1
|
Wang L, Huang JJ, Zhu WJ, Zhai ZK, Lin C, Guan X, Liu HP, Dou T, Zhu YZ, Chen X. Curcumol effectively improves obesity through GDF15 induction via activation of endoplasmic reticulum stress response. Biochem Pharmacol 2024; 230:116560. [PMID: 39343180 DOI: 10.1016/j.bcp.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The escalating prevalence of obesity presents a formidable global health challenge, underscoring the imperative for efficacious pharmacotherapeutic interventions. However, current anti-obesity medications often exhibit limited efficacy and adverse effects, necessitating the exploration of alternative therapeutic approaches. Growth differentiation factor 15 (GDF15) has emerged as a promising target for obesity management, given its crucial role in appetite control and metabolic regulation. In this study, we aimed to investigate the efficacy of curcumol, a sesquiterpene compound derived from plants of the Zingiberaceae family, in obesity treatment. Our findings demonstrate that curcumol effectively induces the expression of GDF15 through the activation of the endoplasmic reticulum stress pathway. To confirm the role of GDF15 as a critical target for curcumol's function, we compared the effects of curcumol in wild-type mice and Gdf15-knockout mice. Using a high-fat diet-induced obese murine model, we observed that curcumol led to reduced appetite and altered dietary preferences mediated by GDF15. Furthermore, chronic curcumol intervention resulted in promising anti-obesity effects. Additionally, curcumol administration improved glucose tolerance and lipid metabolism in the obese mice. These findings highlight the potential of curcumol as a GDF15 inducer and suggest innovative strategies for managing obesity and its associated metabolic disorders. In conclusion, our study provides evidence for the efficacy of curcumol in obesity treatment by inducing GDF15 expression. The identified effects of curcumol on appetite regulation, dietary preferences, glucose tolerance, and lipid metabolism emphasize its potential as a therapeutic agent for combating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Department of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Jia-Jia Huang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei-Jia Zhu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhao-Kun Zhai
- Department of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chan Lin
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xiao Guan
- Faculty of Basic Medicine, Guilin Medical University, No. 109, Guilin 541004, China
| | - Hai-Ping Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Department of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Tong Dou
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Department of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.
| | - Xu Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Department of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Senol E, Mohammad H. Current perspectives on brain circuits involved in food addiction-like behaviors. J Neural Transm (Vienna) 2024; 131:475-485. [PMID: 38216705 DOI: 10.1007/s00702-023-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
There is an emerging view that the increased availability of energy-dense foods in our society is contributing to excessive food consumption which could lead to food addiction-like behavior. Particularly, compulsive eating patterns are predominant in people suffering from eating disorders (binge-eating disorder, bulimia and anorexia nervosa) and obesity. Phenotypically, the behavioral pattern exhibits a close resemblance to individuals suffering from other forms of addiction (drug, sex, gambling). Growing body of evidence in neuroscience research is showing that excessive consumption of energy-dense foods alters the brain circuits implicated in reward, decision-making, control, habit formation, and emotions that are central to drug addiction. Here, we review the current understanding of the circuits of food addiction-like behaviors and highlight the future possibility of exploring those circuits to combat obesity and eating disorders.
Collapse
Affiliation(s)
- Esra Senol
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hasan Mohammad
- Centre de Recherche en Biomédicine de Strasbourg (CRBS), L'Institut National de La Santé Et de La Recherche Médicale (Inserm) U1114, University of Strasbourg, Strasbourg, France.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Furlan A, Petrus P. Brain-body communication in metabolic control. Trends Endocrinol Metab 2023; 34:813-822. [PMID: 37716877 DOI: 10.1016/j.tem.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
A thorough understanding of the mechanisms controlling energy homeostasis is needed to prevent and treat metabolic morbidities. While the contribution of organs such as the liver, muscle, adipose tissue, and pancreas to the regulation of energy has received wide attention, less is known about the interplay with the nervous system. Here, we highlight the role of the nervous systems in regulating metabolism beyond the classic hypothalamic endocrine signaling models and discuss the contribution of circadian rhythms, higher brain regions, and sociodemographic variables in the energy equation. We infer that interdisciplinary approaches are key to conceptually advancing the current research frontier and devising innovative therapies to prevent and treat metabolic disease.
Collapse
Affiliation(s)
- Alessandro Furlan
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden.
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden.
| |
Collapse
|