1
|
Ito T, Murray JD. The impact of functional correlations on task information coding. Netw Neurosci 2024; 8:1331-1354. [PMID: 39735511 PMCID: PMC11675092 DOI: 10.1162/netn_a_00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2024] [Indexed: 12/31/2024] Open
Abstract
State-dependent neural correlations can be understood from a neural coding framework. Noise correlations-trial-to-trial or moment-to-moment covariability-can be interpreted only if the underlying signal correlation-similarity of task selectivity between pairs of neural units-is known. Despite many investigations in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here, we investigated relationships between large-scale noise correlations and signal correlations in a multitask human fMRI dataset. We found that task-state noise correlation changes (e.g., functional connectivity) did not typically change in the same direction as their underlying signal correlation (e.g., tuning similarity of two regions). Crucially, noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations) improved information coding of these brain regions. In contrast, noise correlations that changed in the same direction (aligned noise correlations) as their signal correlation did not. Interestingly, these aligned noise correlations were primarily correlation increases, suggesting that most functional correlation increases across fMRI networks actually degrade information coding. These findings illustrate that state-dependent noise correlations shape information coding of functional brain networks, with interpretation of correlation changes requiring knowledge of underlying signal correlations.
Collapse
Affiliation(s)
- Takuya Ito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights, NY, USA
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
2
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Soni AV, Frank MJ. Adaptive chunking improves effective working memory capacity in a prefrontal cortex and basal ganglia circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586455. [PMID: 39605328 PMCID: PMC11601399 DOI: 10.1101/2024.03.24.586455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
How and why is working memory (WM) capacity limited? Traditional cognitive accounts focus either on limitations on the number or items that can be stored (slots models), or loss of precision with increasing load (resource models). Here we show that a neural network model of prefrontal cortex and basal ganglia can learn to reuse the same prefrontal populations to store multiple items, leading to resource-like constraints within a slot-like system, and inducing a trade-off between quantity and precision of information. Such "chunking" strategies are adapted as a function of reinforcement learning and WM task demands, mimicking human performance and normative models. Moreover, adaptive performance requires a dynamic range of dopaminergic signals to adjust striatal gating policies, providing a new interpretation of WM difficulties in patient populations such as Parkinson's disease, ADHD and schizophrenia. These simulations also suggest a computational rather than anatomical limit to WM capacity.
Collapse
|
4
|
Kikumoto A, Bhandari A, Shibata K, Badre D. A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection. Nat Commun 2024; 15:8513. [PMID: 39353961 PMCID: PMC11445473 DOI: 10.1038/s41467-024-52777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Flexible action selection requires cognitive control mechanisms capable of mapping the same inputs to different output actions depending on the context. From a neural state-space perspective, this requires a control representation that separates similar input neural states by context. Additionally, for action selection to be robust and time-invariant, information must be stable in time, enabling efficient readout. Here, using EEG decoding methods, we investigate how the geometry and dynamics of control representations constrain flexible action selection in the human brain. Participants performed a context-dependent action selection task. A forced response procedure probed action selection different states in neural trajectories. The result shows that before successful responses, there is a transient expansion of representational dimensionality that separated conjunctive subspaces. Further, the dynamics stabilizes in the same time window, with entry into this stable, high-dimensional state predictive of individual trial performance. These results establish the neural geometry and dynamics the human brain needs for flexible control over behavior.
Collapse
Affiliation(s)
- Atsushi Kikumoto
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US.
- RIKEN Center for Brain Science, Wako, Saitama, Japan.
| | - Apoorva Bhandari
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US
| | | | - David Badre
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, US
| |
Collapse
|
5
|
Kim J, Gim S, Yoo SBM, Woo CW. A computational mechanism of cue-stimulus integration for pain in the brain. SCIENCE ADVANCES 2024; 10:eado8230. [PMID: 39259795 PMCID: PMC11389792 DOI: 10.1126/sciadv.ado8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Neurosurgery and McNair Scholar Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
6
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Nau M, Schmid AC, Kaplan SM, Baker CI, Kravitz DJ. Centering cognitive neuroscience on task demands and generalization. Nat Neurosci 2024; 27:1656-1667. [PMID: 39075326 DOI: 10.1038/s41593-024-01711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Cognitive neuroscience seeks generalizable theories explaining the relationship between behavioral, physiological and mental states. In pursuit of such theories, we propose a theoretical and empirical framework that centers on understanding task demands and the mutual constraints they impose on behavior and neural activity. Task demands emerge from the interaction between an agent's sensory impressions, goals and behavior, which jointly shape the activity and structure of the nervous system on multiple spatiotemporal scales. Understanding this interaction requires multitask studies that vary more than one experimental component (for example, stimuli and instructions) combined with dense behavioral and neural sampling and explicit testing for generalization across tasks and data modalities. By centering task demands rather than mental processes that tasks are assumed to engage, this framework paves the way for the discovery of new generalizable concepts unconstrained by existing taxonomies, and moves cognitive neuroscience toward an action-oriented, dynamic and integrated view of the brain.
Collapse
Affiliation(s)
- Matthias Nau
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandra C Schmid
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA
| | - Simon M Kaplan
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Dwight J Kravitz
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA.
- Division of Behavioral and Cognitive Sciences, Directorate for Social, Behavioral, and Economic Sciences, US National Science Foundation, Arlington, VA, USA.
| |
Collapse
|
8
|
Kikumoto A, Bhandari A, Shibata K, Badre D. A Transient High-dimensional Geometry Affords Stable Conjunctive Subspaces for Efficient Action Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544428. [PMID: 37333209 PMCID: PMC10274903 DOI: 10.1101/2023.06.09.544428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Flexible action selection requires cognitive control mechanisms capable of mapping the same inputs to different output actions depending on the context. From a neural state-space perspective, this requires a control representation that separates similar input neural states by context. Additionally, for action selection to be robust and time-invariant, information must be stable in time, enabling efficient readout. Here, using EEG decoding methods, we investigate how the geometry and dynamics of control representations constrain flexible action selection in the human brain. Participants performed a context-dependent action selection task. A forced response procedure probed action selection different states in neural trajectories. The result shows that before successful responses, there is a transient expansion of representational dimensionality that separated conjunctive subspaces. Further, the dynamics stabilizes in the same time window, with entry into this stable, high-dimensional state predictive of individual trial performance. These results establish the neural geometry and dynamics the human brain needs for flexible control over behavior.
Collapse
Affiliation(s)
- Atsushi Kikumoto
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Apoorva Bhandari
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
| | | | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, U.S
| |
Collapse
|
9
|
Antelmi E, Mogavero MP, Lanza G, Cartella SM, Ferini-Strambi L, Plazzi G, Ferri R, Tinazzi M. Sensory aspects of restless legs syndrome: Clinical, neurophysiological and neuroimaging prospectives. Sleep Med Rev 2024; 76:101949. [PMID: 38749362 DOI: 10.1016/j.smrv.2024.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 07/26/2024]
Abstract
Restless Legs Syndrome (RLS) is a complex sensorimotor disorder, classified among the sleep-related movement disorders. Although sensory symptoms appear as key features of the disorder, they are still poorly characterized from a clinical perspective and conceptualized from a pathophysiological point of view. In this review, we aim to describe the clinical and functional substrates of RLS, focusing mainly on its sensory symptoms and on their neurophysiological and anatomical correlates. Knowledge of both subjective sensory symptoms and objective sensory signs are still controversial. Current data also indicate that the sensory component of RLS seems to be subserved by anomalies of sensorimotor integration and by mechanism of central sensitization. Overall, electrophysiological findings highlight the involvement of multiple generators in the pathogenesis of RLS, eventually resulting in an increased nervous system excitability and/or alterations in inhibition within the somatosensory and nociceptive pathways. Structural and functional neuroimaging data show the involvement of several crucial areas and circuits, among which the thalamus appears to play a pivotal role. A holistic approach looking at brain connectivity, structural or functional abnormalities, and their interplay with molecular vulnerability and neurotransmitter alterations is warranted to disentangle the complex framework of RLS.
Collapse
Affiliation(s)
- Elena Antelmi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, DIMI Department of Engineering and Medicine of Innovation, University of Verona, Italy.
| | - Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, Milan, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy; University of Catania, Department of Surgery and Medical-Surgical Specialties, Catania, Italy
| | - Sandy M Cartella
- Movement Disorders Centre, Department of Neurology, Policlinico "Madonna Della Consolazione", Reggio Calabria, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, Milan, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Michele Tinazzi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
10
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
11
|
Chu C, Li W, Shi W, Wang H, Wang J, Liu Y, Liu B, Elmenhorst D, Eickhoff SB, Fan L, Jiang T. Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability. J Neurosci 2024; 44:e0856232024. [PMID: 38290847 PMCID: PMC10977027 DOI: 10.1523/jneurosci.0856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.
Collapse
Affiliation(s)
- Congying Chu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Wen Li
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Forschungszentrum Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf 40204, Germany
| | - Lingzhong Fan
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
12
|
Yang G, Wu H, Li Q, Liu X, Fu Z, Jiang J. Dorsolateral prefrontal activity supports a cognitive space organization of cognitive control. eLife 2024; 12:RP87126. [PMID: 38446535 PMCID: PMC10942645 DOI: 10.7554/elife.87126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Cognitive control resolves conflicts between task-relevant and -irrelevant information to enable goal-directed behavior. As conflicts can arise from different sources (e.g., sensory input, internal representations), how a limited set of cognitive control processes can effectively address diverse conflicts remains a major challenge. Based on the cognitive space theory, different conflicts can be parameterized and represented as distinct points in a (low-dimensional) cognitive space, which can then be resolved by a limited set of cognitive control processes working along the dimensions. It leads to a hypothesis that conflicts similar in their sources are also represented similarly in the cognitive space. We designed a task with five types of conflicts that could be conceptually parameterized. Both human performance and fMRI activity patterns in the right dorsolateral prefrontal cortex support that different types of conflicts are organized based on their similarity, thus suggesting cognitive space as a principle for representing conflicts.
Collapse
Affiliation(s)
- Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyBeijingChina
- Department of Psychology, University of Chinese Academy of SciencesBeijingChina
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of MacauMacauChina
| | - Qi Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal UniversityBeijingChina
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyBeijingChina
- Department of Psychology, University of Chinese Academy of SciencesBeijingChina
| | - Zhongzheng Fu
- Department of Neurological Surgery, Unversity of Texas Southwestern Medical CenterDallasUnited States
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| |
Collapse
|
13
|
Farrell M, Recanatesi S, Shea-Brown E. From lazy to rich to exclusive task representations in neural networks and neural codes. Curr Opin Neurobiol 2023; 83:102780. [PMID: 37757585 DOI: 10.1016/j.conb.2023.102780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Neural circuits-both in the brain and in "artificial" neural network models-learn to solve a remarkable variety of tasks, and there is a great current opportunity to use neural networks as models for brain function. Key to this endeavor is the ability to characterize the representations formed by both artificial and biological brains. Here, we investigate this potential through the lens of recently developing theory that characterizes neural networks as "lazy" or "rich" depending on the approach they use to solve tasks: lazy networks solve tasks by making small changes in connectivity, while rich networks solve tasks by significantly modifying weights throughout the network (including "hidden layers"). We further elucidate rich networks through the lens of compression and "neural collapse", ideas that have recently been of significant interest to neuroscience and machine learning. We then show how these ideas apply to a domain of increasing importance to both fields: extracting latent structures through self-supervised learning.
Collapse
Affiliation(s)
- Matthew Farrell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University and Center for Brain Science, Harvard University, United States
| | - Stefano Recanatesi
- Applied Mathematics, Physiology and Biophysics, and Computational Neuroscience Center, University of Washington, United States
| | - Eric Shea-Brown
- Applied Mathematics, Physiology and Biophysics, and Computational Neuroscience Center, University of Washington, United States.
| |
Collapse
|
14
|
Shah NP, Avansino D, Kamdar F, Nicolas C, Kapitonava A, Vargas-Irwin C, Hochberg L, Pandarinath C, Shenoy K, Willett FR, Henderson J. Pseudo-linear Summation explains Neural Geometry of Multi-finger Movements in Human Premotor Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561982. [PMID: 37873182 PMCID: PMC10592742 DOI: 10.1101/2023.10.11.561982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such hand gestures or playing piano)? Motor cortical activity was recorded using intracortical multi-electrode arrays in two people with tetraplegia as they attempted single, pairwise and higher order finger movements. Neural activity for simultaneous movements was largely aligned with linear summation of corresponding single finger movement activities, with two violations. First, the neural activity was normalized, preventing a large magnitude with an increasing number of moving fingers. Second, the neural tuning direction of weakly represented fingers (e.g. middle) changed significantly as a result of the movement of other fingers. These deviations from linearity resulted in non-linear methods outperforming linear methods for neural decoding. Overall, simultaneous finger movements are thus represented by the combination of individual finger movements by pseudo-linear summation.
Collapse
Affiliation(s)
| | - Donald Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | - Claire Nicolas
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Vargas-Irwin
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Leigh Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Krishna Shenoy
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Jaimie Henderson
- Department of Neurosurgery, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|