1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Perera N, De Blasio MJ, Febbraio MA. Harnessing the therapeutic potential of exercise in extracellular vesicle-based therapy in metabolic disease associated cardiovascular complications. Free Radic Biol Med 2025; 226:230-236. [PMID: 39549882 DOI: 10.1016/j.freeradbiomed.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function. Exercise serves as a catalyst for the secretion of extracellular vesicles (EVs), facilitating inter-tissue communication, by which tissues can deliver important signals from one tissue to another. In recent years, an increasing number of studies have focused on the cargo encapsulated within exercise-derived EVs, as well as the orchestration of inter-tissue crosstalk aimed at modulating metabolism and tissue function in CVDs. The precise mechanisms underpinning the cardioprotective properties of exercise-derived EVs, however, remains only partially elucidated. This review explores novel EV based therapeutic options in CVD and, in particular, EVs derived from models of exercise to alter metabolism and enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Miles J De Blasio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia.
| |
Collapse
|
3
|
Shi S, Liu X, Geng X, Meng Q, Gao M, Wang E, Ma X, Hu H, Liu J, Han W, Yin H, Zhou X. Neonatal heart tissue-derived EVs alleviate adult ischemic cardiac injury via regulating the function of macrophages and cardiac regeneration in murine models. Int Immunopharmacol 2024; 143:113251. [PMID: 39353386 DOI: 10.1016/j.intimp.2024.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Previous studies confirmed the regenerative capacity of the mammalian neonatal heart. We recently found that adult heart tissue-derived EVs can protect the heart from myocardial ischemia-reperfusion (I/R). However, the role of EVs from neonatal heart tissue in cardiac healing post-ischemia remains unclear. In the present study, we revealed that intramyocardial administration of neonatal cardiac tissue-derived EVs (ncEVs) alleviated cardiac inflammation, mitigated reperfusion injury, and improved cardiac function in murine I/R models. In vitro, ncEVs inhibited M1 polarization of macrophages induced by LPS while up-regulated their phagocytic function via the miR-133a-3p-Ash1l signaling pathway. Moreover, the administration of ncEVs contributed to cardiac angiogenesis and improved cardiac function in murine myocardial infarction models. Collectively, these results suggested that neonatal heart-derived EVs can regulate the function of macrophages and contribute to cardiac regeneration and function recovery in murine cardiac ischemic models. Therefore, the derivatives in neonatal heart tissue-derived EVs might serve as a potential therapeutic strategy in ischemic diseases.
Collapse
Affiliation(s)
- Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Mingkui Gao
- Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jie Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422000 China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
4
|
Zhu Q, Mao X, Zhu X, Xiao Y, Xu H, Su L, Liu X, Huang X, Wang L. Hypoxia-Induced and Glucuronic Acid-Modified Extracellular Vesicles from Mesenchymal Stromal Cells Treat Pulmonary Arterial Hypertension by Improving Vascular Remodeling. NANO LETTERS 2024; 24:16342-16350. [PMID: 39660764 DOI: 10.1021/acs.nanolett.4c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Achieving precise delivery of extracellular vesicles (EVs) to treat pulmonary arterial hypertension (PAH) remains challenging. Here, we propose a strategy using hypoxia-induced and glucuronic acid (GA)-modified mesenchymal stromal-cell-derived EVs (MSC-EVs) to enhance their functionalities and therapeutic targeting. The hypoxia-induced EVs (Hypo-EVs) exhibit enriched exosomal signatures and display heightened inhibition of the proliferation of pulmonary arterial smooth muscle cells (PASMCs) compared to normoxic EVs (Norm-EV). We then modify Hypo-EVs by incorporating GA into their outer membrane, targeting glucose transporter-1 overexpressed on PASMCs. Our studies show that GA-EVs significantly enhance the therapeutic efficacy, both in vitro and in vivo, through improved targeted delivery to diseased PASMCs for improving vascular remodeling. Additionally, we identify miR-5119 involved in the PAH-associated calcium signaling pathway as a key contributor to GA-EVs' superior effects. This work provides a promising strategy for PAH treatment and advances the clinical potential of MSC-EV-based therapies.
Collapse
Affiliation(s)
- Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University,Xueyuan Road 270, Wenzhou 325027, China
| | - Xulong Mao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xinxi Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yijia Xiao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University,Xueyuan Road 270, Wenzhou 325027, China
| | - Lihuang Su
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohu Liu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University,Xueyuan Road 270, Wenzhou 325027, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
5
|
Shakouri-Motlagh A, O'Connor AJ, Brennecke SP, Heath DE, Kalionis B. Extracellular vesicles support increased expansion of mesenchymal stromal cells on fetal membrane-derived decellularized extracellular matrix. Cell Tissue Res 2024:10.1007/s00441-024-03946-y. [PMID: 39715869 DOI: 10.1007/s00441-024-03946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Decidual mesenchymal stromal cells (DMSC) were the source of extracellular vesicles (DMSC_EV). The xCELLigence real-time cell growth assay revealed increasing concentrations of EVs decreased DMSC attachment in the early growth phase but stimulated DMSC proliferation at day 7 when grown on tissue culture plastic (TCP). DMSC attachment and proliferation varied depending on the growth surface and DMSC_EV supplementation. DMSC attachment increased on decellularized and solubilized amniotic (s-dAM) whether or not EVs were added. Only Matrigel substrate increased DMSC attachment with added EVs. The addition of EVs increased DMSC proliferation only on the s-dAM substrate. DMSCs were more motile on s-dAM and decellularized and solubilized chorionic (s-dCM) membranes following EV addition. The osteogenic potential of DMSCs was improved on s-dAM substrates when supplanted with EVs. Finally, the levels of reactive oxygen species in DMSCs varied depending on the substrate but not on added EVs. We show that the addition of in vitro EVs isolated from the source being expanded (i.e., DMSCs) and the presence of ECM improve DMSC behaviours during ex vivo expansion. The inclusion of two key components of the MSC niche, EVs and ECM, benefitted the ex vivo expansion of MSCs. Added in vitro EVs increased the proliferation of DMSCs when grown on s-dAM but not on s-dCM, whereas they improved DMSC mobility on both surfaces. Testing different ECMs could be used to promote specific desired characteristics of DMSCs, and different combinations of EVs and ECM may enhance desirable MSC characteristics for specific therapeutic settings.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shaun P Brennecke
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia.
| | - Bill Kalionis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia.
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Li X, Qi X, Liu X, Zhu J, Hu L. Lipopolysaccharide Imprinted Polymers for Specific Recognition of Bacterial Outer Membrane Vesicles. Anal Chem 2024; 96:19803-19811. [PMID: 39572928 DOI: 10.1021/acs.analchem.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Outer membrane vesicles (OMVs) secreted by bacteria are emerging diagnostic markers for bacterial infection or disease detection due to their carriage of various signaling molecules. However, actual biological samples of patients are extremely complex, and applying OMVs to clinical diagnosis remains a major challenge. One of the major challenges is that there are still great difficulties in the enrichment of OMVs including tedious steps and lower concentration. And some commonly used exosome enrichment methods, such as ultracentrifugation, still have some shortcomings. Herein, we introduce lipopolysaccharide (LPS) molecularly imprinted polymer (MIP) for efficient capturing and analyzing OMVs, enabling a novel approach to bacterial disease diagnosis based on biorecognition materials. LPS, as a unique structure of Gram-negative bacteria, also widely expressed on the surface of OMVs, which will form cyclic hydrogen bonds with functional monomers of MIP with affinity interactions. The prepared MIP efficiently can isolate OMVs from 100 μL of culture broth via specific affinity LPS in less than 40 min with a recovery rate of over 95%. Moreover, MIP exhibits good reusability, with almost identical enrichment performance after 5 repeated cycles, contributing to reducing experimental costs in both time and economy. The captured OMVs can be detected using Western blotting with target protein antibodies or in combination with proteomic analysis, providing a proteomic biomarker platform for early bacteria disease diagnosis.
Collapse
Affiliation(s)
- Xiaojun Li
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiulei Qi
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xingguo Liu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jun Zhu
- Jingjie PTM BioLab Co. Ltd., Hangzhou 310018, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Jiang P, Ma X, Wang X, Huang J, Wang Y, Ai J, Xiao H, Dai M, Lin Y, Shao B, Tang X, Tong W, Ye Z, Chai R, Zhang S. Isolation and Comprehensive Analysis of Cochlear Tissue-Derived Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408964. [PMID: 39497619 DOI: 10.1002/advs.202408964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Indexed: 12/28/2024]
Abstract
Small extracellular vesicles (sEVs) act as a critical mediator in intercellular communication. Compared to sEVs derived from in vitro sources, tissue-derived sEVs can reflect the in vivo signals released from specific tissues more accurately. Currently, studies on the role of sEVs in the cochlea have relied on studying sEVs from in vitro sources. This study evaluates three cochlear tissue digestion and cochlear tissue-derived sEV (CDsEV) isolation methods, and first proposes that the optimal approach for isolating CDsEVs using collagenase D and DNase І combined with sucrose density gradient centrifugation. Furthermore, it comprehensively investigates CDsEV contents and cell origins. Small RNA sequencing and proteomics are performed to analyze the miRNAs and proteins of CDsEVs. The miRNAs and proteins of CDsEVs are crucial for maintaining normal auditory function. Among them, FGFR1 in CDsEVs may mediate the survival of cochlear hair cells via sEVs. Finally, the joint analysis of single CDsEV sequencing and single-cell RNA sequencing data is utilized to trace cellular origins of CDsEVs. The results show that different types of cochlear cells secrete different amounts of CDsEVs, with Kölliker's organ cells and supporting cells secrete the most. The findings are expected to enhance the understanding of CDsEVs in the cochlea.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingyuan Huang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
8
|
Wang K, Lu J, Song C, Qiao M, Li Y, Chang M, Bao H, Qiu Y, Qian B. Extracellular Vesicles Derived from Ligament Tissue Transport Interleukin-17A to Mediate Ligament-To-Bone Crosstalk in Ankylosing Spondylitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406876. [PMID: 39308181 PMCID: PMC11633500 DOI: 10.1002/advs.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Pathological new bone formation is a critical feature of the progression of ankylosing spondylitis (AS), and spine ankylosis is a distinctive feature of this condition. Ligaments are the primary regions of pathological new bone formation in AS. Here, it is demonstrated that ligament tissue-derived extracellular vesicles (EVs) and their interleukin-17A (IL-17A) cargo mediate the communication between the tissue and other cells. The investigation revealed that IL-17A in EVs can activate the JAK-STAT3 pathway, thereby stimulating the expression of MMP14 in AS ligament. Overexpression of MMP14 can lead to changes in the cytoskeleton and mechanical signaling of mesenchymal stem cells and other cells. These alterations in cellular cytoskeleton and mechanical signaling at ligament sites in patients with AS or in stem cells treated with EVs can result in pathological new bone formation. Finally, inhibiting IL-17A activity and EV endocytosis effectively controlled inflammation and pathological new bone formation. Overall, these data suggest that ligament-derived EVs and the enclosed IL-17A have a potential role in driving pathological new bone formation in AS, and targeting EVs may therefore emerge as a novel approach to delaying ectopic ossification in AS.
Collapse
Affiliation(s)
- Kaiyang Wang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Jingshun Lu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Chenyu Song
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Mu Qiao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yao Li
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Menghan Chang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Hongda Bao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yong Qiu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Bang‐Ping Qian
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| |
Collapse
|
9
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
10
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Kim S, Kang Y, Shin H, Lee EB, Ham BJ, Choi Y. Liquid Biopsy-Based Detection and Response Prediction for Depression. ACS NANO 2024; 18:32498-32507. [PMID: 39501510 PMCID: PMC11604100 DOI: 10.1021/acsnano.4c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Proactively predicting antidepressant treatment response before medication failures is crucial, as it reduces unsuccessful attempts and facilitates the development of personalized therapeutic strategies, ultimately enhancing treatment efficacy. The current decision-making process, which heavily depends on subjective indicators, underscores the need for an objective, indicator-based approach. This study developed a method for detecting depression and predicting treatment response through deep learning-based spectroscopic analysis of extracellular vesicles (EVs) from plasma. EVs were isolated from the plasma of both nondepressed and depressed groups, followed by Raman signal acquisition, which was used for AI algorithm development. The algorithm successfully distinguished depression patients from healthy individuals and those with panic disorder, achieving an AUC accuracy of 0.95. This demonstrates the model's capability to selectively diagnose depression within a nondepressed group, including those with other mental health disorders. Furthermore, the algorithm identified depression-diagnosed patients likely to respond to antidepressants, classifying responders and nonresponders with an AUC accuracy of 0.91. To establish a diagnostic foundation, the algorithm applied explainable AI (XAI), enabling personalized medicine for companion diagnostics and highlighting its potential for the development of liquid biopsy-based mental disorder diagnosis.
Collapse
Affiliation(s)
- Seungmin Kim
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
| | - Youbin Kang
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Hyunku Shin
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Eun Byul Lee
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Byung-Joo Ham
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Yeonho Choi
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
- Exopert
Corporation, Seoul 02841, Republic of Korea
- School
of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Fowler SL, Behr TS, Turkes E, O'Brien DP, Cauhy PM, Rawlinson I, Edmonds M, Foiani MS, Schaler A, Crowley G, Bez S, Ficulle E, Tsefou E, Fischer R, Geary B, Gaur P, Miller C, D'Acunzo P, Levy E, Duff KE, Ryskeldi-Falcon B. Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease. Nat Neurosci 2024:10.1038/s41593-024-01801-5. [PMID: 39572740 DOI: 10.1038/s41593-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024]
Abstract
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from individuals with AD. We found tau filaments composed mainly of truncated tau that were enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.
Collapse
Affiliation(s)
- Stephanie L Fowler
- UK Dementia Research Institute at University College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine, University of Oxford, Oxford, UK
| | - Tiana S Behr
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Isadora Rawlinson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marisa Edmonds
- UK Dementia Research Institute at University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK
| | - Ari Schaler
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA
| | - Gerard Crowley
- UK Dementia Research Institute at University College London, London, UK
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London, UK
| | - Eliona Tsefou
- UK Dementia Research Institute at University College London, London, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beth Geary
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Chelsea Miller
- The Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA.
| | | |
Collapse
|
13
|
Qin X, Hu KL, Li Q, Sun Y, Peng T, Liu X, Li J, Nan W, Yu Y, Qi X, Li R. In Situ Sprayed Hydrogel Delivers Extracellular Vesicles Derived from Human Endometrial Organoids for Uterine Function Preservation and Fertility Restoration. Adv Healthc Mater 2024:e2403604. [PMID: 39558805 DOI: 10.1002/adhm.202403604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 11/20/2024]
Abstract
Impaired endometrial function and reduced receptivity remain significant causes of female infertility. Here, a sprayable hydrogel combined with human endometrial organoid extracellular vesicles (HEO-EVs) is developed to enhance uterine function preservation and fertility restoration. The peptide amphiphile hydrogel (labeled CPA) is engineered by conjugating a collagen-binding peptide with glutathione to impart its biocompatible adhesive and antioxidant properties. The therapeutic EVs are isolated and purified from human endometrial organoids that have been stably passaged long-term using a bioreactor-culture system. The resulting HEO-EVs-loaded CPA (CPA@HEO-EVs) rapid gelation, triggered by salt-ion interactions, occurs when the fluid is sprayed onto the uterine lining. The ex vivo studies demonstrate that CPA@HEO-EVs promote cell proliferation, scavenges free radicals, and increases tube formation in human umbilical vein endothelial cells. In vivo experiments further validate that in situ spraying with the CPA@HEO-EVs can promote neovascularization, prevent localized endometrial fibrosis, and effectively enhance fertility in a mouse model of endometrial injury. These findings highlight the promising clinical application of in situ sprayed CPA@HEO-EVs hydrogel for targeted endometrial therapy.
Collapse
Affiliation(s)
- Xunsi Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Kai-Lun Hu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Qi Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Yuze Sun
- National Institute of Biological Sciences, Zhongguancun Life Science Park, 7 Science Park Road, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Tianliu Peng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Xiyao Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Jizhou Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Wenhui Nan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, 7 Science Park Road, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive, Technology, Beijing, 100191, China
| |
Collapse
|
14
|
Romero-Castillo I, López-García A, Diebold Y, García-Posadas L. Enrichment protocols for human conjunctival extracellular vesicles and their characterization. Sci Rep 2024; 14:28270. [PMID: 39550477 PMCID: PMC11569262 DOI: 10.1038/s41598-024-79481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
The understanding of the role played by extracellular vesicles (EVs) in different tissues has improved significantly in the last years, but remains limited concerning the conjunctiva, a complex eye tissue whose role is pivotal for corneal protection. Here, we conducted a comparative study to isolate and characterize EVs from human conjunctival epithelial (IM-HConEpiC) and human conjunctival mesenchymal stromal cell (Conj-MSCs) secretomes using different isolation methods: differential ultracentrifugation (UC), and a combination of ultrafiltration (UF) with precipitation or size exclusion chromatography (SEC). EVs were characterized by total protein content, size, morphology, and expression of protein markers. EV functional effect was tested in an in vitro oxidative stress model. We successfully recovered EVs with the three methods, although significantly higher yields were obtained with UF-precipitation. Dynamic light scattering analysis confirmed the presence of nano-sized particles, being UC-isolated EVs larger than those isolated by UF-precipitation and UF-SEC. Atomic Force Microscopy showed EVs with a slightly ellipsoidal morphology. EVs enriched with UF-precipitation method were further analyzed, confirming the expression of Alix, CD63, TSG101, and Syntenin-1 by Western blotting and showing that Conj-MSC-derived EVs significantly reduced oxidative stress on IM-HConEpiC. Therefore, we conclude that UF-precipitation is the most efficient method for conjunctival EV enrichment.
Collapse
Affiliation(s)
- Ismael Romero-Castillo
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain.
| | - Antonio López-García
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Diebold
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura García-Posadas
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
15
|
Cuellar-Gaviria TZ, Rincon-Benavides MA, Halipci Topsakal HN, Salazar-Puerta AI, Jaramillo-Garrido S, Kordowski M, Vasquez-Martinez CA, Nguyen KT, Rima XY, Rana PSJB, Combita-Heredia O, Deng B, Dathathreya K, McComb DW, Reategui E, Wozniak D, Higuita-Castro N, Gallego-Perez D. Tissue nano-transfection of antimicrobial genes drives bacterial biofilm killing in wounds and is potentially mediated by extracellular vesicles. J Control Release 2024; 376:1300-1315. [PMID: 39491627 DOI: 10.1016/j.jconrel.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The emergence of bacteria that are resistant to antibiotics is on track to become a major global health crisis. Therefore, there is an urgent need for new treatment options. Here, we studied the implementation of tissue-nanotransfection (TNT) to treat Staphylococcus aureus-infected wounds by delivering gene cargos that boost the levels of naturally produced antimicrobial peptides. The Cathelicidin Antimicrobial Peptide gene (CAMP), which produces the antimicrobial peptide LL-37, was used as model gene cargo. In vitro evaluation showed successful transfection and an increase in the transcription and translation of CAMP-coding plasmid in mouse primary epithelial cells. Moreover, we found that the extracellular vesicles (EVs) derived from the transfected cells (in vitro and in vivo) carried significantly higher concentrations of CAMP transcripts and LL-37 peptide compared to control EVs, possibly mediating the trafficking of the antimicrobial contents to other neighboring cells. The TNT platform was then used in vivo on an excisional wound model in mice to nanotransfect the CAMP-coding plasmid on the edge of infected wounds. After 4 days of daily treatment, we observed a significant decrease in the bacterial load in the CAMP-treated group compared to the sham group. Moreover, histological analysis and bacterial load quantification also revealed that TNT of CAMP on S. aureus-infected wounds was effective in treating biofilm progression by reducing the bacterial load. Lastly, we observed a significant increase in macrophage recruitment to the infected tissue, a robust increase in vascularization, as well as and an increased expression of IL10 and Fli1. Our results demonstrate that TNT-based delivery of gene cargos coding for antimicrobial compounds to the wound is a promising approach for combating biofilm infections in wounds.
Collapse
Affiliation(s)
- Tatiana Z Cuellar-Gaviria
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Angelica Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Nur Halipci Topsakal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Istanbul Atlas University, Istanbul 34408, Turkiye
| | | | | | - Mia Kordowski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos A Vasquez-Martinez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; CONACYT - Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca 68020, Mexico
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Pranav S J B Rana
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | | | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reategui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Wozniak
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Xu Z, Foster JB, Lashley R, Wang X, Muhleman AJ, Masters CE, Lin CLG. Comparison of the protein composition of isolated extracellular vesicles from mouse brain and dissociated brain cell culture medium. PLoS One 2024; 19:e0309716. [PMID: 39531446 PMCID: PMC11556680 DOI: 10.1371/journal.pone.0309716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication. Characterizing EV protein composition is essential to understand EV function(s). Isolating EVs from cell culture medium is a common approach to study EVs, but it remains unclear whether EVs isolated from in vitro conditions accurately reflect physiological conditions of the same source in vivo tissues. Here, we analyzed the protein composition of EVs isolated from freshly dissected mouse forebrain and primary dissociated mouse forebrain culture medium. In total, 3,204 and 3,583 proteins were identified in EVs isolated in vivo and in vitro, respectively. Among the proteins identified from both EV sources, there was substantial overlap (~86%). While the overall proteome compositions were very similar, in vitro EVs were relatively enriched with transmembrane/GPI-anchored membrane and cytosolic proteins (MISEV2023 category 1 and 2) typically associated with EVs. Conversely, while both in vivo and in vitro EVs express likely non-EV proteins (MISEV2023 category 3), the in vivo samples were significantly more enriched with these probable contaminants, specifically ribosomal proteins. Our findings highlight that in vitro EVs may be representative of in vivo EVs when isolated from the same source tissue using similar methodology; however, each population of EVs have differences in both total and, primarily, relative protein expression likely due to differing levels of co-eluting contaminants. Therefore, these points must be considered when interpreting results of EV studies further suggesting that improved methods of isolation to reduce non-EV contaminants should be further investigated.
Collapse
Affiliation(s)
- Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Joshua Brian Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Albert John Muhleman
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher Eli Masters
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
18
|
Xu F, Chen M, Lin Y, Zhou S, Li J, Yu Y, Xu J, Wu W, Chen Y, Zhang H, Wei Y, Wang W. Functional Three-Dimensional Zeolitic Imidazolate Framework with an Ordered Macroporous Structure for the Isolation of Extracellular Vesicles. Anal Chem 2024; 96:17640-17648. [PMID: 39440634 DOI: 10.1021/acs.analchem.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Rinaldi A, Balietti M, Principi E, De Luca M, De Felice E, Narcisi FM, Vilardo L, Rosito M, Piacentini R, D'Alessandro G, D'Agnano I, Maggi L, Conti F, Limatola C, Catalano M. BV2-derived extracellular vesicles modulate microglia inflammatory profile, neuronal plasticity, and behavioural performances in late adult mice. Brain Behav Immun 2024; 122:58-74. [PMID: 39128568 DOI: 10.1016/j.bbi.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND During aging, both the brain and the immune system undergo a progressive impairment of physiological functions. Microglia, the immunocompetent cells of the central nervous system, shift towards a chronic mild inflammatory state that impacts brain homeostasis. Extracellular vesicles (EVs) released by microglia transport packages of molecular information that mirror the inflammatory status of donor cells and modulate the inflammatory phenotype of recipient microglia and other cell types. RESULTS We demonstrated that intranasal administration of EVs derived from microglial-like BV2 cells to late adult mice (16-20 months of age) shifts microglia toward a "juvenile" morphology affecting their inflammatory profile. Mice treated with BV2-derived EVs have a reduction of anxiety-like behavior and an increased spatial learning, with sex-dependent differences. Further, BV2-derived EVs increased neuronal plasticity both in male and female mice. These findings suggest the involvement of microglial cells in vesicles-mediated anti-aging effect. CONCLUSIONS Our data indicate that BV2-derived EVs could represent a resource to slow down age-dependent inflammation in the mouse brain.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Marta Balietti
- IRCCS INRCA, Center for Neurobiology of Aging, Via Birarelli 8, Ancona 60121, Italy
| | - Elisa Principi
- Università Politecnica delle Marche, Department of Experimental and Clinical Medicine, Via Tronto 10/a, Ancona 60126, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Laura Vilardo
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy
| | - Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Igea D'Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Fiorenzo Conti
- Università Politecnica delle Marche, Department of Experimental and Clinical Medicine, Via Tronto 10/a, Ancona 60126, Italy; IRCCS INRCA, Center for Neurobiology of Aging, Via Birarelli 8, Ancona 60121, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia, Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
20
|
Matamoros‐Angles A, Karadjuzovic E, Mohammadi B, Song F, Brenna S, Meister SC, Siebels B, Voß H, Seuring C, Ferrer I, Schlüter H, Kneussel M, Altmeppen HC, Schweizer M, Puig B, Shafiq M, Glatzel M. Efficient enzyme-free isolation of brain-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e70011. [PMID: 39508423 PMCID: PMC11541858 DOI: 10.1002/jev2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces 'artificial' proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.
Collapse
Affiliation(s)
| | - Emina Karadjuzovic
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Behnam Mohammadi
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Feizhi Song
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Santra Brenna
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Bente Siebels
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Hannah Voß
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Carolin Seuring
- Multi‐User‐CryoEM‐FacilityCentre for Structural Systems Biology (CSSB)HamburgGermany
- Department of ChemistryUniversität HamburgHamburgGermany
- Leibniz Institute of Virology (LIV)HamburgGermany
| | - Isidre Ferrer
- IDIBELLUniversity of BarcelonaL'Hospitalet de LlobregatSpain
| | - Hartmut Schlüter
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Michaela Schweizer
- Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Mohsin Shafiq
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
21
|
Wang H, Wang Y, Wang S, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Assessment of isolation strategies to remove caseins for high-quality milk-derived extracellular vesicles. J Dairy Sci 2024; 107:8934-8946. [PMID: 39033914 DOI: 10.3168/jds.2024-25162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Increasing studies have highlighted the significance of milk-derived extracellular vesicles (MEV) in mother-newborn integration, as well as their application as novel drug delivery systems and diagnostic biomarkers. However, conventional ultracentrifugation (UC) often results in the co-precipitation of casein micelles in MEV pellets. In this study, we compared methods with different principles to screen the optimal pretreatment in caseins removal, and found that isoelectric precipitation by hydrochloric acid (HA) could most effectively remove caseins in porcine milk. We further characterized MEV populations isolated by UC and HA/UC from diverse aspects, including particle methodology via nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), RNA and protein contents, and purity analysis. Importantly, the proliferative and anti-inflammatory effects of MEV were evaluated in vitro, showing the superiority of MEV via HA/UC in functionality compared with UC. Our results suggest that HA pretreatment before ultracentrifugation could effectively remove caseins and other protein complexes, making MEV with higher purity and more significant effects in vitro. This study provides valuable insights for the advancement of MEV isolation techniques across different species and accurate function analysis of MEV.
Collapse
Affiliation(s)
- Hailong Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxuan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shumeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mingwang Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Moreira RS, Benetti Filho V, Maia GA, Soratto TAT, Kawagoe EK, Russi BC, Miletti LC, Wagner G. FastProtein-an automated software for in silico proteomic analysis. PeerJ 2024; 12:e18309. [PMID: 39494269 PMCID: PMC11531748 DOI: 10.7717/peerj.18309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Although various tools provide proteomic information, each tool has limitations related to execution platforms, libraries, versions, and data output format. Integrating data generated from different software is a laborious process that can prolong analysis time. Here, we present FastProtein, a protein analysis pipeline that is user-friendly, easily installable, and outputs important information about subcellular location, transmembrane domains, signal peptide, molecular weight, isoelectric point, hydropathy, aromaticity, gene ontology, endoplasmic reticulum retention domains, and N-glycosylation domains. It also helps determine the presence of glycosylphosphatidylinositol and obtain functional information from InterProScan, PANTHER, Pfam, and alignment-based annotation searches. FastProtein provides the scientific community with an easy-to-use computational tool for proteomic data analysis. It is applicable to both small datasets and proteome-wide studies. It can be used through the command line interface mode or a web interface installed on a local server. FastProtein significantly enhances proteomics analysis workflows by producing multiple results in a single-step process, thereby streamlining and accelerating the overall analysis. The software is open-source and freely available. Installation and execution instructions, as well as the source code and test files generated for tool validation, are available at https://github.com/bioinformatics-ufsc/FastProtein.
Collapse
Affiliation(s)
- Renato Simões Moreira
- Instituto Federal de Santa Catarina, Gaspar, Santa Catarina, Brazil
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vilmar Benetti Filho
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Augusto Maia
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Tatiany Aparecida Teixeira Soratto
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eric Kazuo Kawagoe
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Luiz Cláudio Miletti
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - Glauber Wagner
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
23
|
Xiao J, Deng Y, Xie J, Liu H, Yang Q, Zhang Y, Huang X, Cao Z. Apoptotic vesicles from macrophages exacerbate periodontal bone resorption in periodontitis via delivering miR-143-3p targeting Igfbp5. J Nanobiotechnology 2024; 22:658. [PMID: 39456001 PMCID: PMC11515254 DOI: 10.1186/s12951-024-02934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
ABSTRCT BACKGROUND: Apoptotic vesicles (ApoVs), which are extracellular vesicles released by apoptotic cells, have been reported to exhibit substantial therapeutic potential for inflammatory diseases and tissue regeneration. While extensive research has been dedicated to mesenchymal stem cells (MSCs), the investigation into immune cell-derived ApoVs remains limited, particularly regarding the function and fate of macrophage-derived ApoVs in the context of periodontitis (PD). RESULTS Our study corroborates the occurrence and contribution of resident macrophage apoptosis in Porphyromonas gingivalis (Pg)-associated PD. The findings unveil the pivotal role played by apoptotic macrophages and their derived ApoVs in orchestrating periodontal bone remodeling. The enrichments of diverse functional miRNAs within these ApoVs are discerned through sequencing techniques. Moreover, our study elucidates that the macrophage-derived ApoVs predominantly deliver miR-143-3p, targeting insulin-like growth factor-binding protein 5 (IGFBP5), thereby disrupting periodontal bone homeostasis. CONCLUSIONS Our study reveals that macrophages in Pg-associated PD undergo apoptosis and generate miR-143-3p-enriched ApoVs to silence IGFBP5, resulting in the perturbation of osteogenic-osteoclastic balance and the ensuing periodontal bone destruction. Accordingly, interventions targeting miR-143-3p in macrophages or employment of apoptosis inhibitor Z-VAD hold promise as effective therapeutic strategies for the management of PD.
Collapse
Affiliation(s)
- Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
24
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
25
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
26
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
27
|
Chen ZK, Zheng S, Long Y, Wang KM, Xiao BL, Li JB, Zhang W, Song H, Chen G. High-throughput screening identifies ibuprofen as an sEV PD-L1 inhibitor for synergistic cancer immunotherapy. Mol Ther 2024; 32:3580-3596. [PMID: 39217416 PMCID: PMC11489553 DOI: 10.1016/j.ymthe.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate. Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases. Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.
Collapse
Affiliation(s)
- Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Yan Long
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bo-Lin Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Bang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
28
|
Yang W, Liu Y, Wang J, Liu T, Tian T, Li T, Ding L, Chen W, Wang H, Zhu J, Zhang C, Pan B, Zhou J, Fan J, Wang B, Yang X, Guo W. Optimizing of a suitable protocol for isolating tissue-derived extracellular vesicles and profiling small RNA patterns in hepatocellular carcinoma. Liver Int 2024; 44:2672-2686. [PMID: 39037259 DOI: 10.1111/liv.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XinRong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Brenna S, Glatzel M, Magnus T, Puig B, Galliciotti G. Neuroserpin and Extracellular Vesicles in Ischemic Stroke: Partners in Neuroprotection? Aging Dis 2024; 15:2191-2204. [PMID: 39191396 PMCID: PMC11346402 DOI: 10.14336/ad.2024.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.
Collapse
Affiliation(s)
- Santra Brenna
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Berta Puig
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
30
|
Zheng X, Gong T, Luo W, Hu B, Gao J, Li Y, Liu R, Xie N, Yang W, Xu X, Cheng L, Zhou C, Yuan Q, Huang C, Peng X, Zhou X. Fusobacterium nucleatum extracellular vesicles are enriched in colorectal cancer and facilitate bacterial adhesion. SCIENCE ADVANCES 2024; 10:eado0016. [PMID: 39303027 DOI: 10.1126/sciadv.ado0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Fusobacterium nucleatum in colorectal cancer (CRC) tissue is implicated at multiple stages of the disease, while the mechanisms underlying bacterial translocation and colonization remain incompletely understood. Herein, we investigated whether extracellular vesicles derived from F. nucleatum (FnEVs) have impacts on bacterial colonization. In mice with colitis-related CRC, a notable enrichment of FnEVs was observed, leading to a significant increase in intratumor colonization by F. nucleatum and accelerated progression of CRC. The enrichment of FnEVs in clinical CRC tissues was demonstrated. Subsequently, we revealed that FnEVs undergo membrane fusion with CRC cells, leading to the transfer and retention of FomA on recipient cell surfaces. Given its ability to facilitate F. nucleatum autoaggregation through interaction with FN1441, the presence of FomA on CRC cell surfaces presents a target for bacterial adhesion. Collectively, the findings unveil a mechanism used by EVs to prepare a niche conducive for bacterial colonization in distal organs.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wanyi Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
31
|
Li B, Qi C, Zhang Y, Shi L, Zhang J, Qian H, Ji C. Frontier role of extracellular vesicles in kidney disease. J Nanobiotechnology 2024; 22:583. [PMID: 39304945 DOI: 10.1186/s12951-024-02852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Kidney diseases represent a diverse range of conditions that compromise renal function and structure which characterized by a progressive deterioration of kidney function, may ultimately necessitate dialysis or kidney transplantation as end-stage treatment options. This review explores the complex landscape of kidney diseases, highlighting the limitations of existing treatments and the pressing need for innovative strategies. The paper delves into the role of extracellular vesicles (EVs) as emerging biomarkers and therapeutic agents in the context of kidney pathophysiology. Urinary extracellular vesicles (uEVs), in particular, offer a non-invasive means of assessing renal injury and monitoring disease progression. Additionally, mesenchymal stem cell-derived EVs (MSC-EVs) are examined for their immunomodulatory and tissue repair capabilities, presenting a promising avenue for novel therapeutic interventions. And discusses the potential of engineering EVs to enhance their targeting and therapeutic efficacy. This paper systematically integrates the latest research findings and aims to provide a comprehensive overview of the role of EVs in kidney disease, providing cutting-edge insights into their potential as a diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Bei Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Qi
- Department of Clinical Laboratory, Suzhou Municipal Hospital of Anhui Province, Anhui, 234000, China
| | - Yifan Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
32
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
33
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
34
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
35
|
Ma Y, Liao X, Lu G, Chen X, Qin Y, Yuan A, Wang R, Xie Y, Pu J. Functionalizing Sgc8-Paclitaxel Conjugates with F-Base Modifications: Targeted Drug Delivery with Optimized Cardiac Safety. ChemMedChem 2024; 19:e202400112. [PMID: 38782722 DOI: 10.1002/cmdc.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Recent advancements in cancer treatment have improved patient prognoses, but chemotherapy induced cardiotoxicity remains a prevalent concern. This study explores the potential of F-base-modified aptamers for targeted drug delivery, focusing on their impact on cardiotoxicity. From the phosphoramidite, F-base-functionalized Sgc8-F23 was prepared in an automated and programmable way, which was further reacted with paclitaxel (PTX) to give the F-base- modified aptamer Sgc8-paclitaxel conjugates (Sgc8-F23-PTX) efficiently. The conjugate exhibited prolonged circulation time and enhanced efficacy as a precision anticancer drug delivery system. Echocardiographic assessments revealed no exacerbation of cardiac dysfunction after myocardial infarction (MI) and no pathological changes or increased apoptosis in non-infarcted cardiac regions. Autophagy pathway analysis showed no discernible differences in Sgc8-F23-PTX-treated cardiomyocytes compared with controls, in contrast to the increased autophagy with nanoparticle albumin-bound-paclitaxel (Nab-PTX). Similarly, apoptosis analysis showed no significant differences. Moreover, Sgc8-F23-PTX exhibited no inhibitory effect on hERG, hNav1.5, or hCav1.2 channels. These findings suggest the safety and efficacy of F-base-modified Sgc8 aptamers for targeted drug delivery with potential clinical applications. Further research is warranted for clinical translation and exploration of other drug carriers.
Collapse
Affiliation(s)
- Yue Ma
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xianying Liao
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guiping Lu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyuan Chen
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Qin
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuquan Xie
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
36
|
Liu Y, Sheng Z, Sun L. Exosomes derived from hTERT-immortalized cells delay cellular senescence of human fibroblasts. Exp Gerontol 2024; 194:112508. [PMID: 38986855 DOI: 10.1016/j.exger.2024.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
hTERT gene therapies hold significant promise for treating age-related diseases. However, further research is required to address the challenges of delivery and ethical considerations. We hypothesized that exosomes derived from hTERT-immortalized cells could function similarly to hTERT gene therapies by maintaining telomere length and attenuating cellular senescence biomarkers. In this study, we overexpressed the hTERT gene in Human Foreskin Fibroblast-1 cells (HFF cells) to produce hTERT-immortalized HFF cells (hT-HFF cells). We then used exosomes derived from these hT-HFF cells to treat human fibroblasts, HFF cells. Our results demonstrated that these exosomes effectively attenuated biomarkers of cellular senescence in HFF cells. Furthermore, analysis revealed that hTERT mRNA was indeed packaged into the exosomes from hT-HFF cells. This mRNA was capable of elongating telomeres and delaying cellular senescence in HFF cells. Therefore, exosomes from hT-HFF cells show potential as a treatment for age-related diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China
| | - Zhaoying Sheng
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China.
| |
Collapse
|
37
|
Liu L, Chen S, Liang S, Liang Z. The expression profile of brain-derived exosomal miRNAs reveals the key molecules responsible for spontaneous motor function recovery in a rat model with permanent middle cerebral artery occlusion. Mamm Genome 2024; 35:362-376. [PMID: 38997467 DOI: 10.1007/s00335-024-10052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The analysis of alterations in the expression and functionality of brain-derived exosomal miRNAs within ischemic stroke lesions provides significant insights into the mechanisms that contribute to disease recovery. We assessed spontaneous motor function in a rat model of permanent middle cerebral artery occlusion (pMCAO) using motor function scores and magnetic resonance imaging (MRI). Brain-derived exosomes from the infarcted brain tissue of the animal model were extracted and high-throughput sequencing of them was performed followed by bioinformatics analysis for differentially expressed miRNAs target genes. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure expression levels of differentially expressed miRNAs at various time points. The oxygen-glucose deprivation (OGD) model was established to investigate gene function through the assessment of cell proliferation and apoptosis using EdU proliferation and JC-1 apoptosis assay. The rat model demonstrated a spontaneous recovery of motor function and a reduction in cerebral infarction area from day 1 to day 14 post-operation. Over the course of the recovery period, miR-24-3p, miR-129-1-3p, and miR-212-5p maintained consistent expression levels, reaching their peak on the initial day following surgery. In the cell model, EdU detection indicated that miR-129-1-3p promoted cellular proliferation, while JC-1 detection revealed its suppressive impact on cellular apoptosis. The current research findings indicated the presence of spontaneous motor function restoration in a rat model of ischemic stroke. MiR-24-3p, miR-129-1-3p, and miR-212-5p were identified as pivotal genes in this recovery process, with miR-129-1-3p potentially influencing the restoration of spontaneous motor function in ischemic stroke through the regulation of neuronal proliferation and apoptosis.
Collapse
Affiliation(s)
- Liuyu Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shengri Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shuolin Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
38
|
Li SR, Li DW, Man QW. Proteomic profile of tissue-derived extracellular vesicles from benign odontogenic lesions. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101921. [PMID: 38795909 DOI: 10.1016/j.jormas.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - Dong-Wen Li
- Department of Orthodontic, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi 154003, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China..
| |
Collapse
|
39
|
Han Y, Ye M, Ye S, Liu B. Comparison of Lung Tissue-Derived Extracellular Vesicles Using Multiple Dissociation Methods for Profiling Protein Biomarkers. Biotechnol J 2024; 19:e202400329. [PMID: 39295555 DOI: 10.1002/biot.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Extracellular vesicles (EVs) operate as chemical messengers that facilitate intercellular communication. Emerging evidence has demonstrated that lung tissue-derived EVs play pivotal roles in pulmonary physiological processes and have potential as biomarkers and therapeutics for lung diseases. Multiple methods have been proposed for the isolation of lung tissue-derived EVs. However, the effects of different tissue pre-treatments on lung EV isolation and subsequent disease biomarker discovery have not yet been comprehensively investigated. In this study, we compared the physical characteristics, recovery yields, and protein compositions of EVs isolated from lung tissues using three methods based on different tissue dissociation principles. Methodologically, the beneficial roles of blood perfusion and gentle meshing were emphasized based on their impact on EV yield and purity. These results demonstrate that different methods enrich distinct subpopulations of EVs that exhibit significant differences in their protein cargo and surface properties. These disparities directly affect the diagnostic detection of marker proteins related to lung diseases, including lung tumors, asthma, and pulmonary fibrosis. Collectively, these findings highlight the variations in EV characteristics resulting from the applied approaches and offer compelling suggestions for guiding researchers in selecting a suitable isolation method based on downstream functional studies and clinical applications.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Meng Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Ying SQ, Cao Y, Zhou ZK, Luo XY, Zhang XH, Shi K, Qiu JY, Xing SJ, Li YY, Zhang K, Jin F, Zheng CX, Jin Y, Sui BD. Hepatocyte-derived tissue extracellular vesicles safeguard liver regeneration and support regenerative therapy. J Nanobiotechnology 2024; 22:521. [PMID: 39210346 PMCID: PMC11363633 DOI: 10.1186/s12951-024-02790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Tissue-derived extracellular vesicles (EVs) are emerging as pivotal players to maintain organ homeostasis, which show promise as a next-generation candidate for medical use with extensive source. However, the detailed function and therapeutic potential of tissue EVs remain insufficiently studied. Here, through bulk and single-cell RNA sequencing analyses combined with ultrastructural tissue examinations, we first reveal that in situ liver tissue EVs (LT-EVs) contribute to the intricate liver regenerative process after partial hepatectomy (PHx), and that hepatocytes are the primary source of tissue EVs in the regenerating liver. Nanoscale and proteomic profiling further identify that the hepatocyte-specific tissue EVs (Hep-EVs) are strengthened to release with carrying proliferative messages after PHx. Moreover, targeted inhibition of Hep-EV release via AAV-shRab27a in vivo confirms that Hep-EVs are required to orchestrate liver regeneration. Mechanistically, Hep-EVs from the regenerating liver reciprocally stimulate hepatocyte proliferation by promoting cell cycle progression through Cyclin-dependent kinase 1 (Cdk1) activity. Notably, supplementing with Hep-EVs from the regenerating liver demonstrates translational potential and ameliorates insufficient liver regeneration. This study provides a functional and mechanistic framework showing that the release of regenerative Hep-EVs governs rapid liver regeneration, thereby enriching our understanding of physiological and endogenous tissue EVs in organ regeneration and therapy.
Collapse
Affiliation(s)
- Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ze-Kai Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ji-Yu Qiu
- Department of VIP Dental Care, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu-Juan Xing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuan-Yuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
41
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
42
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
43
|
Sun J, Yang F, Zheng Y, Huang C, Fan X, Yang L. Pathogenesis and interaction of neutrophils and extracellular vesicles in noncancer liver diseases. Int Immunopharmacol 2024; 137:112442. [PMID: 38889508 DOI: 10.1016/j.intimp.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China; Medical College, Tibet University, Lhasa, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
45
|
Wang C, Xu S, Yang X. Hypoxia-Driven Changes in Tumor Microenvironment: Insights into Exosome-Mediated Cell Interactions. Int J Nanomedicine 2024; 19:8211-8236. [PMID: 39157736 PMCID: PMC11328847 DOI: 10.2147/ijn.s479533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.
Collapse
Affiliation(s)
- Churan Wang
- Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Xiao Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
46
|
Kim Y, D'Acunzo P, Levy E. Biogenesis and secretion of mitovesicles, small extracellular vesicles of mitochondrial origin at the crossroads between brain health and disease. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100765. [PMID: 39219665 PMCID: PMC11364255 DOI: 10.1016/j.cophys.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the brain, mitochondrial components are released into the extracellular space via several mechanisms, including a recently identified type of extracellular vesicles called mitovesicles. While vesiculation of neuronal mitochondria yields various intracellular types of vesicles, with either a single or a double membrane, mitovesicles secreted into the extracellular space are a unique subtype of these mitochondria-derived vesicles, with a double membrane and a specific set of mitochondrial DNA, RNA, proteins, and lipids. Based on the most relevant literature describing mitochondrial vesiculation and mitochondrial exocytosis, we propose a model for their secretion when the amphisome, a hybrid endosome-autophagosome organelle, fuses with the plasma membrane, releasing mitovesicles and exosomes into the extracellular space. In aging and neurodegenerative disorders, mitochondrial dysfunction, in association with endolysosomal abnormalities, alter mitovesicle number and content, with downstream effect on brain health.
Collapse
Affiliation(s)
- Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
47
|
Hu S, Liang Y, Pan X. Exosomes: A promising new strategy for treating osteoporosis in the future. J Drug Deliv Sci Technol 2024; 97:105571. [DOI: 10.1016/j.jddst.2024.105571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, Thalamati D, Ahalliya RM, Kanniappan GV, Mironescu M. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102359. [PMID: 38821418 DOI: 10.1016/j.arr.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Research Center in Biotechnology and Food Engineering, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, Sibiu 550024, Romania.
| |
Collapse
|
49
|
Wang J, Zhang Z, Zhuo Y, Zhang Z, Chen R, Liang L, Jiang X, Nie D, Liu C, Zou Z, Li X, Li J, Wang B, Wang R, Gan Y, Yu M. Endoplasmic reticulum-targeted delivery of celastrol and PD-L1 siRNA for reinforcing immunogenic cell death and potentiating cancer immunotherapy. Acta Pharm Sin B 2024; 14:3643-3660. [PMID: 39234613 PMCID: PMC11372457 DOI: 10.1016/j.apsb.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 09/06/2024] Open
Abstract
The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum (ER) presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy. In this study, we initially validated celastrol (CEL) as an inducer of immunogenic cell death (ICD) by promoting ER stress and autophagy in colorectal cancer (CRC) cells. Subsequently, an ER-targeted strategy was posited, involving the codelivery of CEL with PD-L1 small interfering RNAs (siRNA) using KDEL peptide-modified exosomes derived from milk (KME), to enhance chemoimmunotherapy outcomes. Our findings demonstrate the efficient transportation of KME to the ER via the Golgi-to-ER pathway. Compared to their non-targeting counterparts, KME exhibited a significant augmentation of the CEL-induced ICD effect. Additionally, it facilitated the release of danger signaling molecules (DAMPs), thereby stimulating the antigen-presenting function of dendritic cells and promoting the infiltration of T cells into the tumor. Concurrently, the ER-targeted delivery of PD-L1 siRNA resulted in the downregulation of both intracellular and membrane PD-L1 protein expression, consequently fostering the proliferation and activity of CD8+ T cells. Ultimately, the ER-targeted formulation exhibited enhanced anti-tumor efficacy and provoked anti-tumor immune responses against orthotopic colorectal tumors in vivo. Collectively, a robust ER-targeted delivery strategy provides an encouraging approach for achieving potent cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Jie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongrong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|