1
|
Elroy-Stein O. Effective extraction of polyribosomes from astrocytes enables future discoveries on translation regulation. Neural Regen Res 2025; 20:1083-1084. [PMID: 38989942 PMCID: PMC11438352 DOI: 10.4103/nrr.nrr-d-24-00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Orna Elroy-Stein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Khanduja A, Mohanty D. SProtFP: a machine learning-based method for functional classification of small ORFs in prokaryotes. NAR Genom Bioinform 2025; 7:lqae186. [PMID: 39781515 PMCID: PMC11704790 DOI: 10.1093/nargab/lqae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins. We have also trained a model for identification of small open reading frame (smORF)-encoded antimicrobial peptides (AMPs). Comprehensive benchmarking of SProtFP revealed an average area under the receiver operator curve (ROC-AUC) of 0.92 during 10-fold cross-validation and an ROC-AUC of 0.94 and 0.93 on held-out balanced and imbalanced test sets. Utilizing our method to annotate bacterial isolates from the human gut microbiome, we could identify thousands of remote homologs of known small protein families and assign putative functions to uncharacterized proteins. This highlights the utility of SProtFP for large-scale functional annotation of microbiome datasets, especially in cases where sequence homology is low. SProtFP is freely available at http://www.nii.ac.in/sprotfp.html and can be combined with genome annotation tools such as ProsmORF-pred to uncover the functional repertoire of novel small proteins in bacteria.
Collapse
Affiliation(s)
- Akshay Khanduja
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Zhu Z, Bo D, Xie C, Dai D, Peng D, Sun M, Zheng J. Integrative multi-omics analysis reveals the translational landscape of the plant-parasitic nematode Meloidogyne incognita. Commun Biol 2025; 8:140. [PMID: 39875506 PMCID: PMC11775120 DOI: 10.1038/s42003-025-07533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Root-knot nematodes (RKNs) of the genus Meloidogyne pose the most significant threats to global food security due to their destructive nature as plant-parasitic nematodes. Although significant attention has been devoted to investigating the gene transcription profiling of RKNs, our understanding of the translational landscape of RKNs remains limited. In this study, we elucidated the translational landscape of Meloidogyne incognita through the integration of translatome, transcriptome and quantitative proteome analyses. Our findings revealed numerous previously unannotated translation events and refined the genome annotation. By investigating the genome-wide translational dynamics of M. incognita during parasitism, we revealed that the genes of M. incognita undergo parasitic stage-specific regulation at the translational level. Interestingly, we identified 470 micropeptides (containing fewer than 100 amino acids) with the potential to function as effectors. Additionally, we observed that the effector-coding genes in M. incognita exhibit higher translation efficiency (TE). Further analysis suggests that M. incognita has the potential to regulate the TE of effector-coding genes without simultaneous alterations in their transcript abundance, facilitating effector synthesis. Collectively, our study provides comprehensive datasets and explores the genome-wide translational landscape of M. incognita, shedding light on the contributions of translational regulation during parasitism.
Collapse
Affiliation(s)
- Zhaolu Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dexin Bo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanshuai Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Fiorenzani C, Mossa A, De Rubeis S. DEAD/DEAH-box RNA helicases shape the risk of neurodevelopmental disorders. Trends Genet 2025:S0168-9525(24)00314-7. [PMID: 39828505 DOI: 10.1016/j.tig.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The DEAD/DEAH-box family of RNA helicases (RHs) is among the most abundant and conserved in eukaryotes. These proteins catalyze the remodeling of RNAs to regulate their splicing, stability, localization, and translation. Rare genetic variants in DEAD/DEAH-box proteins have recently emerged as being associated with neurodevelopmental disorders (NDDs). Analyses in cellular and animal models have uncovered fundamental roles for these proteins during brain development. We discuss the genetic and functional evidence that implicates DEAD/DEAH-box proteins in brain development and NDDs, with a focus on how structural insights from paralogous genes can be leveraged to advance our understanding of the pathogenic mechanisms at play.
Collapse
Affiliation(s)
- Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Flores MA, Garcia-Forn M, von Mueffling A, Ola P, Park Y, Boitnott A, De Rubeis S. A subpopulation of cortical neurons altered by mutations in the autism risk gene DDX3X. Biol Open 2025; 14:bio061854. [PMID: 39878593 DOI: 10.1242/bio.061854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges. Here, we studied the developmental dynamics of a subpopulation of cortical neurons co-expressing CTIP2 and BRN1. We found that CTIP2+BRN1+ neurons are born during early phases of neurogenesis like other CTIP2+ neurons, peak in expression during perinatal life, and persist in adult brains. We also found that CTIP2+BRN1+ neurons are excessive in number in prenatal and mature cortical motor areas of Ddx3x mutant mice, translating into altered laminar distribution of subcerebral projection neurons extending axons to the brainstem. These findings underscore the critical role of molecular specification during cortical development in health and disease.
Collapse
Affiliation(s)
- Michael A Flores
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexa von Mueffling
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Praise Ola
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yeaji Park
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Xiao X, Wang Y, Li T, Wang Q, Luo X, Li J, Gao L. Microproteins encoded by short open reading frames: Vital regulators in neurological diseases. Prog Neurobiol 2024; 243:102694. [PMID: 39586488 DOI: 10.1016/j.pneurobio.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as "transcriptional noise". However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
Collapse
Affiliation(s)
- Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
7
|
Mossa A, Dierdorff L, Lukin J, Park Y, Fiorenzani C, Akpinar Z, Garcia-Forn M, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624865. [PMID: 39605424 PMCID: PMC11601590 DOI: 10.1101/2024.11.22.624865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DDX3X is an X-linked RNA helicases that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females. Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA translation. Female neurons display higher levels of ribosomal proteins and larger nucleoli, and these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic outgrowth in a sex- and dose-dependent manner in both female and male neurons, and dendritic spine development only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
|
8
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Lee PJ, Sun Y, Soares AR, Fai C, Picciotto MR, Guo JU. Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions. Mol Cell 2024; 84:3967-3978.e8. [PMID: 39317199 PMCID: PMC11490368 DOI: 10.1016/j.molcel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.
Collapse
Affiliation(s)
- Paul Jongseo Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Caroline Fai
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, Hübner N. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1217-1235. [PMID: 39317836 PMCID: PMC11473369 DOI: 10.1038/s44161-024-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Johannes Greiner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Genehr
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Aliki Grammatikaki
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanne Mbebi
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikita Dewani
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ning Liang
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael B Muecke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Freie Universitaet Berlin, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen, Germany
- DZNE (German Center for Neurodegenerative Diseases), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
11
|
Xiao C, Mo F, Lu Y, Xiao Q, Yao C, Li T, Qi J, Liu X, Chen JY, Zhang L, Guo T, Hu B, An NA, Li CY. Reply to: Identification of old coding regions disproves the hominoid de novo status of genes. Nat Ecol Evol 2024; 8:1831-1834. [PMID: 39187608 DOI: 10.1038/s41559-024-02515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfei Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Xiao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chao Yao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
12
|
Leushkin E, Kaessmann H. Identification of old coding regions disproves the hominoid de novo status of genes. Nat Ecol Evol 2024; 8:1826-1830. [PMID: 39187607 DOI: 10.1038/s41559-024-02513-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Evgeny Leushkin
- Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
von Mueffling A, Garcia-Forn M, De Rubeis S. DDX3X syndrome: From clinical phenotypes to biological insights. J Neurochem 2024; 168:2147-2154. [PMID: 38976626 PMCID: PMC11449660 DOI: 10.1111/jnc.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.
Collapse
Affiliation(s)
- Alexa von Mueffling
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Choi MK, Cook A, Mungikar K, Eachus H, Tochwin A, Linke M, Gerber S, Ryu S. Exposure to elevated glucocorticoid during development primes altered transcriptional responses to acute stress in adulthood. iScience 2024; 27:110160. [PMID: 38989456 PMCID: PMC11233911 DOI: 10.1016/j.isci.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.
Collapse
Affiliation(s)
- Min-Kyeung Choi
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Alexander Cook
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Anna Tochwin
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| |
Collapse
|
15
|
Mihailovich M, Germain PL, Shyti R, Pozzi D, Noberini R, Liu Y, Aprile D, Tenderini E, Troglio F, Trattaro S, Fabris S, Ciptasari U, Rigoli MT, Caporale N, D’Agostino G, Mirabella F, Vitriolo A, Capocefalo D, Skaros A, Franchini AV, Ricciardi S, Biunno I, Neri A, Nadif Kasri N, Bonaldi T, Aebersold R, Matteoli M, Testa G. Multiscale modeling uncovers 7q11.23 copy number variation-dependent changes in ribosomal biogenesis and neuronal maturation and excitability. J Clin Invest 2024; 134:e168982. [PMID: 39007270 PMCID: PMC11245157 DOI: 10.1172/jci168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.
Collapse
Affiliation(s)
- Marija Mihailovich
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Pierre-Luc Germain
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Computational Neurogenomics, D-HEST Institute for Neuroscience, Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Reinald Shyti
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Davide Aprile
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Flavia Troglio
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sebastiano Trattaro
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ummi Ciptasari
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Marco Tullio Rigoli
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Alessandro Vitriolo
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Daniele Capocefalo
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adrianos Skaros
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Sara Ricciardi
- Department of Biosciences, University of Milan, Milan, Italy
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Ida Biunno
- Integrated Systems Engineering Srl, c/o OpenZone, Bresso, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nael Nadif Kasri
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Tiziana Bonaldi
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rudolf Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Testa
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Russ JB, Stone AC, Maney K, Morris L, Wright CF, Hurst JH, Cohen JL. Pathogenic variants associated with speech/cognitive delay and seizures affect genes with expression biases in excitatory neurons and microglia in developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601597. [PMID: 39005386 PMCID: PMC11245013 DOI: 10.1101/2024.07.01.601597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background & Objective Congenital brain malformations and neurodevelopmental disorders (NDDs) are common pediatric neurological disorders and result in chronic disability. With the expansion of genetic testing, new etiologies for NDDs are continually uncovered, with as many as one third attributable to single-gene pathogenic variants. While our ability to identify pathogenic variants has continually improved, we have little understanding of the underlying cellular pathophysiology in the nervous system that results from these variants. We therefore integrated phenotypic information from subjects with monogenic diagnoses with two large, single-nucleus RNA-sequencing (snRNAseq) datasets from human cortex across developmental stages in order to investigate cell-specific biases in gene expression associated with distinct neurodevelopmental phenotypes. Methods Phenotypic data was gathered from 1) a single-institution cohort of 84 neonates with pathogenic single-gene variants referred to Duke Pediatric Genetics, and 2) a cohort of 4,238 patients with neurodevelopmental disorders and pathogenic single-gene variants enrolled in the Deciphering Developmental Disorders (DDD) study. Pathogenic variants were grouped into genesets by neurodevelopmental phenotype and geneset expression across cortical cell subtypes was compared within snRNAseq datasets from 86 human cortex samples spanning the 2nd trimester of gestation to adulthood. Results We find that pathogenic variants associated with speech/cognitive delay or seizures involve genes that are more highly expressed in cortical excitatory neurons than variants in genes not associated with these phenotypes (Speech/cognitive: p=2.25×10-7; Seizures: p=7.97×10-12). A separate set of primarily rare variants associated with speech/cognitive delay or seizures, distinct from those with excitatory neuron expression biases, demonstrated expression biases in microglia. We also found that variants associated with speech/cognitive delay and an excitatory neuron expression bias could be further parsed by the presence or absence of comorbid seizures. Variants associated with speech/cognitive delay without seizures tended to involve calcium regulatory pathways and showed greater expression in extratelencephalic neurons, while those associated with speech/cognitive delay with seizures tended to involve synaptic regulatory machinery and an intratelencephalic neuron expression bias (ANOVA by geneset p<2×10-16). Conclusions By combining extensive phenotype datasets from subjects with neurodevelopmental disorders with massive human cortical snRNAseq datasets across developmental stages, we identified cell-specific expression biases for genes in which pathogenic variants are associated with speech/cognitive delay and seizures. The involvement of genes with enriched expression in excitatory neurons or microglia highlights the unique role both cell types play in proper sculpting of the developing brain. Moreover, this information begins to shed light on distinct cortical cell types that are more likely to be impacted by pathogenic variants and that may mediate the symptomatology of resulting neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, Division of Neurology, Duke University, USA
| | - Alexa C Stone
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Kayli Maney
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Lauren Morris
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
| | - Jillian H Hurst
- Department of Pediatrics, Children's Health & Discovery Initiative, Duke University, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, USA
| |
Collapse
|
17
|
Liang Y, Lv D, Liu K, Yang L, Shu H, Wen L, Lv C, Sun Q, Yin J, Liu H, Xu J, Liu Z, Ding N. MicroProteinDB: A database to provide knowledge on sequences, structures and function of ncRNA-derived microproteins. Comput Biol Med 2024; 177:108660. [PMID: 38820774 DOI: 10.1016/j.compbiomed.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Omics-based technologies have revolutionized our comprehension of microproteins encoded by ncRNAs, revealing their abundant presence and pivotal roles within complex functional landscapes. Here, we developed MicroProteinDB (http://bio-bigdata.hrbmu.edu.cn/MicroProteinDB), which offers and visualizes the extensive knowledge to aid retrieval and analysis of computationally predicted and experimentally validated microproteins originating from various ncRNA types. Employing prediction algorithms grounded in diverse deep learning approaches, MicroProteinDB comprehensively documents the fundamental physicochemical properties, secondary and tertiary structures, interactions with functional proteins, family domains, and inter-species conservation of microproteins. With five major analytical modules, it will serve as a valuable knowledge for investigating ncRNA-derived microproteins.
Collapse
Affiliation(s)
- Yinan Liang
- The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Kefan Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Liting Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Huan Shu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qisen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Zhigang Liu
- Affiliated Foshan Maternity&Child Healthcare Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
18
|
Sanejouand YH. Are Most Human-Specific Proteins Encoded by Long Noncoding RNAs? J Mol Evol 2024:10.1007/s00239-024-10174-z. [PMID: 38916610 DOI: 10.1007/s00239-024-10174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
By looking for a lack of homologs in a reference database of 27 well-annotated proteomes of primates and 52 well-annotated proteomes of other mammals, 170 putative human-specific proteins were identified. While most of them are deemed uncertain, 2 are known at the protein level and 23 at the transcript level, according to UniProt. Interestingly, 23 of these 25 proteins are found to be encoded or to have close homologs in an open reading frame of a long noncoding human RNA. However, half of them are predicted to be at least 80% globular, with a single structural domain, according to IUPred, and with at least 80% of ordered residues, according to flDPnn. Strikingly, there is a near-complete lack of structural knowledge about these proteins, with no tertiary structure presently available in the Protein Data Bank and a fair prediction for one of them in the AlphaFold Protein Structure Database. Moreover, knowledge about the function of these possibly key proteins remains scarce.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- US2B, UMR 6286 of CNRS, Nantes University, 2 rue de la Houssinière, Nantes, 44322, Pays de la Loire, France.
| |
Collapse
|
19
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
20
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
21
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev 2024; 38:294-307. [PMID: 38688681 PMCID: PMC11146593 DOI: 10.1101/gad.351557.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Qin Y, Chen L, Zhu W, Song J, Lin J, Li Y, Zhang J, Song X, Xing T, Guo T, Duan X, Zhang Y, Ruan E, Wang Q, Li B, Yang W, Yin P, Yan XX, Li S, Li XJ, Yang S. TRIM37 is a primate-specific E3 ligase for Huntingtin and accounts for the striatal degeneration in Huntington's disease. SCIENCE ADVANCES 2024; 10:eadl2036. [PMID: 38758800 PMCID: PMC11100560 DOI: 10.1126/sciadv.adl2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiahong Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuwei Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiawei Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Eshu Ruan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qi Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
24
|
Wieder N, D'Souza EN, Martin-Geary AC, Lassen FH, Talbot-Martin J, Fernandes M, Chothani SP, Rackham OJL, Schafer S, Aspden JL, MacArthur DG, Davies RW, Whiffin N. Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes. Genome Biol 2024; 25:111. [PMID: 38685090 PMCID: PMC11057154 DOI: 10.1186/s13059-024-03248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5'UTRs, correlates with gene dosage sensitivity. RESULTS We investigate 5'UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5'UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5'UTR length and complexity. Genes that are most intolerant to LoF have longer 5'UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. CONCLUSIONS Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them.
Collapse
Affiliation(s)
- Nechama Wieder
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frederik H Lassen
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Maria Fernandes
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Robert W Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Iosub IA, Wilkins OG, Ule J. Riboseq-flow: A streamlined, reliable pipeline for ribosome profiling data analysis and quality control. Wellcome Open Res 2024; 9:179. [PMID: 38846930 PMCID: PMC11153996 DOI: 10.12688/wellcomeopenres.21000.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 06/09/2024] Open
Abstract
Ribosome profiling is a powerful technique to study translation at a transcriptome-wide level. However, ensuring good data quality is paramount for accurate interpretation, as is ensuring that the analyses are reproducible. We introduce a new Nextflow DSL2 pipeline, riboseq-flow, designed for processing and comprehensive quality control of ribosome profiling experiments. Riboseq-flow is user-friendly, versatile and upholds high standards in reproducibility, scalability, portability, version control and continuous integration. It enables users to efficiently analyse multiple samples in parallel and helps them evaluate the quality and utility of their data based on the detailed metrics and visualisations that are automatically generated. Riboseq-flow is available at https://github.com/iraiosub/riboseq-flow.
Collapse
Affiliation(s)
- Ira A. Iosub
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oscar G. Wilkins
- The Francis Crick Institute, London, England, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jernej Ule
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Ge J, Wang Z, Wu J. NAT10-mediated ac 4C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif 2024; 57:e13577. [PMID: 38041497 PMCID: PMC10984107 DOI: 10.1111/cpr.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
Cell fate determination in mammalian development is complex and precisely controlled and accumulating evidence indicates that epigenetic mechanisms are crucially involved. N4-acetylcytidine (ac4C) is a recently identified modification of messenger RNA (mRNA); however, its functions are still elusive in mammalian. Here, we show that N-acetyltransferase 10 (NAT10)-mediated ac4C modification promotes ectoderm differentiation of human embryonic stem cells (hESCs) by acetylating nuclear receptor subfamily 2 group F member 1 (NR2F1) mRNA to enhance translation efficiency (TE). Acetylated RNA immunoprecipitation sequencing (acRIP-seq) revealed that levels of ac4C modification were higher in ectodermal neuroepithelial progenitor (NEP) cells than in hESCs or mesoendoderm cells. In addition, integrated analysis of acRIP-seq and ribosome profiling sequencing revealed that NAT10 catalysed ac4C modification to improve TE in NEP cells. RIP-qRT-PCR analysis identified an interaction between NAT10 and NR2F1 mRNA in NEP cells and NR2F1 accelerated the nucleus-to-cytoplasm translocation of yes-associated protein 1, which contributed to ectodermal differentiation of hESCs. Collectively, these findings point out the novel regulatory role of ac4C modification in the early ectodermal differentiation of hESCs and will provide a new strategy for the treatment of neuroectodermal defects diseases.
Collapse
Affiliation(s)
- Junbang Ge
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Wang
- Laboratory Animal Center of Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Ji Wu
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Shanghai Key Laboratory of Reproductive MedicineShanghaiChina
| |
Collapse
|
27
|
Clauwaert J, McVey Z, Gupta R, Yannuzzi I, Menschaert G, Prensner JR. Deep learning to decode sites of RNA translation in normal and cancerous tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586110. [PMID: 38585907 PMCID: PMC10996544 DOI: 10.1101/2024.03.21.586110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.
Collapse
Affiliation(s)
- Jim Clauwaert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| | - Zahra McVey
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Oxford, United Kingdom
| | - Ramneek Gupta
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Oxford, United Kingdom
| | - Ian Yannuzzi
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
- These authors share senior authorship: Gerben Menschaert, John R. Prensner
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| | - John R. Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- These authors share senior authorship: Gerben Menschaert, John R. Prensner
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| |
Collapse
|
28
|
Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A 2024; 121:e2308255121. [PMID: 38412125 PMCID: PMC10927592 DOI: 10.1073/pnas.2308255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024] Open
Abstract
MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Ye Duan
- Program of Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Li Li
- Division of Biology, Kansas State University, Manhattan, KS66506
| | | | - Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch67 400, France
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS66506
| | - Victor Ambros
- Program of Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
| |
Collapse
|
29
|
Liu X, Xiao C, Xu X, Zhang J, Mo F, Chen JY, Delihas N, Zhang L, An NA, Li CY. Origin of functional de novo genes in humans from "hopeful monsters". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1845. [PMID: 38605485 DOI: 10.1002/wrna.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
For a long time, it was believed that new genes arise only from modifications of preexisting genes, but the discovery of de novo protein-coding genes that originated from noncoding DNA regions demonstrates the existence of a "motherless" origination process for new genes. However, the features, distributions, expression profiles, and origin modes of these genes in humans seem to support the notion that their origin is not a purely "motherless" process; rather, these genes arise preferentially from genomic regions encoding preexisting precursors with gene-like features. In such a case, the gene loci are typically not brand new. In this short review, we will summarize the definition and features of human de novo genes and clarify their process of origination from ancestral non-coding genomic regions. In addition, we define the favored precursors, or "hopeful monsters," for the origin of de novo genes and present a discussion of the functional significance of these young genes in brain development and tumorigenesis in humans. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
30
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578240. [PMID: 38352368 PMCID: PMC10862813 DOI: 10.1101/2024.02.01.578240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic function is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear non-coding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 from neurons stimulated expression of particular pre- and post- synaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized to both axons and dendrites in puncta that co-stain with Staufen1 protein, similar to neuronal granules formed by locally translated mRNAs. Ribosome profiling of mouse cortical neurons identified ribosome footprints within a region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP coding sequence in mouse ES cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wildtype neurons, and showed enhancement of M1 expression after synaptic stimulation with KCL. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
31
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Kurosaki T, Rambout X, Maquat LE. FMRP-mediated spatial regulation of physiologic NMD targets in neuronal cells. Genome Biol 2024; 25:31. [PMID: 38263082 PMCID: PMC10804635 DOI: 10.1186/s13059-023-03146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In non-polarized cells, nonsense-mediated mRNA decay (NMD) generally begins during the translation of newly synthesized mRNAs after the mRNAs are exported to the cytoplasm. Binding of the FMRP translational repressor to UPF1 on NMD targets mainly inhibits NMD. However, in polarized cells like neurons, FMRP additionally localizes mRNAs to cellular projections. Here, we review the literature and evaluate available transcriptomic data to conclude that, in neurons, the translation of physiologic NMD targets bound by FMRP is partially inhibited until the mRNAs localize to projections. There, FMRP displacement in response to signaling induces a burst in protein synthesis followed by rapid mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
33
|
Ma Y, Bendl J, Hartley BJ, Fullard JF, Abdelaal R, Ho SM, Kosoy R, Gochman P, Rapoport J, Hoffman GE, Brennand KJ, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biol Psychiatry 2024; 95:187-198. [PMID: 37454787 PMCID: PMC10787819 DOI: 10.1016/j.biopsych.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Converging evidence from large-scale genetic and postmortem studies highlights the role of aberrant neurotransmission and genetic regulation in brain-related disorders. However, identifying neuronal activity-regulated transcriptional programs in the human brain and understanding how changes contribute to disease remain challenging. METHODS To better understand how the activity-dependent regulome contributes to risk for brain-related disorders, we profiled the transcriptomic and epigenomic changes following neuronal depolarization in human induced pluripotent stem cell-derived glutamatergic neurons (NGN2) from 6 patients with schizophrenia and 5 control participants. RESULTS Multiomic data integration associated global patterns of chromatin accessibility with gene expression and identified enhancer-promoter interactions in glutamatergic neurons. Within 1 hour of potassium chloride-induced depolarization, independent of diagnosis, glutamatergic neurons displayed substantial activity-dependent changes in the expression of genes regulating synaptic function. Depolarization-induced changes in the regulome revealed significant heritability enrichment for schizophrenia and Parkinson's disease, adding to mounting evidence that sequence variation within activation-dependent regulatory elements contributes to the genetic risk for brain-related disorders. Gene coexpression network analysis elucidated interactions among activity-dependent and disease-associated genes and pointed to a key driver (NAV3) that interacted with multiple genes involved in axon guidance. CONCLUSIONS Overall, we demonstrated that deciphering the activity-dependent regulome in glutamatergic neurons reveals novel targets for advanced diagnosis and therapy.
Collapse
Affiliation(s)
- Yixuan Ma
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brigham J Hartley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rawan Abdelaal
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - Seok-Man Ho
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Gochman
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Judith Rapoport
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristen J Brennand
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York.
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
34
|
Lv D, Li D, Cai Y, Guo J, Chu S, Yu J, Liu K, Jiang T, Ding N, Jin X, Li Y, Xu J. CancerProteome: a resource to functionally decipher the proteome landscape in cancer. Nucleic Acids Res 2024; 52:D1155-D1162. [PMID: 37823596 PMCID: PMC10767844 DOI: 10.1093/nar/gkad824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated the large-scale quantification of proteins and microproteins, thereby revealing altered signalling pathways across many different cancer types. However, specialized and comprehensive resources are lacking for cancer proteomics. Here, we describe CancerProteome (http://bio-bigdata.hrbmu.edu.cn/CancerProteome), which functionally deciphers and visualizes the proteome landscape in cancer. We manually curated and re-analyzed publicly available MS-based quantification and post-translational modification (PTM) proteomes, including 7406 samples from 21 different cancer types, and also examined protein abundances and PTM levels in 31 120 proteins and 4111 microproteins. Six major analytical modules were developed with a view to describe protein contributions to carcinogenesis using proteome analysis, including conventional analyses of quantitative and the PTM proteome, functional enrichment, protein-protein associations by integrating known interactions with co-expression signatures, drug sensitivity and clinical relevance analyses. Moreover, protein abundances, which correlated with corresponding transcript or PTM levels, were evaluated. CancerProteome is convenient as it allows users to access specific proteins/microproteins of interest using quick searches or query options to generate multiple visualization results. In summary, CancerProteome is an important resource, which functionally deciphers the cancer proteome landscape and provides a novel insight for the identification of tumor protein markers in cancer.
Collapse
Affiliation(s)
- Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Sen Chu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kefan Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150000, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
35
|
Tornini VA. Small protein plays with big networks. Trends Genet 2024; 40:17-19. [PMID: 37879968 PMCID: PMC10847964 DOI: 10.1016/j.tig.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Thousands of small proteins, called microproteins, are encoded in small open reading frames (smORFs) throughout the genome. Despite assumptions that these proteins would be too small to properly fold and function, a recent study by Chen et al. identifies the surprisingly complex roles of one such microprotein.
Collapse
Affiliation(s)
- Valerie A Tornini
- Department of Genetics, Yale School of Medicine, New Haven, CT 06511, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Society and Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
37
|
Wacholder A, Carvunis AR. Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry. PLoS Biol 2023; 21:e3002409. [PMID: 38048358 PMCID: PMC10721188 DOI: 10.1371/journal.pbio.3002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
38
|
Wacholder A, Carvunis AR. Biological Factors and Statistical Limitations Prevent Detection of Most Noncanonical Proteins by Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531963. [PMID: 36945638 PMCID: PMC10028962 DOI: 10.1101/2023.03.09.531963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here we leveraged recent advances in ribosome profiling and mass spectrometry to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly-expressed to be detected by shotgun mass spectrometry at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for four noncanonical proteins in mass spectrometry data, which were also supported by evolution and translation data. These results illustrate the power of mass spectrometry to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly-expressed proteins.
Collapse
|
39
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. Nature 2023; 622:41-47. [PMID: 37794265 PMCID: PMC10575709 DOI: 10.1038/s41586-023-06490-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 10/06/2023]
Abstract
Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, Sao Paulo, Brazil
| | | | - Francisco M De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Royston, UK
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, Universithy of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Technopole, Milan, Italy.
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Salamon I, Park Y, Miškić T, Kopić J, Matteson P, Page NF, Roque A, McAuliffe GW, Favate J, Garcia-Forn M, Shah P, Judaš M, Millonig JH, Kostović I, De Rubeis S, Hart RP, Krsnik Ž, Rasin MR. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun 2023; 14:6025. [PMID: 37758766 PMCID: PMC10533865 DOI: 10.1038/s41467-023-41730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers University, School of Graduate Studies, New Brunswick, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Terezija Miškić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Geoffrey W McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Miloš Judaš
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia.
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
41
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Moritz RL, Deutsch EW, van Heesch S. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol Cell Proteomics 2023; 22:100631. [PMID: 37572790 PMCID: PMC10506109 DOI: 10.1016/j.mcpro.2023.100631] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."
Collapse
Affiliation(s)
- John R Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Agora Center Bugnon 25A, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | | |
Collapse
|
42
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
43
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
44
|
Othoum G, Maher CA. CrypticProteinDB: an integrated database of proteome and immunopeptidome derived non-canonical cancer proteins. NAR Cancer 2023; 5:zcad024. [PMID: 37275273 PMCID: PMC10233886 DOI: 10.1093/narcan/zcad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Translated non-canonical proteins derived from noncoding regions or alternative open reading frames (ORFs) can contribute to critical and diverse cellular processes. In the context of cancer, they also represent an under-appreciated source of targets for cancer immunotherapy through their tumor-enriched expression or by harboring somatic mutations that produce neoantigens. Here, we introduce the largest integration and proteogenomic analysis of novel peptides to assess the prevalence of non-canonical ORFs (ncORFs) in more than 900 patient proteomes and 26 immunopeptidome datasets across 14 cancer types. The integrative proteogenomic analysis of whole-cell proteomes and immunopeptidomes revealed peptide support for a nonredundant set of 9760 upstream, downstream, and out-of-frame ncORFs in protein coding genes and 12811 in noncoding RNAs. Notably, 6486 ncORFs were derived from differentially expressed genes and 340 were ubiquitously translated across eight or more cancers. The analysis also led to the discovery of thirty-four epitopes and eight neoantigens from non-canonical proteins in two cohorts as novel cancer immunotargets. Collectively, our analysis integrated both bottom-up proteogenomic and targeted peptide validation to illustrate the prevalence of translated non-canonical proteins in cancer and to provide a resource for the prioritization of novel proteins supported by proteomic, immunopeptidomic, genomic and transcriptomic data, available at https://www.maherlab.com/crypticproteindb.
Collapse
Affiliation(s)
- Ghofran Othoum
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
45
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Deutsch EW, van Heesch S. What can Ribo-seq and proteomics tell us about the non-canonical proteome? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541049. [PMID: 37292611 PMCID: PMC10245706 DOI: 10.1101/2023.05.16.541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
Collapse
Affiliation(s)
- John R. Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Leron W. Kok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
46
|
Jain N, Richter F, Adzhubei I, Sharp AJ, Gelb BD. Small open reading frames: a comparative genetics approach to validation. BMC Genomics 2023; 24:226. [PMID: 37127568 PMCID: PMC10152738 DOI: 10.1186/s12864-023-09311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Open reading frames (ORFs) with fewer than 100 codons are generally not annotated in genomes, although bona fide genes of that size are known. Newer biochemical studies have suggested that thousands of small protein-coding ORFs (smORFs) may exist in the human genome, but the true number and the biological significance of the micropeptides they encode remain uncertain. Here, we used a comparative genomics approach to identify high-confidence smORFs that are likely protein-coding. We identified 3,326 high-confidence smORFs using constraint within human populations and evolutionary conservation as additional lines of evidence. Next, we validated that, as a group, our high-confidence smORFs are conserved at the amino-acid level rather than merely residing in highly conserved non-coding regions. Finally, we found that high-confidence smORFs are enriched among disease-associated variants from GWAS. Overall, our results highlight that smORF-encoded peptides likely have important functional roles in human disease.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA
- Present Address: Committee On Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Felix Richter
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Adzhubei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated hAGO1 mutations in C. elegans Argonaute ALG-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535748. [PMID: 37066388 PMCID: PMC10104039 DOI: 10.1101/2023.04.06.535748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
MicroRNAs (miRNA) are endogenous non-coding RNAs important for post-transcriptional regulation of gene expression. miRNAs associate with Argonaute proteins to bind to the 3' UTR of target genes and confer target repression. Recently, multiple de novo coding variants in the human Argonaute gene AGO1 ( hAGO1 ) have been reported to cause a neurodevelopmental disorder (NDD) with intellectual disability (ID). Most of the altered amino acids are conserved between the miRNA-associated Argonautes in H. sapiens and C. elegans , suggesting the hAGO1 mutations could disrupt evolutionarily conserved functions in the miRNA pathway. To investigate how the hAGO1 mutations may affect miRNA biogenesis and/or functions, we genetically modeled four of the hAGO1 de novo variants (referred to as NDD mutations) by introducing the identical mutations to the C. elegans hAGO1 homolog, alg-1 . This array of mutations caused distinct effects on C. elegans miRNA functions, miRNA populations, and downstream gene expression, indicative of profound alterations in aspects of miRNA processing and miRISC formation and/or activity. Specifically, we found that the alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles both in terms of overall abundances and association with mutant ALG-1. We also observed allele-specific profiles of gene expression with altered translational efficiency and/or mRNA abundance. The sets of perturbed genes include human homologs whose dysfunction is known to cause NDD. We anticipate that these cross-clade genetic studies may advance the understanding of fundamental Argonaute functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.
Collapse
|
48
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
49
|
Winsky-Sommerer R, King HA, Iadevaia V, Möller-Levet C, Gerber AP. A post-transcriptional regulatory landscape of aging in the female mouse hippocampus. Front Aging Neurosci 2023; 15:1119873. [PMID: 37122377 PMCID: PMC10135431 DOI: 10.3389/fnagi.2023.1119873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Aging is associated with substantial physiological changes and constitutes a major risk factor for neurological disorders including dementia. Alterations in gene expression upon aging have been extensively studied; however, an in-depth characterization of post-transcriptional regulatory events remains elusive. Here, we profiled the age-related changes of the transcriptome and translatome in the female mouse hippocampus by RNA sequencing of total RNA and polysome preparations at four ages (3-, 6-, 12-, 20-month-old); and we implemented a variety of bioinformatics approaches to unravel alterations in transcript abundance, alternative splicing, and polyadenylation site selection. We observed mostly well-coordinated transcriptome and translatome expression signatures across age including upregulation of transcripts related to immune system processes and neuroinflammation, though transcripts encoding ribonucleoproteins or associated with mitochondrial functions, calcium signaling and the cell-cycle displayed substantial discordant profiles, suggesting translational control associated with age-related deficits in hippocampal-dependent behavior. By contrast, alternative splicing was less preserved, increased with age and was associated with distinct functionally-related transcripts encoding proteins acting at synapses/dendrites, RNA-binding proteins; thereby predicting regulatory roles for RBM3 and CIRBP. Only minor changes in polyadenylation site selection were identified, indicating pivotal 3'-end selection in young adults compared to older groups. Overall, our study provides a comprehensive resource of age-associated post-transcriptional regulatory events in the mouse hippocampus, enabling further examination of the molecular features underlying age-associated neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | - André P. Gerber
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
50
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. ARXIV 2023:arXiv:2303.13996v1. [PMID: 36994150 PMCID: PMC10055485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, São Paulo, SP, Brasil
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Francisco M. De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA; Tempus Labs, Inc., Chicago, IL
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Da Vinci Building. Melbourn Science Park, Royston UK SG8 6HB
| | - Artemis G. Hatzigeorgiou
- Universithy of Thessaly, Department of Computer Science and Biomedical Informatics, Lamia, Greece; Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; Conway Institute of Biomedical and Biomolecular Research, University College Dublin, D04 V1W8 Dublin, Ireland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D. Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama Kanagawa 230-0045 Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ales Varabyou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A. Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010 Vic Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Human Technopole, via Rita Levi Montalcini 1, Milan 20157 Italy
| | - Steven L. Salzberg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Immunology and Regenerative Biology; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|