revealed that (±)-DOI's effects on cognitive flexibility were contingent on the timing between drug treatment and the novel reversal, as well as on the nature of the intervening experience. (±)-DOI's facilitation of both cognitive adaptation and novel thinking strategies may contribute to the clinical benefits of psychedelic-assisted therapy, particularly in cases of perseverative behaviours and a resistance to change seen in depression, anxiety, or addiction. Furthermore, our findings highlight the crucial role of time-dependent neuroplasticity and the influence of experiential factors in shaping the therapeutic potential of psychedelic interventions for impaired cognitive flexibility.
Collapse
Affiliation(s)
- Merima Šabanović
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Cristiana Tisca
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Aurea B Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
| |
Collapse
|
16
|
Ruan Y, Yuan R, He J, Jiang Y, Chu S, Chen N. New perspective on sustained antidepressant effect: focus on neurexins regulating synaptic plasticity. Cell Death Discov 2024; 10:205. [PMID: 38693106 PMCID: PMC11063156 DOI: 10.1038/s41420-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Depression is highly prevalent globally, however, currently available medications face challenges such as low response rates and short duration of efficacy. Additionally, depression mostly accompany other psychiatric disorders, further progressing to major depressive disorder without long-term effective management. Thus, sustained antidepressant strategies are urgently needed. Recently, ketamine and psilocybin gained attention as potential sustained antidepressants. Review of recent studies highlights that synaptic plasticity changes as key events of downstream long-lasting changes in sustained antidepressant effect. This underscores the significance of synaptic plasticity in sustained antidepressant effect. Moreover, neurexins, key molecules involved in the regulation of synaptic plasticity, act as critical links between synaptic plasticity and sustained antidepressant effects, involving mechanisms including protein level, selective splicing, epigenetics, astrocytes, positional redistribution and protein structure. Based on the regulation of synaptic plasticity by neurexins, several drugs with potential for sustained antidepressant effect are also discussed. Focusing on neurexins in regulating synaptic plasticity promises much for further understanding underlying mechanisms of sustained antidepressant and the next step in new drug development. This research represents a highly promising future research direction.
Collapse
Affiliation(s)
- Yuan Ruan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ruolan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiaqi He
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yutong Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Naihong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
17
|
Kawatake-Kuno A, Li H, Inaba H, Hikosaka M, Ishimori E, Ueki T, Garkun Y, Morishita H, Narumiya S, Oishi N, Ohtsuki G, Murai T, Uchida S. Sustained antidepressant effects of ketamine metabolite involve GABAergic inhibition-mediated molecular dynamics in aPVT glutamatergic neurons. Neuron 2024; 112:1265-1285.e10. [PMID: 38377990 PMCID: PMC11031324 DOI: 10.1016/j.neuron.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan; Kyoto University Medical Science and Business Liaison Organization, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
18
|
Wang L, Zhu X, Wang B, Wang Y, Wang M, Yang S, Su C, Chang J, Zhu B. Design, Synthesis, and Activity Evaluation of Fluorine-Containing Scopolamine Analogues as Potential Antidepressants. J Med Chem 2024; 67:5391-5420. [PMID: 38354305 DOI: 10.1021/acs.jmedchem.3c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
This study aimed to develop novel rapid-acting antidepressants with sustained efficacy and favorable safety profiles. We designed and synthesized a series of fluorine-containing scopolamine analogues and evaluated their antidepressant potential. In vitro cytotoxicity assays showed that most of these compounds exhibited minimal toxicity against neuronal and non-neuronal mammalian cell lines (IC50 > 100 μM). The antidepressant activities of the compounds were evaluated using the tail suspension test, and S-3a was identified as a lead compound with potent and sustained antidepressant effects. Behaviorally, S-3a alleviated depressive symptoms in mice and displayed a higher cognitive safety margin than scopolamine. Toxicological assessments confirmed S-3a's safety, while pharmacokinetics showed a rapid clearance (half-life: 16.6 min). Mechanistically, S-3a antagonized M1 receptors and elevated BDNF levels, suggesting its potential as an antidepressant for further exploration.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xushuo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yijing Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengqi Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuping Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Zhang Q, Xue Y, Wei K, Wang H, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu F, Ding X, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303503. [PMID: 38155473 PMCID: PMC10933643 DOI: 10.1002/advs.202303503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Locus coeruleus (LC) dysfunction is involved in the pathophysiology of depression; however, the neural circuits and specific molecular mechanisms responsible for this dysfunction remain unclear. Here, it is shown that activation of tyrosine hydroxylase (TH) neurons in the LC alleviates depression-like behaviors in susceptible mice. The dorsolateral septum (dLS) is the most physiologically relevant output from the LC under stress. Stimulation of the LCTH -dLSSST innervation with optogenetic and chemogenetic tools bidirectionally can regulate depression-like behaviors in both male and female mice. Mechanistically, it is found that brain-derived neurotrophic factor (BDNF), but not norepinephrine, is required for the circuit to produce antidepressant-like effects. Genetic overexpression of BDNF in the circuit or supplementation with BDNF protein in the dLS is sufficient to produce antidepressant-like effects. Furthermore, viral knockdown of BDNF in this circuit abolishes the antidepressant-like effect of ketamine, but not fluoxetine. Collectively, these findings underscore the notable antidepressant-like role of the LCTH -dLSSST pathway in depression via BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Qian Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - You Xue
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ke Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hao Wang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuan Ma
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yao Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yi Fan
- Department of NeurologyAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjing210024China
| | - Lei Gao
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hang Yao
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Fangfang Wu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xin Ding
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Qingyu Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Jianhua Ding
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Yi Fan
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Ming Lu
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Gang Hu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
21
|
Zhuang L, Gao W, Chen Y, Fang W, Lo H, Dai X, Zhang J, Chen W, Ye Q, Chen X, Zhang J. LHPP in Glutamatergic Neurons of the Ventral Hippocampus Mediates Depression-like Behavior by Dephosphorylating CaMKIIα and ERK. Biol Psychiatry 2024; 95:389-402. [PMID: 37678540 DOI: 10.1016/j.biopsych.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND LHPP was recently shown to be a risk gene for major depressive disorder. LHPP has been proven to dephosphorylate the residues of histidine, serine, threonine, and tyrosine. However, much remains unknown about how LHPP contributes to depression. METHODS In the current study, we addressed this issue by integrating approaches of genetics, molecular biology, behavioral testing, and electrophysiology. RESULTS We found that levels of LHPP were upregulated in glutamatergic neurons of the ventral hippocampus in mice that displayed stress-induced depression-like behaviors. Knockout of LHPP in glutamatergic neurons of the brain improved the spontaneous activity of LHPPflox/flox·CaMKIIαCre+ (conditional knockout) mice. Adeno-associated virus-mediated LHPP knockdown in the ventral hippocampus enhanced resistance against chronic social defeat stress in mice. Manipulations of LHPP levels impacted the density of dendritic spines and excitability of CA1 pyramidal neurons by mediating the expressions of BDNF (brain-derived neurotrophic factor) and PSD95 via the modulation of the dephosphorylation of CaMKIIα and ERK. Notably, compared with wild-type LHPP, human mutant LHPP (E56K, S57L) significantly increased the activity of the CaMKIIα/ERK-BDNF/PSD95 signaling pathway. Finally, esketamine, not fluoxetine, markedly alleviated the LHPP upregulation-induced depression-like behaviors. CONCLUSIONS These findings provide evidence that LHPP contributes to the pathogenesis of depression via threonine and serine hydrolases, thereby identifying LHPP as a potential therapeutic target in treating patients with major depressive disorder.
Collapse
Affiliation(s)
- Lvping Zhuang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Weijie Gao
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yanbing Chen
- Institute of Neurosciences, Xiamen University Medical College, Xiamen, China
| | - Wenting Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Hsuan Lo
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jie Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China; Institute of Neurosciences, Xiamen University Medical College, Xiamen, China
| | - Wanjing Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
23
|
Abstract
Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
24
|
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A. Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 2024; 14:47. [PMID: 38253622 PMCID: PMC10803733 DOI: 10.1038/s41398-024-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ketamine is clinically used fast-acting antidepressant. Its metabolite hydroxynorketamine (HNK) shows a robust antidepressant effect in animal studies. It is unclear, how these chemically distinct compounds converge on similar neuronal effects. While KET acts mostly as N-methyl-d-aspartate receptor (NMDAR) antagonist, the molecular target of HNK remains enigmatic. Here, we show that KET and HNK converge on rapid inhibition of glutamate release by reducing the release competence of synaptic vesicles and induce nuclear translocation of pCREB that controls expression of neuroplasticity genes connected to KET- and HNK-mediated antidepressant action. Ro25-6981, a selective antagonist of GluN2B, mimics effect of KET indicating that GluN2B-containing NMDAR might mediate the presynaptic effect of KET. Selective antagonist of α7 nicotinic acetylcholine receptors (α7nAChRs) or genetic deletion of Chrna7, its pore-forming subunit, fully abolishes HNK-induced synaptic and nuclear regulations, but leaves KET-dependent cellular effects unaffected. Thus, KET or HNK-induced modulation of synaptic transmission and nuclear translocation of pCREB can be mediated by selective signaling via NMDAR or α7nAChRs, respectively. Due to the rapid metabolism of KET to HNK, it is conceivable that subsequent modulation of glutamatergic and cholinergic neurotransmission affects circuits in a cell-type-specific manner and contributes to the therapeutic potency of KET. This finding promotes further exploration of new combined medications for mood disorders.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bartomeu Perelló-Amorós
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Jena, Jena, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
25
|
Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024; 49:41-50. [PMID: 37488280 PMCID: PMC10700627 DOI: 10.1038/s41386-023-01629-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/26/2023]
Abstract
Ketamine is an open channel blocker of ionotropic glutamatergic N-Methyl-D-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine's effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
27
|
Titone MK, Hunt C, Bismark A, Nokes B, Lee E, Ramanathan D, Park J, Colvonen P. The effect of obstructive sleep apnea severity on PTSD symptoms during the course of esketamine treatment: a retrospective clinical study. J Clin Sleep Med 2023; 19:2043-2051. [PMID: 37539643 PMCID: PMC10692930 DOI: 10.5664/jcsm.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
STUDY OBJECTIVES Intranasal administration of esketamine is Food and Drug Administration-approved for treatment-resistant depression. In a recent retrospective case series, we show that it has promise in reducing symptoms of posttraumatic stress disorder (PTSD) as well. Untreated obstructive sleep apnea (OSA) is prevalent among veterans with PTSD and has been shown to interfere with other PTSD treatments. In the current study, we examined whether OSA impacts esketamine's effectiveness in reducing symptoms of PTSD or depression. METHODS Participants were 60 veterans with a diagnosis of major depressive disorder and PTSD who received intranasal esketamine treatment at the San Diego Veterans Affairs (VA) Medical Center. We used growth-curve modeling to examine changes in depression and PTSD symptoms following esketamine treatments and, in the subset of individuals screened for OSA (n = 24, all prescribed positive airway pressure therapy), examined the impacts of OSA severity on these trajectories. RESULTS We first showed that both PTSD and depressive symptoms significantly decreased over the course of esketamine treatment. In the subset of veterans screened for OSA, individuals with lower OSA severity reported the greatest reduction in PTSD symptoms, while veterans with the most severe OSA reported the least reduction in PTSD symptoms. Depression response was not affected by severity of OSA in this analysis. CONCLUSIONS Veterans with PTSD and depression tend to benefit from esketamine treatment, but OSA may interfere with esketamine effectiveness. Comorbid OSA should be assessed for and treated to maximize esketamine's benefits in PTSD. CITATION Titone MK, Hunt C, Bismark A, et al. The effect of obstructive sleep apnea severity on PTSD symptoms during the course of esketamine treatment: a retrospective clinical study. J Clin Sleep Med. 2023;19(12):2043-2051.
Collapse
Affiliation(s)
- Madison K. Titone
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | | | | | - Brandon Nokes
- VA San Diego Healthcare System, San Diego, California
| | - Ellen Lee
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Dhakshin Ramanathan
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Jane Park
- VA San Diego Healthcare System, San Diego, California
| | - Peter Colvonen
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, San Diego, California
| |
Collapse
|
28
|
Duek O, Korem N, Li Y, Kelmendi B, Amen S, Gordon C, Milne M, Krystal JH, Levy I, Harpaz-Rotem I. Long term structural and functional neural changes following a single infusion of Ketamine in PTSD. Neuropsychopharmacology 2023; 48:1648-1658. [PMID: 37270621 PMCID: PMC10517133 DOI: 10.1038/s41386-023-01606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
NMDA receptor antagonists have a vital role in extinction, learning, and reconsolidation processes. During the reconsolidation window, memories are activated into a labile state and can be reconsolidated in an altered form. This concept might have significant clinical implications in treating PTSD. In this pilot study we tested the potential of a single infusion of ketamine, followed by brief exposure therapy, to enhance post-retrieval extinction of PTSD trauma memories. 27 individuals diagnosed with PTSD were randomly assigned to receive either ketamine (0.5 mg/kg 40 min; N = 14) or midazolam (0.045 mg/kg; N = 13) after retrieval of the traumatic memory. 24 h following infusion, participants received a four-day trauma-focused psychotherapy. Symptoms and brain activity were assessed before treatment, at the end of treatment, and at 30-day follow-up. Amygdala activation to trauma scripts (a major biomarker of fear response) served as the main study outcome. Although PTSD symptoms improved equally in both groups, post-treatment, ketamine recipients showed a lower amygdala (-0.33, sd = 0.13, 95%HDI [-0.56,-0.04]) and hippocampus (-0.3 (sd = 0.19), 95%HDI [-0.65, 0.04]; marginal effect) reactivation to trauma memories, compared to midazolam recipients. Post-retrieval ketamine administration was also associated with decreased connectivity between the amygdala and hippocampus (-0.28, sd = 0.11, 95%HDI [-0.46, -0.11]), with no change in amygdala-vmPFC connectivity. Moreover, reduction in fractional anisotropy in bi-lateral uncinate fasciculus was seen in the Ketamine recipients compared with the midazolam recipients (right: post-treatment: -0.01108, 95% HDI [-0.0184,-0.003]; follow-up: -0.0183, 95% HDI [-0.02719,-0.0107]; left: post-treatment: -0.019, 95% HDI [-0.028,-0.011]; follow-up: -0.017, 95% HDI [-0.026,-0.007]). Taken together it is possible that ketamine may enhance post-retrieval extinction of the original trauma memories in humans. These preliminary findings show promising direction toward the capacity to rewrite human traumatic memories and modulate the fear response for at least 30 days post-extinction. When combined with psychotherapy for PTSD, further investigation of ketamine dose, timing of administration, and frequency of administration, is warranted.
Collapse
Affiliation(s)
- Or Duek
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
| | - Nachshon Korem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
| | - Yutong Li
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - Ben Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Shelley Amen
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Madison Milne
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
29
|
Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, Li S, Cui Y, Wang J, Zhu Y, Zhang Y, Ma H, Duan S, Li H, Yang Y, Lingle CJ, Hu H. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 2023; 622:802-809. [PMID: 37853123 PMCID: PMC10600008 DOI: 10.1038/s41586-023-06624-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Min Chen
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihao Jiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinkuan Xiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shiqi Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Zuohang Wu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shuo Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yihui Cui
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Junying Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yanqing Zhu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Haohong Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailan Hu
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China.
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Cai M, Zhu Y, Shanley MR, Morel C, Ku SM, Zhang H, Shen Y, Friedman AK, Han MH. HCN channel inhibitor induces ketamine-like rapid and sustained antidepressant effects in chronic social defeat stress model. Neurobiol Stress 2023; 26:100565. [PMID: 37664876 PMCID: PMC10468802 DOI: 10.1016/j.ynstr.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Repeated, long-term (weeks to months) exposure to standard antidepressant medications is required to achieve treatment efficacy. In contrast, acute ketamine quickly improves mood for an extended time. Recent work implicates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in mediating ketamine's antidepressant effects. In this study, we directly targeted HCN channels and achieved ketamine-like rapid and sustained antidepressant efficacy. Our in vitro electrophysiological recordings first showed that HCN inhibitor DK-AH 269 (also called cilobradine) decreased the pathological HCN-mediated current (Ih) and abnormal hyperactivity of ventral tegmental area (VTA) dopamine (DA) neurons in a depressive-like model produced by chronic social defeat stress (CSDS). Our in vivo studies further showed that acute intra-VTA or acute systemic administration of DK-AH 269 normalized social behavior and rescued sucrose preference in CSDS-susceptible mice. The single-dose of DK-AH 269, both by intra-VTA microinfusion and intraperitoneal (ip) approaches, could produce an extended 13-day duration of antidepressant-like efficacy. Animals treated with acute DK-AH 269 spent less time immobile than vehicle-treated mice during forced swim test. A social behavioral reversal lasted up to 13 days following the acute DK-AH 269 ip injection, and this rapid and sustained antidepressant-like response is paralleled with a single-dose treatment of ketamine. This study provides a novel ion channel target for acutely acting, long-lasting antidepressant-like effects.
Collapse
Affiliation(s)
- Min Cai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yingbo Zhu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Shenzhen Naowunao Network Technology Co.,Ltd., Shenzhen, Guangdong, China
| | - Mary Regis Shanley
- Department of Biological Sciences, Hunter College, Biology and Biochemistry PhD Program, Graduate Center, The City University of New York, New York, NY, USA
| | - Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacy M. Ku
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxing Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Allyson K. Friedman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
32
|
Mingardi J, Ndoj E, Bonifacino T, Misztak P, Bertoli M, La Via L, Torazza C, Russo I, Milanese M, Bonanno G, Popoli M, Barbon A, Musazzi L. Functional and Molecular Changes in the Prefrontal Cortex of the Chronic Mild Stress Rat Model of Depression and Modulation by Acute Ketamine. Int J Mol Sci 2023; 24:10814. [PMID: 37445990 DOI: 10.3390/ijms241310814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats. We found that most alterations induced by CMS in the mPFC were selectively observed in stress-vulnerable animals and were rescued by acute subanesthetic ketamine, while others were found only in resilient animals or were induced by ketamine treatment. Importantly, only a few of these modifications were also previously demonstrated in the hippocampus, while most are specific to mPFC. Overall, our results suggest that acute antidepressant ketamine rescues brain-area-specific glutamatergic changes induced by chronic stress.
Collapse
Affiliation(s)
- Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Matteo Bertoli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, 20133 Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
33
|
Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, Wright N, Lama C, Faltin S, Goff LA, Stein-O'Brien GL, Dölen G. Psychedelics reopen the social reward learning critical period. Nature 2023; 618:790-798. [PMID: 37316665 PMCID: PMC10284704 DOI: 10.1038/s41586-023-06204-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Psychedelics are a broad class of drugs defined by their ability to induce an altered state of consciousness1,2. These drugs have been used for millennia in both spiritual and medicinal contexts, and a number of recent clinical successes have spurred a renewed interest in developing psychedelic therapies3-9. Nevertheless, a unifying mechanism that can account for these shared phenomenological and therapeutic properties remains unknown. Here we demonstrate in mice that the ability to reopen the social reward learning critical period is a shared property across psychedelic drugs. Notably, the time course of critical period reopening is proportional to the duration of acute subjective effects reported in humans. Furthermore, the ability to reinstate social reward learning in adulthood is paralleled by metaplastic restoration of oxytocin-mediated long-term depression in the nucleus accumbens. Finally, identification of differentially expressed genes in the 'open state' versus the 'closed state' provides evidence that reorganization of the extracellular matrix is a common downstream mechanism underlying psychedelic drug-mediated critical period reopening. Together these results have important implications for the implementation of psychedelics in clinical practice, as well as the design of novel compounds for the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Edward Sawyer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Makenzie Wilkinson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yasmin Padovan-Hernandez
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Júnia Lara de Deus
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Noelle Wright
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Carine Lama
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sehr Faltin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Center for Psychedelics and Consciousness Research, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
35
|
Kim JW, Suzuki K, Kavalali ET, Monteggia LM. Bridging rapid and sustained antidepressant effects of ketamine. Trends Mol Med 2023; 29:364-375. [PMID: 36907686 PMCID: PMC10101916 DOI: 10.1016/j.molmed.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Acute administration of (R,S)-ketamine (ketamine) produces rapid antidepressant effects that in some patients can be sustained for several days to more than a week. Ketamine blocks N-methyl-d-asparate (NMDA) receptors (NMDARs) to elicit specific downstream signaling that induces a novel form of synaptic plasticity in the hippocampus that has been linked to the rapid antidepressant action. These signaling events lead to subsequent downstream transcriptional changes that are involved in the sustained antidepressant effects. Here we review how ketamine triggers this intracellular signaling pathway to mediate synaptic plasticity which underlies the rapid antidepressant effects and links it to downstream signaling and the sustained antidepressant effects.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea; Department of Regulatory Science, Gradaute School, Kyung Hee University, Seoul, Republic of Korea; Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Japan
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
36
|
Belloch FDB, Cortés-Erice M, Herzog E, Zhang XM, Díaz-Perdigon T, Puerta E, Tordera RM. Fast antidepressant action of ketamine in mouse models requires normal VGLUT1 levels from prefrontal cortex neurons. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110640. [PMID: 36209771 DOI: 10.1016/j.pnpbp.2022.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
The NMDA antagonist ketamine demonstrated a fast antidepressant activity in treatment-resistant depression. Pre-clinical studies suggest that de novo synthesis of the brain-derived neurotrophic factor (BDNF) in the PFC might be involved in the rapid antidepressant action of ketamine. Applying a genetic model of impaired glutamate release, this study aims to further identify the molecular mechanisms that could modulate antidepressant action and resistance to treatment. To that end, mice knocked-down for the vesicular glutamate transporter 1 (VGLUT1+/-) were used. We analyzed anhedonia and helpless behavior as well as the expression of the proteins linked to glutamate transmission in the PFC of mice treated with ketamine or the reference antidepressant reboxetine. Moreover, we analyzed the acute effects of ketamine in VGLUT1+/- mice pretreated with chronic reboxetine or those that received a PFC rescue expression of VGLUT1. Chronic reboxetine rescued the depressive-like phenotype of the VGLUT1+/- mice. In addition, it enhanced the expression of the proteins linked to the AMPA signaling pathway as well as the immature form of BDNF (pro-BDNF). Unlike WT mice, ketamine had no effect on anhedonia or pro-BDNF expression in VGLUT1+/- mice; it also failed to decrease phosphorylated eukaryote elongation factor 2 (p-eEF2). Nevertheless, we found that reboxetine administered as pretreatment or PFC overexpression of VGLUT1 did rescue the antidepressant-like activity of acute ketamine in the mice. Our results strongly suggest that not only do PFC VGLUT1 levels modulate the rapid-antidepressant action of ketamine, but also highlight a possible mechanism for antidepressant resistance in some patients.
Collapse
Affiliation(s)
| | - María Cortés-Erice
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Etienne Herzog
- Université de Bordeaux, Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Xiao Min Zhang
- Université de Bordeaux, Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Teresa Díaz-Perdigon
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
37
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Boo KJ, Gonzales EL, Remonde CG, Seong JY, Jeon SJ, Park YM, Ham BJ, Shin CY. Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice. Biomol Ther (Seoul) 2023; 31:161-167. [PMID: 36203404 PMCID: PMC9970841 DOI: 10.4062/biomolther.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yeong-Min Park
- Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-454-5630, Fax: +82-2-2030-7899
| |
Collapse
|
39
|
MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int J Mol Sci 2023; 24:ijms24044218. [PMID: 36835623 PMCID: PMC9966807 DOI: 10.3390/ijms24044218] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
DNA methylation, one of the most well-studied epigenetic modifications, is involved in a wide spectrum of biological processes. Epigenetic mechanisms control cellular morphology and function. Such regulatory mechanisms involve histone modifications, chromatin remodeling, DNA methylation, non-coding regulatory RNA molecules, and RNA modifications. One of the most well-studied epigenetic modifications is DNA methylation that plays key roles in development, health, and disease. Our brain is probably the most complex part of our body, with a high level of DNA methylation. A key protein that binds to different types of methylated DNA in the brain is the methyl-CpG binding protein 2 (MeCP2). MeCP2 acts in a dose-dependent manner and its abnormally high or low expression level, deregulation, and/or genetic mutations lead to neurodevelopmental disorders and aberrant brain function. Recently, some of MeCP2-associated neurodevelopmental disorders have emerged as neurometabolic disorders, suggesting a role for MeCP2 in brain metabolism. Of note, MECP2 loss-of-function mutation in Rett Syndrome is reported to cause impairment of glucose and cholesterol metabolism in human patients and/or mouse models of disease. The purpose of this review is to outline the metabolic abnormalities in MeCP2-associated neurodevelopmental disorders that currently have no available cure. We aim to provide an updated overview into the role of metabolic defects associated with MeCP2-mediated cellular function for consideration of future therapeutic strategies.
Collapse
|
40
|
Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, Gould TD. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J Neurosci 2023; 43:1038-1050. [PMID: 36596696 PMCID: PMC9908316 DOI: 10.1523/jneurosci.1316-22.2022] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Biology, University of Cyprus, Nicosia 2109, Cyprus
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201
| |
Collapse
|
41
|
Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants. Neuropharmacology 2023; 223:109325. [PMID: 36334763 DOI: 10.1016/j.neuropharm.2022.109325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Conventional antidepressant medications act on monoaminergic systems and have important limitations, including a therapeutic delay of weeks to months and low rates of efficacy. Recently, clinical findings have indicated that ketamine, a dissociative anesthetic that blocks N-methyl-d-aspartate receptor channel activity, causes rapid and long-lasting antidepressant effects. Although the exact mechanisms underlying the antidepressant effects of ketamine are not fully known, preclinical studies have demonstrated a key role for mechanistic target of rapamycin complex 1 (mTORC1) signaling and a subsequent increase in synapse formation in the medial prefrontal cortex. In this review, we discuss the role of mTORC1 and its subsequent signaling cascade in the antidepressant effects of ketamine and other compounds with glutamatergic mechanisms of action. We also present the possibility that mTORC1 signaling itself is a drug discovery target.
Collapse
|
42
|
Farid MF, Abouelela YS, Yasin NAE, Al-Mokaddem AK, Prince A, Ibrahim MA, Rizk H. Laser-activated autologous adipose tissue-derived stromal vascular fraction restores spinal cord architecture and function in multiple sclerosis cat model. Stem Cell Res Ther 2023; 14:6. [PMID: 36627662 PMCID: PMC9832640 DOI: 10.1186/s13287-022-03222-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is the most frequent non-traumatic neurological debilitating disease among young adults with no cure. Over recent decades, efforts to treat neurodegenerative diseases have shifted to regenerative cell therapy. Adipose tissue-derived stromal vascular fraction (SVF) comprises a heterogeneous cell population, considered an easily accessible source of MSCs with therapeutic potential in autoimmune diseases. This study aimed to assess the regenerative capacity of low-level laser-activated SVF in an MS cat model. METHODS Fifteen adult Persian cats were used in this study: Group I (control negative group, normal cats), Group II (EB-treated group, induced for MS by ethidium bromide (EB) intrathecal injection), and Group III (SVF co-treated group, induced for MS then treated with SVF on day 14 post-induction). The SVF was obtained after digesting the adipose tissue with collagenase type I and injecting it intrathecal through the foramen magnum. RESULTS The results showed that the pelvic limb's weight-bearing locomotion activity was significantly (P ≤ 0.05) recovered in Group III, and the Basso, Beattie, and Bresnahan (BBB) scores of hindlimb locomotion were significantly higher in Group III (14 ± 0.44) than Group II (4 ± 0.31). The lesion's extent and intensity were reduced in the magnetic resonance imaging (MRI) of Group III. Besides, the same group showed a significant increase in the expression of neurotrophic factors: BDNF, SDF and NGF (0.61 ± 0.01, 0.51 ± 0.01 and 0.67 ± 0.01, respectively) compared with Group II (0.33 ± 0.01, 0.36 ± 0.006 and 0.2 ± 0.01, respectively). Furthermore, SVF co-treated group revealed a significant (P ≤ 0.05) increase in oligodendrocyte transcription factor (Olig2) and myelin basic protein (4 ± 0.35 and 6 ± 0.45, respectively) that was decreased in group II (1.8 ± 0.22 and 2.9 ± 0.20, respectively). Moreover, group III showed a significant (P ≤ 0.05) reduction in Bax and glial fibrillary acidic protein (4 ± 0.53 and 3.8 ± 0.52, respectively) as compared with group II (10.7 ± 0.49 and 8.7 ± 0.78, respectively). The transmission electron microscopy demonstrated regular more compact, and markedly (P ≤ 0.05) thicker myelin sheaths (mm) in Group III (0.3 ± 0.006) as compared with group II (0.1 ± 0.004). Based on our results, the SVF co-treated group revealed remyelination and regeneration capacity with a reduction in apoptosis and axonal degeneration. CONCLUSION SVF is considered an easy, valuable, and promising therapeutic approach for treating spinal cord injuries, particularly MS.
Collapse
Affiliation(s)
- Mariam F. Farid
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Yara S. Abouelela
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Noha A. E. Yasin
- grid.7776.10000 0004 0639 9286Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa K. Al-Mokaddem
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary Prince
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt ,grid.511523.10000 0004 7532 2290Department of Biomedical Research, Armed Forces College of Medicine, Cairo, 12211 Egypt
| | - Marwa A. Ibrahim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy Rizk
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
43
|
Kavalali ET, Monteggia LM. Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacology 2023; 48:54-60. [PMID: 35995973 PMCID: PMC9700859 DOI: 10.1038/s41386-022-01411-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Neuronal and synaptic plasticity are widely used terms in the field of psychiatry. However, cellular neurophysiologists have identified two broad classes of plasticity. Hebbian forms of plasticity alter synaptic strength in a synapse specific manner in the same direction of the initial conditioning stimulation. In contrast, homeostatic plasticities act globally over longer time frames in a negative feedback manner to counter network level changes in activity or synaptic strength. Recent evidence suggests that homeostatic plasticity mechanisms can be rapidly engaged, particularly by fast-acting antidepressants such as ketamine to trigger behavioral effects. There is increasing evidence that several neuropsychoactive compounds either directly elicit changes in synaptic activity or indirectly tap into downstream signaling pathways to trigger homeostatic plasticity and subsequent behavioral effects. In this review, we discuss this recent work in the context of a wider paradigm where homeostatic synaptic plasticity mechanisms may provide novel targets for neuropsychiatric treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
44
|
Georgiou P, Zanos P, Mou TCM, An X, Gerhard DM, Dryanovski DI, Potter LE, Highland JN, Jenne CE, Stewart BW, Pultorak KJ, Yuan P, Powels CF, Lovett J, Pereira EFR, Clark SM, Tonelli LH, Moaddel R, Zarate CA, Duman RS, Thompson SM, Gould TD. Experimenters' sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci 2022; 25:1191-1200. [PMID: 36042309 PMCID: PMC10186684 DOI: 10.1038/s41593-022-01146-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Biology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ta-Chung M Mou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoxian An
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Yale University, New Haven, CT, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Dilyan I Dryanovski
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liam E Potter
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn N Highland
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Toxicology, University of Maryland, Baltimore, MD, USA
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Brent W Stewart
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Katherine J Pultorak
- The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Chris F Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sarah M Clark
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA. .,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
45
|
Pochwat B, Krupa AJ, Siwek M, Szewczyk B. New investigational agents for the treatment of major depressive disorder. Expert Opin Investig Drugs 2022; 31:1053-1066. [PMID: 35975761 DOI: 10.1080/13543784.2022.2113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pharmacotherapy of depression is characterized by the delayed onset of action, chronic treatment requirements, and insufficient effectiveness. Ketamine, with its rapid action and long-lasting effects, represents a breakthrough in the modern pharmacotherapy of depression. AREAS COVERED : The current review summarizes the latest findings on the mechanism of the antidepressant action of ketamine and its enantiomers and metabolites. Furthermore, the antidepressant potential of psychedelics, non-hallucinogenic serotonergic modulators and metabotropic glutamate receptor ligands was discussed. EXPERT OPINION Recent data indicated that to achieve fast and long-acting antidepressant-like effects, compounds must induce durable effects on the architecture and density of dendritic spines in brain regions engaged in mood regulation. Such mechanisms underlie the actions of ketamine and psychedelics. These compounds trigger hallucinations; however, it is thought that these effects might be essential for their antidepressant action. Behavioral studies with serotonergic modulators affecting 5-HT1A (biased agonists), 5-HT4 (agonists), and 5-HT-7 (antagonists) receptors exert rapid antidepressant-like activity, but they seem to be devoid of this effects. Another way to avoid psychomimetic effects and achieve the desired rapid antidepressant-like effects is combined therapy. In this respect, ligands of metabotropic receptors show some potential.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Anna Julia Krupa
- Department of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
46
|
Troppoli TA, Zanos P, Georgiou P, Gould TD, Rudolph U, Thompson SM. Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit-Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biol Psychiatry 2022; 92:216-226. [PMID: 35120711 PMCID: PMC9198111 DOI: 10.1016/j.biopsych.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal reward processing, typically anhedonia, is a hallmark of human depression and is accompanied by altered functional connectivity in reward circuits. Negative allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors (GABA-NAMs) have rapid antidepressant-like properties in rodents and exert few adverse effects, but molecular targets underlying their behavioral and synaptic effects remain undetermined. We hypothesized that GABA-NAMs act at the benzodiazepine site of GABAA receptors containing α5 subunits to increase gamma oscillatory activity, strengthen synapses in reward circuits, and reverse anhedonia. METHODS Anhedonia was induced by chronic stress in male mice and assayed by preferences for sucrose and female urine (n = 5-7 mice/group). Hippocampal slices were then prepared for electrophysiological recording (n = 1-6 slices/mouse, 4-6 mice/group). Electroencephalography power was quantified in response to GABA-NAM and ketamine administration (n = 7-9 mice/group). RESULTS Chronic stress reduced sucrose and female urine preferences and hippocampal temporoammonic-CA1 synaptic strength. A peripheral injection of the GABA-NAM MRK-016 restored hedonic behavior and AMPA-to-NMDA ratios in wild-type mice. These actions were prevented by pretreatment with the benzodiazepine site antagonist flumazenil. MRK-016 administration increased gamma power over the prefrontal cortex in wild-type mice but not α5 knockout mice, whereas ketamine promoted gamma power in both genotypes. Hedonic behavior and AMPA-to-NMDA ratios were only restored by MRK-016 in stressed wild-type mice but not α5 knockout mice. CONCLUSIONS α5-Selective GABA-NAMs exert rapid anti-anhedonic actions and restore the strength of synapses in reward regions by acting at the benzodiazepine site of α5-containing GABAA receptors. These results encourage human studies using GABA-NAMs to treat depression by providing readily translatable measures of target engagement.
Collapse
Affiliation(s)
- Timothy A. Troppoli
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Molecular Medicine Program, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Current address: Department of Psychology, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, 2109, PO Box 1678, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201
| | - Uwe Rudolph
- Department of Comparative Biosciences and Carl R. Woese Institute for Genomic Biology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802-6178
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,To whom correspondence should be addressed:
| |
Collapse
|
47
|
Guo W, Liu J, Liu B, Wang M, Dong Q, Lu X, Sun J, Zhang L, Guo H, Zhao F, Li W, Li Z, Liao M, Zhang L, Zhang Y, Ju Y, Li L. Relationship between childhood maltreatment and cognitive function in medication-free patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01458-w. [PMID: 35902412 DOI: 10.1007/s00406-022-01458-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
This study aimed to elucidate the contribution of childhood maltreatment (CM) and the disease of major depressive disorder (MDD) on cognitive function in medication-free patients in a current depressive episode, and to examine the effect of CM on the improvement of cognitive function after treatment with antidepressants. One hundred and fifty-three unmedicated patients with MDD and 142 healthy controls (HCs) underwent clinical interviews. CM assessment was performed using the Childhood Trauma Questionnaire (CTQ), and a battery of comprehensive neurocognitive tests was used to assess the participants' executive function, processing speed, attention, and memory. After 6 months of treatment with antidepressants, the neurocognitive tests were reperformed in patients with MDD and HCs. There was a significant main effect of MDD on all four cognitive domains, while the main effect of CM was only significant on memory. No significant interactive effect was found between MDD and CM on any of the cognitive domains. In the MDD group, higher CTQ total score was predictive of poorer memory performance. After treatment, significant main effects of treatment and MDD were found on all four cognitive domains in remitted patients with MDD. No significant main effect of CM or three-way interaction effect of treatment × MDD × CM was found on any of the cognitive domains. The disease of MDD contributed to impairments in all four cognitive domains. CM independently contributed to memory impairment in patients in a current depressive episode, with higher severity of CM predictive of poorer memory performance.
Collapse
Affiliation(s)
- Weilong Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Mi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Qiangli Dong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Lu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinrong Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, 463000, Henan, China
| | - Futao Zhao
- Zhumadian Psychiatric Hospital, Zhumadian, 463000, Henan, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zexuan Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Mei Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Li Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
48
|
Abstract
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
Collapse
Affiliation(s)
- Puja K Parekh
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Shane B Johnson
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Conor Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
49
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
50
|
Bhatti DL, Medrihan L, Chen MX, Jin J, McCabe KA, Wang W, Azevedo EP, Ledo JH, Kim Y. Molecular and Cellular Adaptations in Hippocampal Parvalbumin Neurons Mediate Behavioral Responses to Chronic Social Stress. Front Mol Neurosci 2022; 15:898851. [PMID: 35813065 PMCID: PMC9268684 DOI: 10.3389/fnmol.2022.898851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-expressing interneurons (PV neurons) maintain inhibitory control of local circuits implicated in behavioral responses to environmental stressors. However, the roles of molecular and cellular adaptations in PV neurons in stress susceptibility or resilience have not been clearly established. Here, we show behavioral outcomes of chronic social defeat stress (CSDS) are mediated by differential neuronal activity and gene expression in hippocampal PV neurons in mice. Using in vivo electrophysiology and chemogenetics, we find increased PV neuronal activity in the ventral dentate gyrus is required and sufficient for behavioral susceptibility to CSDS. PV neuron-selective translational profiling indicates mitochondrial oxidative phosphorylation is the most significantly altered pathway in stress-susceptible versus resilient mice. Among differentially expressed genes associated with stress-susceptibility and resilience, we find Ahnak, an endogenous regulator of L-type calcium channels which are implicated in the regulation of mitochondrial function and gene expression. Notably, Ahnak deletion in PV neurons impedes behavioral susceptibility to CSDS. Altogether, these findings indicate behavioral effects of chronic stress can be controlled by selective modulation of PV neuronal activity or a regulator of L-type calcium signaling in PV neurons.
Collapse
Affiliation(s)
- Dionnet L. Bhatti
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Lucian Medrihan
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Michelle X. Chen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Kathryn A. McCabe
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Wei Wang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, United States
| | - Estefania P. Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, United States
| | - Jose H. Ledo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Yong Kim,
| |
Collapse
|