1
|
Vaisar D, Ahn NG. Latent allosteric control of protein interactions by ATP-competitive kinase inhibitors. Curr Opin Struct Biol 2024; 89:102935. [PMID: 39395271 DOI: 10.1016/j.sbi.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Protein kinase inhibitors designed to compete with ATP as a primary mode of action turn out to have considerable effects that go beyond their interference of nucleotide binding. New research shows how kinase activation and sometimes noncatalytic functions of protein kinases can be controlled by allosteric properties of kinase inhibitors, communicating perturbations from the active site to distal regulatory regions.
Collapse
Affiliation(s)
- David Vaisar
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA.
| |
Collapse
|
2
|
Martinez Fiesco JA, Li N, Alvarez de la Cruz A, Metcalfe RD, Beilina A, Cookson MR, Zhang P. 14-3-3 binding maintains the Parkinson's associated kinase LRRK2 in an inactive state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624879. [PMID: 39605327 PMCID: PMC11601620 DOI: 10.1101/2024.11.22.624879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central player in cellular signaling and a significant contributor to Parkinson's disease (PD) pathogenesis. 14-3-3 proteins are essential regulators of LRRK2, modulating its activity. Here, we present the cryo- electron microscopy structure of the LRRK2:14-3-3 2 autoinhibitory complex, showing that a 14-3-3 dimer stabilizes an autoinhibited LRRK2 monomer by binding to key phosphorylation sites and the COR-A and COR-B subdomains within the Roc-COR GTPase domain of LRRK2. This interaction locks LRRK2 in an inactive conformation, restricting LRR domain mobility and preventing dimerization and oligomer formation. Our mutagenesis studies reveal that PD-associated mutations at the COR:14-3-3 interface and within the GTPase domain reduce 14-3-3 binding, diminishing its inhibitory effect on LRRK2. These findings provide a structural basis for understanding how LRRK2 likely remains dormant within cells, illuminate aspects of critical PD biomarkers, and suggest therapeutic strategies to enhance LRRK2-14-3-3 interactions to treat PD and related disorders.
Collapse
|
3
|
Raig ND, Surridge KJ, Sanz-Murillo M, Dederer V, Krämer A, Schwalm MP, Elson L, Chatterjee D, Mathea S, Hanke T, Leschziner AE, Reck-Peterson SL, Knapp S. Type-II kinase inhibitors that target Parkinson's Disease-associated LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613365. [PMID: 39554022 PMCID: PMC11565912 DOI: 10.1101/2024.09.17.613365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Aberrant increases in kinase activity of leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD). Numerous LRRK2-selective type-I kinase inhibitors have been developed and some have entered clinical trials. In this study, we present the first LRRK2-selective type-II kinase inhibitors. Targeting the inactive conformation of LRRK2 is functionally distinct from targeting the active-like conformation using type-I inhibitors. We designed these inhibitors using a combinatorial chemistry approach fusing selective LRRK2 type-I and promiscuous type-II inhibitors by iterative cycles of synthesis supported by structural biology and activity testing. Our current lead structures are selective and potent LRRK2 inhibitors. Through cellular assays, cryo-electron microscopy structural analysis, and in vitro motility assays, we show that our inhibitors stabilize the open, inactive kinase conformation. These new conformation-specific compounds will be invaluable as tools to study LRRK2's function and regulation, and expand the potential therapeutic options for PD.
Collapse
|
4
|
Iannotta L, Fasiczka R, Favetta G, Zhao Y, Giusto E, Dall'Ara E, Wei J, Ho FY, Ciriani C, Cogo S, Tessari I, Iaccarino C, Liberelle M, Bubacco L, Taymans JM, Manzoni C, Kortholt A, Civiero L, Hilfiker S, Lu ML, Greggio E. PAK6 rescues pathogenic LRRK2-mediated ciliogenesis and centrosomal cohesion defects in a mutation-specific manner. Cell Death Dis 2024; 15:752. [PMID: 39419978 PMCID: PMC11487180 DOI: 10.1038/s41419-024-07124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins. Here, to gain more insights into PAK6 physiological function, we performed protein-protein interaction arrays and identified a subgroup of PAK6 binders related to ciliogenesis. We confirmed that endogenous PAK6 localizes at both the centrosome and the cilium, and positively regulates ciliogenesis not only in tumor cells but also in neurons and astrocytes. Notably, PAK6 rescues ciliogenesis and centrosomal cohesion defects associated with the G2019S but not the R1441C LRRK2 PD mutation. Since PAK6 binds LRRK2 via its GTPase/Roc-COR domain and the R1441C mutation is located in the Roc domain, we used microscale thermophoresis and AlphaFold2-based computational analysis to demonstrate that PD mutations in LRRK2 affecting the Roc-COR structure substantially decrease PAK6 affinity, providing a rationale for the differential protective effect of PAK6 toward the distinct forms of mutant LRRK2. Altogether, our study discloses a novel role of PAK6 in ciliogenesis and points to PAK6 as the first LRRK2 modifier with PD mutation-specificity.
Collapse
Affiliation(s)
- Lucia Iannotta
- Department of Biology, University of Padova, Padova, PD, Italy
- National Research Council, c/o Humanitas Research Hospital, Institute of Neuroscience, Rozzano, Italy
| | - Rachel Fasiczka
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Giulia Favetta
- Department of Biology, University of Padova, Padova, PD, Italy
| | - Yibo Zhao
- University College London, School of Pharmacy, London, UK
| | | | - Elena Dall'Ara
- Department of Biology, University of Padova, Padova, PD, Italy
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Jianning Wei
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Claudia Ciriani
- Department of Biology, University of Padova, Padova, PD, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, PD, Italy
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maxime Liberelle
- Université de Lille, INSERM, CHU Lille, LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, PD, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Jean-Marc Taymans
- Université de Lille, INSERM, CHU Lille, LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Laura Civiero
- Department of Biology, University of Padova, Padova, PD, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Michael L Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA.
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, PD, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Jang EH, Choi H, Hur EM. Microtubule function and dysfunction in the nervous system. Mol Cells 2024; 47:100111. [PMID: 39265797 PMCID: PMC11474369 DOI: 10.1016/j.mocell.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Microtubules are core components of the neuronal cytoskeleton, providing structural support for the complex cytoarchitecture of neurons and serving as tracks for long-distance transport. The properties and functions of neuronal microtubules are controlled by tubulin isoforms and a variety of post-translational modifications, collectively known as the "tubulin code." The tubulin code exerts direct control over the intrinsic properties of neuronal microtubules and regulates the repertoire of proteins that read the code, which in turn, has a significant impact on microtubule stability and dynamics. Here, we review progress in the understanding of the tubulin code in the nervous system, with a particular focus on tubulin post-translational modifications that have been proposed as potential contributors to the development and maintenance of the mammalian nervous system. Furthermore, we also discuss the potential links between disruptions in the tubulin code and neurological disorders, including neurodevelopmental abnormalities and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Harryn Choi
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
6
|
Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N. Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson's disease. Neurobiol Dis 2024; 199:106571. [PMID: 38901781 DOI: 10.1016/j.nbd.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most common gene responsible for familial Parkinson's disease (PD). The gene product of LRRK2 contains multiple protein domains, including armadillo repeat, ankyrin repeat, leucine-rich repeat (LRR), Ras-of-complex (ROC), C-terminal of ROC (COR), kinase, and WD40 domains. In this study, we performed genetic screening of LRRK2 in our PD cohort, detecting sixteen LRRK2 rare variants. Among them, we selected seven variants that are likely to be familial and characterized them in terms of LRRK2 protein function, along with clinical information and one pathological analysis. The seven variants were S1120P and N1221K in the LRR domain; I1339M, S1403R, and V1447M in the ROC domain; and I1658F and D1873H in the COR domain. The kinase activity of the LRRK2 variants N1221K, S1403R, V1447M, and I1658F toward Rab10, a well-known phosphorylation substrate, was higher than that of wild-type LRRK2. LRRK2 D1873H showed enhanced self-association activity, whereas LRRK2 S1403R and D1873H showed reduced microtubule-binding activity. Pathological analysis of a patient with the LRRK2 V1447M variant was also performed, which revealed Lewy pathology in the brainstem. No functional alterations in terms of kinase activity, self-association activity, and microtubule-binding activity were detected in LRRK2 S1120P and I1339M variants. However, the patient with PD carrying LRRK2 S1120P variant also had a heterozygous Glucosylceramidase beta 1 (GBA1) L444P variant. In conclusion, we characterized seven LRRK2 variants potentially associated with PD. Five of the seven variants in different LRRK2 domains exhibited altered properties in kinase activity, self-association, and microtubule-binding activity, suggesting that each domain variant may contribute to disease progression in different ways.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Ishiguro
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ehoto Osogaguchi
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Faculty of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Jun Ogata
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Ishii
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Aya Ikeda
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Taro Matsui
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kenichi Kaida
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Fumihisa Kumazawa
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyasu Matsubara
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
7
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Bakhite E, Mohamed SK, Lai CH, Subramani K, Marae IS, Abuelhassan S, Soliman AAE, Youssef MSK, Abuelizz HA, Mague JT, Al-Salahi R, El Bakri Y. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Approach of a New Pyrazolo[3,4- g]isoquinoline Derivative as Potent against Leucine-Rich Repeat Kinase 2 (LRRK2). ACS OMEGA 2024; 9:30751-30770. [PMID: 39035914 PMCID: PMC11256088 DOI: 10.1021/acsomega.4c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Ethyl-2-((8-cyano-3,5,9a-trimethyl-1-(4-oxo-4,5-dihydrothiazol-2-yl)-4-phenyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinolin-7-yl)thio)acetate (5) was synthesized, and its structure was characterized by IR, MS, and NMR (1H and 13C) and verified by a single-crystal X-ray structure determination. Compound 5 adopts a "pincer" conformation. In the crystal, the hydrogen bonds of -H···O, C-H···O, and O-H···S form thick layers of molecules that are parallel to (101). The layers are linked by C-H···π(ring) interactions. The Hirshfeld surface analysis shows that intermolecular hydrogen bonding plays a more important role than both intramolecular hydrogen bonding and π···π stacking in the crystal. The intramolecular noncovalent interactions in 5 were studied by QTAIM, NCI, and DFT-NBO calculations. Based on structural activity relationship studies, leucine-rich repeat kinase 2 (LRRK2) was found to bind 5 and was further subjected to molecular docking studies, molecular dynamics, and ADMET analysis to probe potential drug candidacy.
Collapse
Affiliation(s)
- Etify
A. Bakhite
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Shaaban Kamel Mohamed
- Chemistry
and Environmental Division, Manchester Metropolitan
University, Manchester M1 5GD, England
- Chemistry
Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Chin-Hung Lai
- Department
of Medical Applied Chemistry, Chung Shan
Medical University, Taichung 40241, Taiwan
- Department
of Medical Education, Chung Shan Medical
University Hospital, Taichung 40201, Taiwan
| | - Karthikeyan Subramani
- Center
for
Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai 600127, India
| | - Islam S. Marae
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Suzan Abuelhassan
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | | | | | - Hatem A. Abuelizz
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rashad Al-Salahi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youness El Bakri
- Department
of Theoretical and Applied Chemistry, South
Ural State University, Lenin prospect 76, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
9
|
Dederer V, Sanz Murillo M, Karasmanis EP, Hatch KS, Chatterjee D, Preuss F, Abdul Azeez KR, Nguyen LV, Galicia C, Dreier B, Plückthun A, Versees W, Mathea S, Leschziner AE, Reck-Peterson SL, Knapp S. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. J Biol Chem 2024; 300:107469. [PMID: 38876305 DOI: 10.1016/j.jbc.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Collapse
Affiliation(s)
- Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Eva P Karasmanis
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathryn S Hatch
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Kamal R Abdul Azeez
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Landon Vu Nguyen
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christian Galicia
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wim Versees
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Andres E Leschziner
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA.
| |
Collapse
|
10
|
Chen S, Basiashvili T, Hutchings J, Murillo MS, Suarez AV, Louro JA, Leschziner AE, Villa E. Cryo-electron tomography reveals the microtubule-bound form of inactive LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599606. [PMID: 38948781 PMCID: PMC11212993 DOI: 10.1101/2024.06.18.599606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2's kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tamar Basiashvili
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joshua Hutchings
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amalia Villagran Suarez
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaime Alegrio Louro
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andres E. Leschziner
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
11
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
12
|
Zhu H, Tonelli F, Turk M, Prescott A, Alessi DR, Sun J. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 2023; 382:1404-1411. [PMID: 38127736 PMCID: PMC10786121 DOI: 10.1126/science.adi9926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson's disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo-electron microscopy structures of Rab29-LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Martin Turk
- Cryo-EM and Tomography Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alan Prescott
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Sanz Murillo M, Villagran Suarez A, Dederer V, Chatterjee D, Alegrio Louro J, Knapp S, Mathea S, Leschziner AE. Inhibition of Parkinson's disease-related LRRK2 by type I and type II kinase inhibitors: Activity and structures. SCIENCE ADVANCES 2023; 9:eadk6191. [PMID: 38039358 PMCID: PMC10691770 DOI: 10.1126/sciadv.adk6191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.
Collapse
Affiliation(s)
- Marta Sanz Murillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Amalia Villagran Suarez
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Jaime Alegrio Louro
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Reimer JM, Dickey AM, Lin YX, Abrisch RG, Mathea S, Chatterjee D, Fay EJ, Knapp S, Daugherty MD, Reck-Peterson SL, Leschziner AE. Structure of LRRK1 and mechanisms of autoinhibition and activation. Nat Struct Mol Biol 2023; 30:1735-1745. [PMID: 37857821 PMCID: PMC10643122 DOI: 10.1038/s41594-023-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Leucine Rich Repeat Kinase 1 and 2 (LRRK1 and LRRK2) are homologs in the ROCO family of proteins in humans. Despite their shared domain architecture and involvement in intracellular trafficking, their disease associations are strikingly different: LRRK2 is involved in familial Parkinson's disease while LRRK1 is linked to bone diseases. Furthermore, Parkinson's disease-linked mutations in LRRK2 are typically autosomal dominant gain-of-function while those in LRRK1 are autosomal recessive loss-of-function. Here, to understand these differences, we solved cryo-EM structures of LRRK1 in its monomeric and dimeric forms. Both differ from the corresponding LRRK2 structures. Unlike LRRK2, which is sterically autoinhibited as a monomer, LRRK1 is sterically autoinhibited in a dimer-dependent manner. LRRK1 has an additional level of autoinhibition that prevents activation of the kinase and is absent in LRRK2. Finally, we place the structural signatures of LRRK1 and LRRK2 in the context of the evolution of the LRRK family of proteins.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yu Xuan Lin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Robert G Abrisch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sebastian Mathea
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Elizabeth J Fay
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proc Natl Acad Sci U S A 2023; 120:e2309698120. [PMID: 37844218 PMCID: PMC10614619 DOI: 10.1073/pnas.2309698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are responsible for late-onset autosomal dominant Parkinson's disease. LRRK2 has been implicated in a wide range of physiological processes including membrane repair in the endolysosomal system. Here, using cell-free systems, we report that purified LRRK2 directly binds acidic lipid bilayers with a preference for highly curved bilayers. While this binding is nucleotide independent, LRRK2 can also deform low-curvature liposomes into narrow tubules in a guanylnucleotide-dependent but Adenosine 5'-triphosphate-independent way. Moreover, assembly of LRRK2 into scaffolds at the surface of lipid tubules can constrict them. We suggest that an interplay between the membrane remodeling and signaling properties of LRRK2 may be key to its physiological function. LRRK2, via its kinase activity, may achieve its signaling role at sites where membrane remodeling occurs.
Collapse
Affiliation(s)
- Xinbo Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shujun Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
17
|
Metcalfe RD, Martinez Fiesco JA, Bonet-Ponce L, Kluss JH, Cookson MR, Zhang P. Structure and regulation of full-length human leucine-rich repeat kinase 1. Nat Commun 2023; 14:4797. [PMID: 37558661 PMCID: PMC10412621 DOI: 10.1038/s41467-023-40532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The human leucine-rich repeat kinases (LRRKs), LRRK1 and LRRK2 are large and unusually complex multi-domain kinases, which regulate fundamental cellular processes and have been implicated in human disease. Structures of LRRK2 have recently been determined, but the structure and molecular mechanisms regulating the activity of the LRRK1 as well as differences in the regulation of LRRK1 and LRRK2 remain unclear. Here, we report a cryo-EM structure of the LRRK1 monomer and a lower-resolution cryo-EM map of the LRRK1 dimer. The monomer structure, in which the kinase is in an inactive conformation, reveals key interdomain interfaces that control kinase activity as we validate experimentally. Both the LRRK1 monomer and dimer are structurally distinct compared to LRRK2. Overall, our results provide structural insights into the activation of the human LRRKs, which advance our understanding of their physiological and pathological roles.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Juliana A Martinez Fiesco
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
18
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
19
|
Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochem Soc Trans 2023; 51:587-595. [PMID: 36929701 DOI: 10.1042/bst20201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) which cause Parkinson's disease increase its kinase activity, and a subset of Rab GTPases have been identified as endogenous LRRK2 kinase substrates. Their phosphorylation correlates with a loss-of-function for the membrane trafficking steps they are normally involved in, but it also allows them to bind to a novel set of effector proteins with dominant cellular consequences. In this brief review, we will summarize novel findings related to the LRRK2-mediated phosphorylation of Rab GTPases and its various cellular consequences in vitro and in the intact brain, and we will highlight major outstanding questions in the field.
Collapse
|