1
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
García-Marcelo MJ, Singh G, Chávez S, Pérez-Ortín JE. Measurement of rRNA Synthesis and Degradation Rates by 3H-Uracil Labeling in Yeast. Methods Mol Biol 2025; 2863:183-204. [PMID: 39535711 DOI: 10.1007/978-1-0716-4176-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In order to measure the actual synthesis and degradation rates (SR, DR) for rRNA in yeast, we developed a method based on the pulse labeling and quantification of newly synthesized large rRNA molecules by a known mass of cells. The SR is calculated as the ratio of new rRNA molecules (synthesized after a short [5,6-3H]-uracil pulse) to total rRNA (a proxy of cell mass), calculated by northern blotting after hybridization with a 32P-labeled rRNA probe. Then to measure the DR we perform a chase of the existing 3H-labeled rRNA for several hours during yeast culture growth. We have used this method in control experiments where the yeast cell volume varies as a way to check if the SR and DR are constant with the cell volume.
Collapse
Affiliation(s)
- María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Gaurav Singh
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain.
| |
Collapse
|
3
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2025; 437:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
4
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
5
|
Bhandare P, Narain A, Hofstetter J, Rummel T, Wenzel J, Schülein-Völk C, Lamer S, Eilers U, Schlosser A, Eilers M, Erhard F, Wolf E. Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription. Nucleic Acids Res 2024:gkae1219. [PMID: 39698826 DOI: 10.1093/nar/gkae1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
Collapse
Affiliation(s)
- Pranjali Bhandare
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Teresa Rummel
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Julia Wenzel
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Ursula Eilers
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
6
|
Wang Z, Song A, Tao B, Miao M, Luo YQ, Wang J, Yin Z, Xiao R, Zhou X, Shang XY, Hu S, Liang K, Danko CG, Chen FX. The phosphatase PP1 sustains global transcription by promoting RNA polymerase II pause release. Mol Cell 2024; 84:4824-4842.e7. [PMID: 39603240 DOI: 10.1016/j.molcel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
RNA polymerase II progression from initiation to elongation is driven in part by a cascade of protein kinases acting on the core transcription machinery. Conversely, the corresponding phosphatases, notably PP2A and PP1-the most abundant serine-threonine phosphatases in cells-are thought to mainly impede polymerase progression, respectively restraining pause release at promoters and elongation at terminators. Here, we reveal an unexpected role of PP1, within the phosphatase 1 nuclear targeting subunit (PNUTS)-PP1 complex, in sustaining global transcriptional activation in human cells. Acute disruption of PNUTS-PP1 leads to severe defects in the release of paused polymerase and subsequent downregulation for the majority of transcribed genes. PNUTS-PP1 promotes pause release by dephosphorylating multiple substrates, including the 7SK small nuclear ribonucleoprotein particle (snRNP) subunit MEPCE, a known pausing regulator. PNUTS-PP1 exhibits antagonistic functions compared with Integrator-PP2A (INTAC) phosphatase, which generally inhibits pause release. Our research thus highlights opposing roles of PP1 and PP2A in modulating genome-wide transcriptional pausing and gene expression.
Collapse
Affiliation(s)
- Zhenning Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aixia Song
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bolin Tao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maojian Miao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Qing Luo
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhinang Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xinwen Zhou
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ying Shang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibin Hu
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kaiwei Liang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Fei Xavier Chen
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Cacioppo R, Gillis A, Shlamovitz I, Zeller A, Castiblanco D, Crisp A, Haworth B, Arabiotorre A, Abyaneh P, Bao Y, Sale JE, Berry S, Tufegdžić Vidaković A. CRL3 ARMC5 ubiquitin ligase and Integrator phosphatase form parallel mechanisms to control early stages of RNA Pol II transcription. Mol Cell 2024; 84:4808-4823.e13. [PMID: 39667934 DOI: 10.1016/j.molcel.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Control of RNA polymerase II (RNA Pol II) through ubiquitylation is essential for the DNA-damage response. Here, we reveal a distinct ubiquitylation pathway in human cells, mediated by CRL3ARMC5, that targets excessive and defective RNA Pol II molecules at the initial stages of the transcription cycle. Upon ARMC5 loss, RNA Pol II accumulates in the free pool and in the promoter-proximal zone but is not permitted into elongation. We identify Integrator subunit 8 (INTS8) as a gatekeeper preventing the release of excess RNA Pol II molecules into gene bodies. Combined loss of ARMC5 and INTS8 has detrimental effects on cell growth and results in the uncontrolled release of excessive RNA Pol II complexes into early elongation, many of which are transcriptionally incompetent and fail to reach the ends of genes. These findings uncover CRL3ARMC5 and Integrator as two distinct pathways acting in parallel to monitor the quantity and quality of transcription complexes before they are licensed into elongation.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Iván Shlamovitz
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Andrew Zeller
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Daniela Castiblanco
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin Haworth
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Angela Arabiotorre
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Pegah Abyaneh
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yu Bao
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Ana Tufegdžić Vidaković
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
9
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
10
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Cano-Santiago A, Florencio-Martínez LE, Vélez-Ramírez DE, Romero-Chaveste AJ, Manning-Cela RG, Nepomuceno-Mejía T, Martínez-Calvillo S. Analyses of the essential C82 subunit uncovered some differences in RNA polymerase III transcription between Trypanosoma brucei and Leishmania major. Parasitology 2024:1-16. [PMID: 39523652 DOI: 10.1017/s0031182024000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites. To narrow this knowledge gap, we characterized the C82 subunit in Trypanosoma brucei and Leishmania major. Bioinformatic analyses showed that the 4 distinctive extended winged-helix (eWH) domains and the coiled-coil motif are present in C82 in these microorganisms. Nevertheless, C82 in trypanosomatids presents certain unique traits, including an exclusive loop within the eWH1 domain. We found that C82 localizes to the nucleus and binds to RNAP III-dependent genes in the insect stages of both parasites. Knock-down of C82 by RNA interference significantly reduced the levels of tRNAs and 5S rRNA and led to the death of procyclic forms of T. brucei. Tandem affinity purifications with both parasites allowed the identification of several C82-interacting partners, including C34 and some genus-specific putative regulators of transcription. However, the orthologue of C31 was not found in trypanosomatids. Interestingly, our data suggest a strong association of C82 with TFIIIC subunits in T. brucei, but not in L. major.
Collapse
Affiliation(s)
- Andrés Cano-Santiago
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Daniel E Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Adrián J Romero-Chaveste
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| |
Collapse
|
12
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00789-x. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Chen W, Chu J, Miao Y, Jiang W, Wang F, Zhang N, Jin J, Cai Y. MOF-mediated acetylation of CDK9 promotes global transcription by modulating P-TEFb complex formation. FEBS J 2024; 291:4796-4812. [PMID: 39250546 DOI: 10.1111/febs.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9), a catalytic subunit of the positive transcription elongation factor b (P-TEFb) complex, is a global transcriptional elongation factor associated with cell proliferation. CDK9 activity is regulated by certain histone acetyltransferases, such as p300, GCN5 and P/CAF. However, the impact of males absent on the first (MOF) (also known as KAT8 or MYST1) on CDK9 activity has not been reported. Therefore, the present study aimed to elucidate the regulatory role of MOF on CDK9. We present evidence from systematic biochemical assays and molecular biology approaches arguing that MOF interacts with and acetylates CDK9 at the lysine 35 (i.e. K35) site, and that this acetyl-group can be removed by histone deacetylase HDAC1. Notably, MOF-mediated acetylation of CDK9 at K35 promotes the formation of the P-TEFb complex through stabilizing CDK9 protein and enhancing its association with cyclin T1, which further increases RNA polymerase II serine 2 residues levels and global transcription. Our study reveals for the first time that MOF promotes global transcription by acetylating CDK9, providing a new strategy for exploring the comprehensive mechanism of the MOF-CDK9 axis in cellular processes.
Collapse
Affiliation(s)
- Wenqi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Jinmeng Chu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yujuan Miao
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenwen Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Na Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
14
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Continuous nucleolar ribosomal RNA synthesis in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619434. [PMID: 39484610 PMCID: PMC11526875 DOI: 10.1101/2024.10.21.619434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cellular differentiation requires highly coordinate action of all three transcriptional systems to produce rRNAs, mRNAs, and various "short" and "long" non-coding RNAs by RNA Polymerase I, II, and III systems, respectively. The RNA Polymerase I catalyzes transcription of about 400 copies of rDNA genes generating 18S, 5.8S, and 28S rRNA molecules from the individual primary transcript. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei though by different mechanisms. In lens, generation of organelle-free zone (OFZ) includes degradation of mitochondria, endoplasmic reticulum, Golgi apparatus, and nuclei; nevertheless, very little is known about their nucleoli and rRNA transcription. Here, using RNA fluorescence in situ hybridization (FISH) we evaluated nascent rRNA transcription during the entire process of lens fiber cell differentiation. The lens fiber cell nuclei undergo morphological changes prior their denucleation, including chromatin condensation; remarkably, the nascent rRNA transcription persists in all nuclei next to the OFZ. The changes in both nuclei and nucleoli shape and microarchitecture were evaluated by immunofluorescence to detect fibrillarin, nucleolin, UBF, and other nuclear proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support rRNA transcription. Thus, "late" production of rRNA molecules and consequently the ribosomes contribute to the terminal translational mechanisms to produce maximal quantities of the crystallin proteins.
Collapse
|
15
|
Hisler V, Bardot P, Detilleux D, Bernardini A, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Le Gras S, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription initiation in holo-TFIID-depleted mouse embryonic stem cells. Cell Rep 2024; 43:114791. [PMID: 39352809 PMCID: PMC11551524 DOI: 10.1016/j.celrep.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear. Inducible TAF7 or TAF10 depletion, followed by comprehensive analysis of TFIID subcomplex formation, chromatin binding, and nascent transcription in mouse embryonic stem cells, result in the formation of a TAF7-lacking TFIID or a minimal core-TFIID complex, respectively. These partial complexes support TBP recruitment at promoters and nascent Pol II transcription at most genes early after depletion, but importantly, TAF10 is necessary for efficient Pol II pausing. We show that partially assembled TFIID complexes can sustain Pol II transcription initiation but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Dylane Detilleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Claire Richard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Lynda Hadj Arab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Cynthia Ehrhard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Luc Négroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
16
|
Li T, Zeng F, Li Y, Li H, Wu J. The Integrator complex: an emerging complex structure involved in the regulation of gene expression by targeting RNA polymerase II. Funct Integr Genomics 2024; 24:192. [PMID: 39424688 DOI: 10.1007/s10142-024-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The Integrator complex is a multisubunit complex that participates in the processing of small nuclear RNA molecules in eukaryotic cells by cleaving the 3' end. In protein-coding genes, Integrator is a key regulator of promoter-proximal pausing, release, and recruitment of RNA polymerase II. Research on Integrator has revealed its critical role in the regulation of gene expression and RNA processing. Dysregulation of the Integrator complex has been implicated in a variety of human diseases including cancer and developmental disorders. Therefore, understanding the structure and function of the Integrator complex is critical to uncovering the mechanisms of gene expression and developing potential therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Tingyue Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fulei Zeng
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hu Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiayuan Wu
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
17
|
Rafi AM, Nogina D, Penzar D, Lee D, Lee D, Kim N, Kim S, Kim D, Shin Y, Kwak IY, Meshcheryakov G, Lando A, Zinkevich A, Kim BC, Lee J, Kang T, Vaishnav ED, Yadollahpour P, Kim S, Albrecht J, Regev A, Gong W, Kulakovskiy IV, Meyer P, de Boer CG. A community effort to optimize sequence-based deep learning models of gene regulation. Nat Biotechnol 2024:10.1038/s41587-024-02414-w. [PMID: 39394483 DOI: 10.1038/s41587-024-02414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/29/2024] [Indexed: 10/13/2024]
Abstract
A systematic evaluation of how model architectures and training strategies impact genomics model performance is needed. To address this gap, we held a DREAM Challenge where competitors trained models on a dataset of millions of random promoter DNA sequences and corresponding expression levels, experimentally determined in yeast. For a robust evaluation of the models, we designed a comprehensive suite of benchmarks encompassing various sequence types. All top-performing models used neural networks but diverged in architectures and training strategies. To dissect how architectural and training choices impact performance, we developed the Prix Fixe framework to divide models into modular building blocks. We tested all possible combinations for the top three models, further improving their performance. The DREAM Challenge models not only achieved state-of-the-art results on our comprehensive yeast dataset but also consistently surpassed existing benchmarks on Drosophila and human genomic datasets, demonstrating the progress that can be driven by gold-standard genomics datasets.
Collapse
Affiliation(s)
| | - Daria Nogina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Penzar
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- AIRI, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Dohoon Lee
- Seoul National University, Seoul, South Korea
| | | | - Nayeon Kim
- Seoul National University, Seoul, South Korea
| | | | - Dohyeon Kim
- Seoul National University, Seoul, South Korea
| | - Yeojin Shin
- Seoul National University, Seoul, South Korea
| | | | | | | | - Arsenii Zinkevich
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Juhyun Lee
- Chung-Ang University, Seoul, South Korea
| | - Taein Kang
- Chung-Ang University, Seoul, South Korea
| | - Eeshit Dhaval Vaishnav
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Sequome, Inc., South San Francisco, CA, USA
| | | | - Sun Kim
- Seoul National University, Seoul, South Korea
| | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, San Francisco, CA, USA
| | - Wuming Gong
- University of Minnesota, Minneapolis, MN, USA
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Pablo Meyer
- Health Care and Life Sciences, IBM Research, New York, NY, USA
| | - Carl G de Boer
- University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
20
|
Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X. Characterization of TBP and TAFs in Mungbean ( Vigna radiata L.) and Their Potential Involvement in Abiotic Stress Response. Int J Mol Sci 2024; 25:9558. [PMID: 39273505 PMCID: PMC11394781 DOI: 10.3390/ijms25179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.
Collapse
Affiliation(s)
- Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiyuan Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Na Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
21
|
Maji S, Waseem M, Sharma MK, Singh M, Singh A, Dwivedi N, Thakur P, Cooper DG, Bisht NC, Fassler JS, Subbarao N, Khurana JP, Bhavesh NS, Thakur JK. MediatorWeb: a protein-protein interaction network database for the RNA polymerase II Mediator complex. FEBS J 2024; 291:3938-3960. [PMID: 38975839 DOI: 10.1111/febs.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The protein-protein interaction (PPI) network of the Mediator complex is very tightly regulated and depends on different developmental and environmental cues. Here, we present an interactive platform for comparative analysis of the Mediator subunits from humans, baker's yeast Saccharomyces cerevisiae, and model plant Arabidopsis thaliana in a user-friendly web-interface database called MediatorWeb. MediatorWeb provides an interface to visualize and analyze the PPI network of Mediator subunits. The database facilitates downloading the untargeted and unweighted network of Mediator complex, its submodules, and individual Mediator subunits to better visualize the importance of individual Mediator subunits or their submodules. Further, MediatorWeb offers network visualization of the Mediator complex and interacting proteins that are functionally annotated. This feature provides clues to understand functions of Mediator subunits in different processes. In an additional tab, MediatorWeb provides quick access to secondary and tertiary structures, as well as residue-level contact information for Mediator subunits in each of the three model organisms. Another useful feature of MediatorWeb is detection of interologs based on orthologous analyses, which can provide clues to understand the functions of Mediator complex in less explored kingdoms. Thus, MediatorWeb and its features can help the user to understand the role of Mediator complex and its subunits in the transcription regulation of gene expression.
Collapse
Grants
- BT/PR40146/BTIS/137/4/2020 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40169/BTIS/137/71/2023 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/27/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/26/2021 Department of Biotechnology, Ministry of Science and Technology, India
- SERB, Government of India
- ICMR
- Council of Scientific and Industrial Research, India
Collapse
Affiliation(s)
- Sourobh Maji
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohd Waseem
- National Institute of Plant Genome Research, New Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Maninder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Anamika Singh
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research, New Delhi, India
| | - Pallabi Thakur
- National Institute of Plant Genome Research, New Delhi, India
| | - David G Cooper
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, USA
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jitendra P Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
22
|
Titus KR, Simandi Z, Chandrashekar H, Paquet D, Phillips-Cremins JE. Cell-type-specific loops linked to RNA polymerase II elongation in human neural differentiation. CELL GENOMICS 2024; 4:100606. [PMID: 38991604 PMCID: PMC11406193 DOI: 10.1016/j.xgen.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitor cells (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNA Pol II initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops or promoter-promoter loops or when unlooped. Genes transitioning from repression to RNA Pol II initiation exhibit a slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNA Pol II-mediated elongation during neural cell fate transitions.
Collapse
Affiliation(s)
- Katelyn R Titus
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harshini Chandrashekar
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Chen M. Puff, the polytene chromosome: Visualizing transcription elongation control. Mol Cell 2024; 84:2799-2801. [PMID: 39121840 DOI: 10.1016/j.molcel.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
In this issue, Versluis et al.1 use a highly sensitive live-cell imaging system to examine transcription dynamics and functions of various key transcription elongation regulators at the Hsp70 loci.
Collapse
Affiliation(s)
- Mo Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
24
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. Nat Commun 2024; 15:5859. [PMID: 38997286 PMCID: PMC11245487 DOI: 10.1038/s41467-024-49905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with several genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
26
|
Cheng IH, Pi WC, Hsu CH, Guo Y, Lai JL, Wang GG, Chung BC, Roeder RG, Chen WY. TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes. Cell Death Discov 2024; 10:244. [PMID: 38773077 PMCID: PMC11109217 DOI: 10.1038/s41420-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.
Collapse
Affiliation(s)
- I-Hsin Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hao Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jun-Lin Lai
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Gang G Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Bon-Chu Chung
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
27
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D’Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592422. [PMID: 38746145 PMCID: PMC11092767 DOI: 10.1101/2024.05.05.592422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with high resolution genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Unexpectedly, acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591924. [PMID: 38746212 PMCID: PMC11092604 DOI: 10.1101/2024.04.30.591924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .
Collapse
|
29
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Bernardini A, Tora L. Co-translational Assembly Pathways of Nuclear Multiprotein Complexes Involved in the Regulation of Gene Transcription. J Mol Biol 2024; 436:168382. [PMID: 38061625 DOI: 10.1016/j.jmb.2023.168382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
32
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
33
|
Garcia-Pardo J, Ventura S. Cryo-EM structures of functional and pathological amyloid ribonucleoprotein assemblies. Trends Biochem Sci 2024; 49:119-133. [PMID: 37926650 DOI: 10.1016/j.tibs.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Amyloids are implicated in neurodegenerative and systemic diseases, yet they serve important functional roles in numerous organisms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that control central events of RNA biogenesis in normal and diseased cellular conditions. Many of these proteins contain prion-like sequences of low complexity, which not only assemble into functional fibrils in response to cellular cues but can also lead to disease when missense mutations arise in their sequences. Recent advances in cryo-electron microscopy (cryo-EM) have provided unprecedented high-resolution structural insights into diverse amyloid assemblies formed by hnRNPs and structurally related RBPs, including TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Orb2, hnRNPA1, hnRNPA2, and hnRNPDL-2. This review provides a comprehensive overview of these structures and explores their functional and pathological implications.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
34
|
Dulloo I, Tellier M, Levet C, Chikh A, Zhang B, Blaydon DC, Webb CM, Kelsell DP, Freeman M. Cleavage of the pseudoprotease iRhom2 by the signal peptidase complex reveals an ER-to-nucleus signaling pathway. Mol Cell 2024; 84:277-292.e9. [PMID: 38183983 DOI: 10.1016/j.molcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michael Tellier
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Clémence Levet
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Anissa Chikh
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Boyan Zhang
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Diana C Blaydon
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - David P Kelsell
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
35
|
Che Z, Liu X, Dai Q, Fang K, Guo C, Yue J, Fang H, Xie P, Luo Z, Lin C. Distinct roles of two SEC scaffold proteins, AFF1 and AFF4, in regulating RNA polymerase II transcription elongation. J Mol Cell Biol 2024; 15:mjad049. [PMID: 37528066 PMCID: PMC11113081 DOI: 10.1093/jmcb/mjad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
The super elongation complex (SEC) containing positive transcription elongation factor b plays a critical role in regulating transcription elongation. AFF1 and AFF4, two members of the AF4/FMR2 family, act as central scaffold proteins of SEC and are associated with various human diseases. However, their precise roles in transcriptional control remain unclear. Here, we investigate differences in the genomic distribution patterns of AFF1 and AFF4 around transcription start sites (TSSs). AFF1 mainly binds upstream of the TSS, while AFF4 is enriched downstream of the TSS. Notably, disruption of AFF4 results in slow elongation and early termination in a subset of AFF4-bound active genes, whereas AFF1 deletion leads to fast elongation and transcriptional readthrough in the same subset of genes. Additionally, AFF1 knockdown increases AFF4 levels at chromatin, and vice versa. In summary, these findings demonstrate that AFF1 and AFF4 function antagonistically to regulate RNA polymerase II transcription.
Collapse
Affiliation(s)
- Zhuanzhuan Che
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xiaoxu Liu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Dai
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Ke Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenghao Guo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Junjie Yue
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Haitong Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
36
|
Kwan JZ, Nguyen TF, Teves SS. TBP facilitates RNA Polymerase I transcription following mitosis. RNA Biol 2024; 21:42-51. [PMID: 38958280 PMCID: PMC11225926 DOI: 10.1080/15476286.2024.2375097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.
Collapse
Affiliation(s)
- James Z.J. Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Thomas F. Nguyen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
de Boer CG, Taipale J. Hold out the genome: a roadmap to solving the cis-regulatory code. Nature 2024; 625:41-50. [PMID: 38093018 DOI: 10.1038/s41586-023-06661-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/20/2023] [Indexed: 01/05/2024]
Abstract
Gene expression is regulated by transcription factors that work together to read cis-regulatory DNA sequences. The 'cis-regulatory code' - how cells interpret DNA sequences to determine when, where and how much genes should be expressed - has proven to be exceedingly complex. Recently, advances in the scale and resolution of functional genomics assays and machine learning have enabled substantial progress towards deciphering this code. However, the cis-regulatory code will probably never be solved if models are trained only on genomic sequences; regions of homology can easily lead to overestimation of predictive performance, and our genome is too short and has insufficient sequence diversity to learn all relevant parameters. Fortunately, randomly synthesized DNA sequences enable testing a far larger sequence space than exists in our genomes, and designed DNA sequences enable targeted queries to maximally improve the models. As the same biochemical principles are used to interpret DNA regardless of its source, models trained on these synthetic data can predict genomic activity, often better than genome-trained models. Here we provide an outlook on the field, and propose a roadmap towards solving the cis-regulatory code by a combination of machine learning and massively parallel assays using synthetic DNA.
Collapse
Affiliation(s)
- Carl G de Boer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Gao J, Jishage M, Wang Y, Wang R, Chen M, Zhu Z, Zhang J, Diwu Y, Xu C, Liao S, Roeder RG, Tu X. Structural basis for evolutionarily conserved interactions between TFIIS and Paf1C. Int J Biol Macromol 2023; 253:126764. [PMID: 37696373 PMCID: PMC11164251 DOI: 10.1016/j.ijbiomac.2023.126764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.
Collapse
Affiliation(s)
- Jie Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, PR China
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yuzhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Rui Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Anthropotomy and Histoembryology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, PR China
| | - Meng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Yating Diwu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Shanhui Liao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Xiaoming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| |
Collapse
|
39
|
Titus KR, Simandi Z, Chandrashekar H, Paquet D, Phillips-Cremins JE. Cell type-specific loops linked to RNA polymerase II elongation in human neural differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569731. [PMID: 38106199 PMCID: PMC10723365 DOI: 10.1101/2023.12.04.569731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitors (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNAPolII initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops, promoter-promoter loops, or unlooped. Genes transitioning from repression to RNAPolII initiation exhibit slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNAPolII-mediated elongation during neural cell fate transitions.
Collapse
Affiliation(s)
- Katelyn R Titus
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Zoltan Simandi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Harshini Chandrashekar
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Dominik Paquet
- Institute for Stroke and Dementia Research, Ludwig Maximilians Universitat, Munich, Germany
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
40
|
Barman P, Chakraborty P, Bhaumik R, Bhaumik SR. UPS writes a new saga of SAGA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194981. [PMID: 37657588 PMCID: PMC10843445 DOI: 10.1016/j.bbagrm.2023.194981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
SAGA (Spt-Ada-Gcn5-Acetyltransferase), an evolutionarily conserved transcriptional co-activator among eukaryotes, is a large multi-subunit protein complex with two distinct enzymatic activities, namely HAT (Histone acetyltransferase) and DUB (De-ubiquitinase), and is targeted to the promoter by the gene-specific activator proteins for histone covalent modifications and PIC (Pre-initiation complex) formation in enhancing transcription (or gene activation). Targeting of SAGA to the gene promoter is further facilitated by the 19S RP (Regulatory particle) of the 26S proteasome (that is involved in targeted degradation of protein via ubiquitylation) in a proteolysis-independent manner. Moreover, SAGA is also recently found to be regulated by the 26S proteasome in a proteolysis-dependent manner via the ubiquitylation of its Sgf73/ataxin-7 component that is required for SAGA's integrity and DUB activity (and hence transcription), and is linked to various diseases including neurodegenerative disorders and cancer. Thus, SAGA itself and its targeting to the active gene are regulated by the UPS (Ubiquitin-proteasome system) with implications in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
41
|
Erb MA. Small-molecule tools for YEATS domain proteins. Curr Opin Chem Biol 2023; 77:102404. [PMID: 37924571 PMCID: PMC10842393 DOI: 10.1016/j.cbpa.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Chromatin reader domains are protein folds that bind to post-translational modifications of histones and other chromatin-associated proteins. Compared to other families of reader domains, the discovery that YEATS domains bind to acylated lysines is relatively recent. Four human proteins harbor a YEATS domain, and each is present in protein complexes that regulate chromatin and transcription (ENL, AF9, YEATS2, and YEATS4). Without chemical tools to enable temporally resolved perturbations, it is often unclear how reader domains contribute to protein function. Here, we will discuss recent progress in developing small-molecule tools for YEATS domains and highlight their usefulness for making biological discoveries.
Collapse
Affiliation(s)
- Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
42
|
Hisler V, Bardot P, Detilleux D, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Gras SL, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription with partially assembled TFIID complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567046. [PMID: 38076793 PMCID: PMC10705246 DOI: 10.1101/2023.11.27.567046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Paul Bardot
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Dylane Detilleux
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Matthieu Stierle
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claire Richard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Lynda Hadj Arab
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Cynthia Ehrhard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Bastien Morlet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Matthieu Jung
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Stéphanie Le Gras
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Luc Négroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - László Tora
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Stéphane D. Vincent
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| |
Collapse
|
43
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
44
|
Zhang YR, Yin TL, Zhou LQ. CRISPR/Cas9 technology: applications in oocytes and early embryos. J Transl Med 2023; 21:746. [PMID: 37875936 PMCID: PMC10594749 DOI: 10.1186/s12967-023-04610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
46
|
Khandwala CB, Sarkar P, Schmidt HB, Ma M, Kinnebrew M, Pusapati GV, Patel BB, Tillo D, Lebensohn AM, Rohatgi R. Direct ionic stress sensing and mitigation by the transcription factor NFAT5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559074. [PMID: 37886503 PMCID: PMC10602047 DOI: 10.1101/2023.09.23.559074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.
Collapse
Affiliation(s)
- Chandni B. Khandwala
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parijat Sarkar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H. Broder Schmidt
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bhaven B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Desiree Tillo
- Center for Cancer Research Genomics Core, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Han Z, Moore GA, Mitter R, Lopez Martinez D, Wan L, Dirac Svejstrup AB, Rueda DS, Svejstrup JQ. DNA-directed termination of RNA polymerase II transcription. Mol Cell 2023; 83:3253-3267.e7. [PMID: 37683646 PMCID: PMC7615648 DOI: 10.1016/j.molcel.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.
Collapse
Affiliation(s)
- Zhong Han
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George A Moore
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Lopez Martinez
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Li Wan
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
48
|
Douaihy M, Topno R, Lagha M, Bertrand E, Radulescu O. BurstDECONV: a signal deconvolution method to uncover mechanisms of transcriptional bursting in live cells. Nucleic Acids Res 2023; 51:e88. [PMID: 37522372 PMCID: PMC10484743 DOI: 10.1093/nar/gkad629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Monitoring transcription in living cells gives access to the dynamics of this complex fundamental process. It reveals that transcription is discontinuous, whereby active periods (bursts) are separated by one or several types of inactive periods of distinct lifetimes. However, decoding temporal fluctuations arising from live imaging and inferring the distinct transcriptional steps eliciting them is a challenge. We present BurstDECONV, a novel statistical inference method that deconvolves signal traces into individual transcription initiation events. We use the distribution of waiting times between successive polymerase initiation events to identify mechanistic features of transcription such as the number of rate-limiting steps and their kinetics. Comparison of our method to alternative methods emphasizes its advantages in terms of precision and flexibility. Unique features such as the direct determination of the number of promoter states and the simultaneous analysis of several potential transcription models make BurstDECONV an ideal analytic framework for live cell transcription imaging experiments. Using simulated realistic data, we found that our method is robust with regards to noise or suboptimal experimental designs. To show its generality, we applied it to different biological contexts such as Drosophila embryos or human cells.
Collapse
Affiliation(s)
- Maria Douaihy
- LPHI, University of Montpellier and CNRS, Place Eugène Bataillon, Montpellier 34095, France
- IGMM, University of Montpellier and CNRS, 1919 Rte de Mende, Montpellier 34090, France
| | - Rachel Topno
- LPHI, University of Montpellier and CNRS, Place Eugène Bataillon, Montpellier 34095, France
- IGH, University of Montpellier and CNRS, 141 Rue de la Cardonille, Montpellier 34094, France
| | - Mounia Lagha
- IGMM, University of Montpellier and CNRS, 1919 Rte de Mende, Montpellier 34090, France
| | - Edouard Bertrand
- IGH, University of Montpellier and CNRS, 141 Rue de la Cardonille, Montpellier 34094, France
| | - Ovidiu Radulescu
- LPHI, University of Montpellier and CNRS, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
49
|
Liao CC, Wang YS, Pi WC, Wang CH, Wu YM, Chen WY, Hsia KC. Structural convergence endows nuclear transport receptor Kap114p with a transcriptional repressor function toward TATA-binding protein. Nat Commun 2023; 14:5518. [PMID: 37684250 PMCID: PMC10491584 DOI: 10.1038/s41467-023-41206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the involvement of nuclear transport receptors, collectively termed karyopherin-β (Kap-β) in yeast, and various regulatory factors. In previous studies we showed that Kap114p, a Kap-β that mediates nuclear import of yeast TBP (yTBP), modulates yTBP-dependent transcription. However, how Kap114p associates with yTBP to exert its multifaceted functions has remained elusive. Here, we employ single-particle cryo-electron microscopy to determine the structure of Kap114p in complex with the core domain of yTBP (yTBPC). Remarkably, Kap114p wraps around the yTBPC N-terminal lobe, revealing a structure resembling transcriptional regulators in complex with TBP, suggesting convergent evolution of the two protein groups for a common function. We further demonstrate that Kap114p sequesters yTBP away from promoters, preventing a collapse of yTBP dynamics required for yeast responses to environmental stress. Hence, we demonstrate that nuclear transport receptors represent critical elements of the transcriptional regulatory network.
Collapse
Affiliation(s)
- Chung-Chi Liao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Sen Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Kuo-Chiang Hsia
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
50
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|