1
|
Song K, Zhou J, Wei C, Ponnuchamy A, Bappy MO, Liao Y, Jiang Q, Du Y, Evans CJ, Wyatt BC, O' Sullivan T, Roeder RK, Anasori B, Hoffman AJ, Jin L, Duan X, Zhang Y. A Printed Microscopic Universal Gradient Interface for Super Stretchable Strain-Insensitive Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414203. [PMID: 39924940 PMCID: PMC11923513 DOI: 10.1002/adma.202414203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Stretchable electronics capable of conforming to nonplanar and dynamic human body surfaces are central for creating implantable and on-skin devices for high-fidelity monitoring of diverse physiological signals. While various strategies have been developed to produce stretchable devices, the signals collected from such devices are often highly sensitive to local strain, resulting in inevitable convolution with surface strain-induced motion artifacts that are difficult to distinguish from intrinsic physiological signals. Here all-printed super stretchable strain-insensitive bioelectronics using a unique universal gradient interface (UGI) are reported to bridge the gap between soft biomaterials and stiff electronic materials. Leveraging a versatile aerosol-based multi-materials printing technique that allows precise spatial control over the local stiffnesses with submicron resolution, the UGI enables strain-insensitive electronic devices with negligible resistivity changes under a 180% uniaxial stretch ratio. Various stretchable devices are directly printed on the UGI for on-skin health monitoring with high signal quality and near-perfect immunity to motion artifacts, including semiconductor-based photodetectors for sensing blood oxygen saturation levels and metal-based temperature sensors. The concept in this work will significantly simplify the fabrication and accelerate the development of a broad range of wearable and implantable bioelectronics for real-time health monitoring and personalized therapeutics.
Collapse
Affiliation(s)
- Kaidong Song
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jingyuan Zhou
- Chemistry and Biochemistry Department, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chen Wei
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ashok Ponnuchamy
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Md Omarsany Bappy
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yuxuan Liao
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qiang Jiang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Connor J Evans
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian C Wyatt
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Thomas O' Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Babak Anasori
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Anthony J Hoffman
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- Chemistry and Biochemistry Department, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
2
|
Sun Y, Gao Y, Shen A, Sun J, Chen X, Gao X. Creating ionic current pathways: A non-implantation approach to achieving cortical electrical signals for brain-computer interface. Biosens Bioelectron 2025; 268:116882. [PMID: 39486261 DOI: 10.1016/j.bios.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
This study introduces a novel method for acquiring brain electrical signals comparable to intracranial recordings without the health risks associated with implanted electrodes. We developed a technique using ultrasonic tools to create micro-holes in the skull and insert hollow implants, preventing natural healing. This approach establishes an artificial ionic current path (AICP) using tissue fluid, facilitating signal transmission from the cortex to the scalp surface. Experiments were conducted on pigs to validate the method's effectiveness. We synchronized our recordings with perforated electrocorticography (ECoG) for comparison. The AICP method yielded signal quality comparable to implanted ECoG in the low-frequency range, with a significant improvement in signal-to-noise ratio for evoked potentials. Our results demonstrate that this non-invasive technique can acquire high-quality brain signals, offering potential applications in neurophysiology, clinical research, and brain-computer interfaces. This innovative approach of utilizing tissue fluid as a natural conduction path opens new avenues for brain signal acquisition and analysis.
Collapse
Affiliation(s)
- Yike Sun
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yaxuan Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Anruo Shen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jingnan Sun
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Xiaorong Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
4
|
Zhuo S, Wu Z, Williams C, Sundaresan C, Ameri SK. In-Ear Electronics with Mechanical Adaptability for Physiological Sensing. Adv Healthc Mater 2025; 14:e2404296. [PMID: 39663718 PMCID: PMC11773109 DOI: 10.1002/adhm.202404296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Significant developments have been made in the field of wearable healthcare by utilizing soft materials for the construction of electronic sensors. However, the lack of adaptability to complex topologies, such as ear canal, results in inadequate sensing performance. Here, we report an in-ear physiological sensor with mechanical adaptability, which softens upon contact with the ear canal's skin, thus reducing the sensor-skin mechanical mismatch and interface impedance. An efficient strategy of mechanical adjustment and switching is exploited to increase the softness of the device, leading to a significant decrease in Young's modulus from 30.5 MPa of thermoplastic polyurethane (TPU) to 0.86 MPa of TPU/Ecoflex foam (TEF).The mechanical adaptability at body temperature endows the in-ear device improved device-canal contact area and interface stability. As a result, the TEF-based in-ear device demonstrates reliable sensing, low motion artifact, and high comfort in electroencephalography (EEG) and core body temperature sensing. High quality EEG signals of alpha, beta, delta, and gamma are measured during different activities. Moreover, the TEF-based in-ear device exhibits high reusability for over 4 months, which makes it suitable for long-term healthcare monitoring.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Zihuan Wu
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chris Williams
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chithiravel Sundaresan
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
- Centre for Neuroscience StudiesQueen's UniversityKingstonONK7L 3N6Canada
| |
Collapse
|
5
|
Mironov MS, Yakubovsky DI, Ermolaev GA, Khramtsov IA, Kirtaev RV, Slavich AS, Tselikov GI, Vyshnevyy AA, Arsenin AV, Volkov VS, Novoselov KS. Graphene-Inspired Wafer-Scale Ultrathin Gold Films. NANO LETTERS 2024; 24:16270-16275. [PMID: 39667738 DOI: 10.1021/acs.nanolett.4c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electronics─gold─using graphene-inspired fabrication technology that allows us to develop a multistep production method of ultrathin gold films. Such films demonstrate continuous morphology, low sheet resistance (10 Ω/sq), and high transparency (80%), offering opportunities in a variety of technological and scientific sectors. To this end, we demonstrate smart contact lenses and thermal camouflage based on ultrathin gold. Technologically, the record-breaking characteristics of ultrathin gold films open new horizons for flexible and transparent electrodes for photonics and optoelectronics. Most importantly, the demonstration of transferable wafer-scale ultrathin gold changes the paradigm of the field of 2D crystals and dramatically expands the range of available quasi-2D materials.
Collapse
Affiliation(s)
- Mikhail S Mironov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Dmitry I Yakubovsky
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Georgy A Ermolaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Igor A Khramtsov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Roman V Kirtaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksandr S Slavich
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Gleb I Tselikov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Andrey A Vyshnevyy
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksey V Arsenin
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Kostya S Novoselov
- National Graphene Institute (NGI), University of Manchester, Manchester M13 9PL, U.K
- Department of Materials Science and Engineering, National University of Singapore, Singapore 03-09 EA, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Building S9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
6
|
Liu H, Li H, Wang Y, Liu Y, Xiao L, Guo W, Lin Y, Wang H, Wang T, Yan H, Lai S, Chen Y, Mou Z, Chen L, Luo Y, Liu GS, Zhang X. Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE). NANO LETTERS 2024; 24:16221-16230. [PMID: 39604089 DOI: 10.1021/acs.nanolett.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Electrophysiological (EP) signals are key biomarkers for monitoring mental fatigue (MF) and general health, but state-of-the-art wearable EP-based MF monitoring systems are bulky and require user-specific, labeled data. Ultrathin epidermal electrodes with high performance are ideal for constructing imperceptive EP sensing systems; however, the lack of a simple and scalable fabrication delays their application in MF recognition. Here, we report a facile, scalable printing-welding-transferring strategy (PWT) for printing μm-thickness micropatterned silver nanowires (AgNWs)/sticky polydimethylsiloxane, welding the AgNWs via plasmonic effect, and transferring the electrode to skin as tattoos. The PWT provides electrodes with conformability, comfort, and stability for EP sensing. Leveraging the facile and scalable PWT, we develop plug-and-play wireless multimodal epidermal electronics integrated with an unsupervised transfer learning (UTL) scheme for MF recognition across various users. The UTL adaptively minimizes the intersubject difference and achieves high accuracy, without demand of expensive computation and labels from target users.
Collapse
Affiliation(s)
- Haogeng Liu
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Haichuan Li
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yexiong Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lizhi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Weidong Guo
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yaoguang Lin
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Hongteng Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Tianqi Wang
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Haiwang Yan
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yaofei Chen
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Zongxia Mou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Gui-Shi Liu
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Kim D, Kwon YA, So Y, Kim YJ, Park SW, Park H, Hwang J, Park J, Kim C, Won JC, Cho JH, Kim YH. Water-Borne Fluorinated Polyimide Dielectric for Large-Area IGZO Transistors and Logic Gates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68328-68335. [PMID: 39589351 DOI: 10.1021/acsami.4c14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Thin-film transistors offer excellent and uniform electrical properties over large areas, making them a promising option for various future electronic devices. Polyimide dielectrics are already widely used in various electronic devices because of their exceptional dielectric properties, thermal stability, and desirable mechanical flexibility, which make them suitable for harsh environments. However, the current research on polyimide dielectric materials has certain limitations, such as the use of toxic solvents, high-temperature processes, and deficient coating properties. Herein, we introduce an aromatic polyimide dielectric, which exhibits excellent electrical properties even when processed at a low temperature of 250 °C using environmentally friendly water-based "one-step" polymerization. Despite its thin thickness of <200 nm, the water-borne fluorinated polyimide dielectric material demonstrates stable insulating properties over a wide range of electric fields and achieves a high breakdown voltage of over 4.5 MV cm-1. Furthermore, we successfully achieved a large-area coating of uniform dielectric layers with no pinholes using only water as a solvent and a simple solution process without any additional processing steps. These results demonstrate that the water-borne polyimide gated indium-gallium-zinc oxide transistor exhibits excellent and stable device performance. Moreover, we used the transistor to successfully demonstrate various logic gates (NOT, NAND, and NOR). Overall, this study provides guidelines for the eco-friendly and sustainable use of water-borne polyimide dielectric materials with high electrical performance and large-processing window advantages.
Collapse
Affiliation(s)
- Dongkyu Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Yonghyun Albert Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin So
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Jun Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Sang Woo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunjin Park
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jeonguk Hwang
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Jongmin Park
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Chan Won
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Chemical Convergence Materials and Processes, KRICT School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ho Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Chemical Convergence Materials and Processes, KRICT School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
9
|
Yang M, Schoop LM. Friends not Foes: Exfoliation of Non-van der Waals Materials. Acc Chem Res 2024; 57:2490-2499. [PMID: 39150546 DOI: 10.1021/acs.accounts.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
ConspectusTwo-dimensional materials have been a focus of study for decades, resulting in the development of a library of nanosheets made by a variety of methods. However, many of these atomically thin materials are exfoliated from van der Waals (vdW) compounds, which inherently have weaker bonding between layers in the bulk crystal. Even though there are diverse properties and structures within this class of compounds, it would behoove the community to look beyond these compounds toward the exfoliation of non-vdW compounds as well. A particular class of non-vdW compounds that may be amenable to exfoliation are the ionically bonded layered materials, which are structurally similar to vdW compounds but have alkali ions intercalated between the layers. Although initially they may have been more difficult to exfoliate due to a lack of methodology beyond mechanical exfoliation, many synthesis techniques have been developed that have been used successfully in exfoliating non-vdW materials. In fact, as we will show, in some cases it has even proven to be advantageous to start the exfoliation from a non-vdW compound.The method we will highlight here is chemical exfoliation, which has developed significantly and is better understood mechanistically compared to when it was first conceived. Encompassing many methods, such as acid/base reactions, solvent reactions, and oxidative extractions, chemical exfoliation can be tailored to the delamination of non-vdW materials, which opens up many more possibilities of compounds to study. In addition, beginning with intercalated analogues of vdW materials can even lead to more consistent and higher quality results, overcoming some challenges associated with chemical exfoliation in general. To exemplify this, we will discuss our group's work on the synthesis of a 1T'-WS2 monolayer ink. By starting with K0.5WS2, the exfoliated 1T'-WS2 nanosheets obtained were larger and more uniform in thickness than those from previous syntheses beginning with vdW materials. The crystallinity of the nanosheets was high enough that films made from this ink were superconducting. We will also show how soft chemical methods can be used to make new phases from existing compounds, such as HxCrS2 from NaCrS2. This material was found to have alternating amorphous and crystalline layers. Its biphasic structure improved the material's performance as a battery electrode, enabling reversible Cr redox and faster Na-ion diffusion. From these and other examples, we will see how chemical exfoliation of non-vdW materials compares to other methods, as well as how this technique can be further extended to known compounds that can be deintercalated electrochemically and to quasi-one-dimensional crystals.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Liu Q, Zhou J, Zeng Q, Sun D, Yu B, Yang L, Zhang Z, Wu J, Zhang Y. Flexible Dry Epidermal Electrophysiological Electrodes Based on One-Dimensional Platinum-Coated Silver Nanowires. ACS APPLIED NANO MATERIALS 2024; 7:18226-18236. [DOI: 10.1021/acsanm.3c03457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
| | - Dexin Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bin Yu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
11
|
Liu S, Akinwande D, Kireev D, Incorvia JAC. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems. NANO LETTERS 2024. [PMID: 38819288 DOI: 10.1021/acs.nanolett.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.
Collapse
Affiliation(s)
- Samuel Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jean Anne C Incorvia
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
12
|
Lee H, Johnson Z, Denton S, Liu N, Akinwande D, Porter E, Kireev D. A non-invasive approach to skin cancer diagnosis via graphene electrical tattoos and electrical impedance tomography. Physiol Meas 2024; 45:055003. [PMID: 38599226 DOI: 10.1088/1361-6579/ad3d26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.
Collapse
Affiliation(s)
- Hannah Lee
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Zane Johnson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Spencer Denton
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Ning Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
| | - Emily Porter
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
13
|
Zhu H, Yang H, Xu S, Ma Y, Zhu S, Mao Z, Chen W, Hu Z, Pan R, Xu Y, Xiong Y, Chen Y, Lu Y, Ning X, Jiang D, Yuan S, Xu F. Frequency-encoded eye tracking smart contact lens for human-machine interaction. Nat Commun 2024; 15:3588. [PMID: 38678013 PMCID: PMC11055864 DOI: 10.1038/s41467-024-47851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Eye tracking techniques enable high-efficient, natural, and effortless human-machine interaction by detecting users' eye movements and decoding their attention and intentions. Here, a miniature, imperceptible, and biocompatible smart contact lens is proposed for in situ eye tracking and wireless eye-machine interaction. Employing the frequency encoding strategy, the chip-free and battery-free lens successes in detecting eye movement and closure. Using a time-sequential eye tracking algorithm, the lens has a great angular accuracy of <0.5°, which is even less than the vision range of central fovea. Multiple eye-machine interaction applications, such as eye-drawing, Gluttonous Snake game, web interaction, pan-tilt-zoom camera control, and robot vehicle control, are demonstrated on the eye movement model and in vivo rabbit. Furthermore, comprehensive biocompatibility tests are implemented, demonstrating low cytotoxicity and low eye irritation. Thus, the contact lens is expected to enrich approaches of eye tracking techniques and promote the development of human-machine interaction technology.
Collapse
Affiliation(s)
- Hengtian Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Siqi Xu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China
| | - Yuanyuan Ma
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shugeng Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhengyi Mao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Yifeng Xiong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ye Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China.
| | - Fei Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
14
|
Zhuo S, Zhang A, Tessier A, Williams C, Kabiri Ameri S. Solvent-Free and Cost-Efficient Fabrication of a High-Performance Nanocomposite Sensor for Recording of Electrophysiological Signals. BIOSENSORS 2024; 14:188. [PMID: 38667181 PMCID: PMC11048393 DOI: 10.3390/bios14040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Anan Zhang
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Chris Williams
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
15
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Hoang AT, Hu L, Kim BJ, Van TTN, Park KD, Jeong Y, Lee K, Ji S, Hong J, Katiyar AK, Shong B, Kim K, Im S, Chung WJ, Ahn JH. Low-temperature growth of MoS 2 on polymer and thin glass substrates for flexible electronics. NATURE NANOTECHNOLOGY 2023; 18:1439-1447. [PMID: 37500777 DOI: 10.1038/s41565-023-01460-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal-organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V-1 s-1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Tran Thi Ngoc Van
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Kyeong Dae Park
- Institute for Rare Metals and Division of Advanced Materials Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Yeonsu Jeong
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Kihyun Lee
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Bonggeun Shong
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Kwanpyo Kim
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Korea
| | - Seongil Im
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Woon Jin Chung
- Institute for Rare Metals and Division of Advanced Materials Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Niu W, Tian Q, Liu Z, Liu X. Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On-Skin Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304157. [PMID: 37345560 DOI: 10.1002/adma.202304157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 × 10-2 S m-1 ) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
19
|
Zhang A, Shyam AB, Cunningham AM, Williams C, Brissenden A, Bartley A, Amsden B, Docoslis A, Kontopoulou M, Ameri SK. Adhesive Wearable Sensors for Electroencephalography from Hairy Scalp. Adv Healthc Mater 2023; 12:e2300142. [PMID: 37165724 PMCID: PMC11469214 DOI: 10.1002/adhm.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/23/2023] [Indexed: 05/12/2023]
Abstract
Electroencephalography has garnered interest for applications in mobile healthcare, human-machine interfaces, and Internet of Things. Conventional electroencephalography relies on wet and dry electrodes. Despite favorable interface impedance of wet electrodes and skin, the application of a large amount of gel at their interface with skin limits the electroencephalography spatial resolution, increases the risk of shorting between electrodes, and makes them unsuited for long-term mobile recording. In contrast, dry electrodes are better suited for long-term recordings but susceptible to motion artifacts. In addition, both wet and dry electrodes are non-adhesive to the hairy scalp and mechanical support, or chemical adhesives are used to hold them in place. Herein, a conical microstructure array (CMSA) based sensor made of carbon nanotube-polydimethylsiloxane composite is reported. The CMSA sensor is fabricated using the innovative, cost-effective, and scalable method of viscosity-controlled dip-pull process. The sensor adheres to the hairy scalp by generating negative pressure in its conical microstructures when it is pressed against scalp. Aided by the application of a trace amount of gel, CMSA sensor establishes good electrical contact with the skin, enabling its applications in mobile electroencephalography over extended periods. Notably, the signal quality of CMSA sensors is comparable to that of medical-grade wet gel electrodes.
Collapse
Affiliation(s)
- Anan Zhang
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | | | | | - Christopher Williams
- Department of Chemical EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Amanda Brissenden
- Department of Chemical EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Alex Bartley
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Brian Amsden
- Department of Chemical EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Aristides Docoslis
- Department of Chemical EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Marianna Kontopoulou
- Department of Chemical EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
- Centre for Neuroscience Studies (CNS)Queen's UniversityKingstonOntarioK7L 3N6Canada
| |
Collapse
|
20
|
Lee M, Kim J, Khine MT, Kim S, Gandla S. Facile Transfer of Spray-Coated Ultrathin AgNWs Composite onto the Skin for Electrophysiological Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2467. [PMID: 37686975 PMCID: PMC10489915 DOI: 10.3390/nano13172467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Disposable wearable sensors that ultrathin and conformable to the skin are of significant interest as affordable and easy-to-use devices for short-term recording. This study presents a facile and low-cost method for transferring spray-coated silver nanowire (AgNW) composite films onto human skin using glossy paper (GP) and liquid bandages (LB). Due to the moderately hydrophobic and rough surface of the GP, the ultrathin AgNWs composite film (~200 nm) was easily transferred onto human skin. The AgNW composite films conformally attached to the skin when applied with a LB, resulting in the stable and continuous recording of wearable electrophysiological signals, including electromyogram (EMG), electrocardiogram (ECG), and electrooculogram (EOG). The volatile LB, deposited on the skin via spray coating, promoted rapid adhesion of the transferred AgNW composite films, ensuring stability to the AgNWs in external environments. The AgNWs composite supported with the LB film exhibited high water vapor breathability (~28 gm-2h-1), which can avoid the accumulation of sweat at the skin-sensor interface. This approach facilitates the creation of rapid, low-cost, and disposable tattoo-like sensors that are practical for extended use.
Collapse
Affiliation(s)
| | | | | | - Sunkook Kim
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (M.L.); (J.K.); (M.T.K.)
| | - Srinivas Gandla
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (M.L.); (J.K.); (M.T.K.)
| |
Collapse
|
21
|
Lim J, Sun M, Liu JZ, Tan Y. A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082921 DOI: 10.1109/embc40787.2023.10340589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Surface electromyography (sEMG) sensor measures the user's muscle activities by noninvasively placing electrodes on the surface of the user's skin. It has been widely used in monitoring various human movements. Recently a wearable and flexible epidermal sensor system called Electronic Tattoo (E-Tattoo) has been developed to enable intimate attachment of electrodes on the skin, improving long-term comfort. In order to make the E-Tattoo usable in monitoring muscle activities, it is always connected with a connector and signal processing blocks to collect and process the measured sEMG signals. We call it an integrated system. This paper investigates the usability of a prototype of the integrated system developed in the laboratory for monitoring muscle activities by testing its comfort with user experience surveys and comparing the quality of the sEMG signals by widely used performance metrics. Two typical movements, maximum voluntary isometric and non-isometric contractions, are considered for the experiments. Our preliminary results on five subjects demonstrate the effectiveness of the proposed integrated system. This system showed a comparable signal quality for these two movements as the commercial product with a much better comfort feeling from the user. It is also interesting to note that this prototype shows a much better signal-to-motion artifact ratio (SMR), which reflects the ability to measure muscle activities during active movements, compared with the commercial product, showing the potential of using this integrated system in monitoring sEMGs during active and dynamic movements.
Collapse
|
22
|
Shi Y, Yang P, Lei R, Liu Z, Dong X, Tao X, Chu X, Wang ZL, Chen X. Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat Commun 2023; 14:3315. [PMID: 37286541 DOI: 10.1038/s41467-023-39068-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Eye tracking provides valuable insight for analyzing visual attention and underlying thinking progress through the observation of eye movements. Here, a transparent, flexible and ultra-persistent electrostatic sensing interface is proposed for realizing active eye tracking (AET) system based on the electrostatic induction effect. Through a triple-layer structure combined with a dielectric bilayer and a rough-surface Ag nanowire (Ag NW) electrode layer, the inherent capacitance and interfacial trapping density of the electrostatic interface has been strongly enhanced, contributing to an unprecedented charge storage capability. The electrostatic charge density of the interface reached 1671.10 μC·m-2 with a charge-keeping rate of 96.91% after 1000 non-contact operation cycles, which can finally realize oculogyric detection with an angular resolution of 5°. Thus, the AET system enables real-time decoding eye movements for customer preference recording and eye-controlled human-computer interaction, supporting its limitless potentiality in commercial purpose, virtual reality, human computer interactions and medical monitoring.
Collapse
Affiliation(s)
- Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Lei
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuanyi Dong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangcheng Chu
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
23
|
Lin Z, Kireev D, Liu N, Gupta S, LaPiano J, Obaid SN, Chen Z, Akinwande D, Efimov IR. Graphene Biointerface for Cardiac Arrhythmia Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212190. [PMID: 36965107 DOI: 10.1002/adma.202212190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Indexed: 06/02/2023]
Abstract
Heart rhythm disorders, known as arrhythmias, cause significant morbidity and are one of the leading causes of mortality. Cardiac arrhythmias are frequently treated by implantable devices, such as pacemakers and defibrillators, or by ablation therapy guided by electroanatomical mapping. Both implantable and ablation therapies require sophisticated biointerfaces for electrophysiological measurements of electrograms and delivery of therapeutic stimulation or ablation energy. In this work, a graphene biointerface for in vivo cardiac electrophysiology is reported for the first time. Leveraging sub-micrometer-thick tissue-conformable graphene arrays, sensing and stimulation of the open mammalian heart are demonstrated both in vitro and in vivo. Furthermore, the graphene biointerface treatment of atrioventricular block (the kind of arrhythmia where the electrical conduction from the atria to the ventricles is interrupted) is demonstrated. The graphene arrays show effective electrochemical properties, namely interface impedance down to 40 Ω cm2 at 1 kHz, charge storage capacity up to 63.7 mC cm-2 , and charge injection capacity up to 704 µC cm-2 . Transparency of the graphene structures allows for simultaneous optical mapping of cardiac action potentials, calcium transients, and optogenetic stimulation while performing electrical measurements and stimulation. The report presents evidence of the significant potential of graphene biointerfaces for advanced cardiac electrophysiology and arrhythmia therapy.
Collapse
Affiliation(s)
- Zexu Lin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78758, USA
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Ning Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Shubham Gupta
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Jessica LaPiano
- MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| | - Sofian N Obaid
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78758, USA
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
24
|
Wang X, Dai C, Wu Y, Liu Y, Wei D. Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat Protoc 2023:10.1038/s41596-023-00830-x. [PMID: 37208410 DOI: 10.1038/s41596-023-00830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 μl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yungeng Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Savchenko A, Kireev D, Yin RT, Efimov IR, Molokanova E. Graphene-based cardiac sensors and actuators. Front Bioeng Biotechnol 2023; 11:1168667. [PMID: 37256116 PMCID: PMC10225741 DOI: 10.3389/fbioe.2023.1168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Graphene, a 2D carbon allotrope, is revolutionizing many biomedical applications due to its unique mechanical, electrical, thermal, and optical properties. When bioengineers realized that these properties could dramatically enhance the performance of cardiac sensors and actuators and may offer fundamentally novel technological capabilities, the field exploded with numerous studies developing new graphene-based systems and testing their limits. Here we will review the link between specific properties of graphene and mechanisms of action of cardiac sensors and actuators, analyze the performance of these systems from inaugural studies to the present, and offer future perspectives.
Collapse
Affiliation(s)
| | - Dmitry Kireev
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Igor R. Efimov
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States
| | - Elena Molokanova
- Nanotools Bioscience, La Jolla, CA, United States
- NeurANO Bioscience, La Jolla, CA,United States
| |
Collapse
|
26
|
Wang Z, Zhou Z, Li CL, Liu XH, Zhang Y, Pei MM, Zhou Z, Cui DX, Hu D, Chen F, Cao WT. A Single Electronic Tattoo for Multisensory Integration. SMALL METHODS 2023; 7:e2201566. [PMID: 36811239 DOI: 10.1002/smtd.202201566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration. The multidimensional configurations endow the E-tattoo with excellent multifunctional sensing capabilities including temperature, humidity, in-plane strain, proximity, and material identification. In addition, benefiting from the satisfactory rheology of hybrid inks, the E-tattoos are able to be fabricated through multiple facile strategies including direct writing, stamping, screen printing, and three-dimensional printing on various hard/soft substrates. Especially, the E-tattoo with excellent triboelectric properties also can serve as a power source for activating small electronic devices. It is believed that these skin-conformal E-tattoo systems can provide a promising platform for next-generation wearable and epidermal electronics.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zhi Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Chen-Long Li
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Xiao-Hao Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Yue Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Man-Man Pei
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zheng Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Da-Xiang Cui
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Wen-Tao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| |
Collapse
|
27
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 298] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
28
|
Jang H, Sel K, Kim E, Kim S, Yang X, Kang S, Ha KH, Wang R, Rao Y, Jafari R, Lu N. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat Commun 2022; 13:6604. [PMID: 36329038 PMCID: PMC9633646 DOI: 10.1038/s41467-022-34406-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Electrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm. However, robust electrical connection between ultrathin devices and rigid circuit boards is a long missing component for ambulatory use. To minimize the well-known strain concentration at their interfaces, we propose heterogeneous serpentine ribbons (HSPR), which refer to a GET serpentine partially overlapping with a gold serpentine without added adhesive. A fifty-fold strain reduction in HSPR vs. heterogeneous straight ribbons (HSTR) has been discovered and understood. The combination of HSPR and a soft interlayer between the GET and an EDA wristband enabled ambulatory EDA monitoring on the palm in free-living conditions. A newly developed EDA event selection policy leveraging unbiased selection of phasic events validated our GET EDA sensor against gold standards.
Collapse
Affiliation(s)
- Hongwoo Jang
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kaan Sel
- grid.264756.40000 0004 4687 2082Department of Electrical and Computer Engineering at Texas A&M University, College Station, TX 77843 USA
| | - Eunbin Kim
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Sangjun Kim
- grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Xiangxing Yang
- grid.89336.370000 0004 1936 9924Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Seungmin Kang
- grid.89336.370000 0004 1936 9924Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kyoung-Ho Ha
- grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Rebecca Wang
- grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| | - Yifan Rao
- grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| | - Roozbeh Jafari
- grid.264756.40000 0004 4687 2082Department of Electrical and Computer Engineering at Texas A&M University, College Station, TX 77843 USA ,grid.264756.40000 0004 4687 2082Department of Biomedical Engineering at Texas A&M University, College Station, TX 77843 USA ,grid.264756.40000 0004 4687 2082Department of Computer Science and Engineering at Texas A&M University, College Station, TX 77843 USA
| | - Nanshu Lu
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
29
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Lee GH, Woo H, Yoon C, Yang C, Bae JY, Kim W, Lee DH, Kang H, Han S, Kang SK, Park S, Kim HR, Jeong JW, Park S. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204159. [PMID: 35702762 DOI: 10.1002/adma.202204159] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heejin Woo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chanwoong Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Young Bae
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wonsik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hoon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seungmin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
31
|
Kireev D, Sel K, Ibrahim B, Kumar N, Akbari A, Jafari R, Akinwande D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. NATURE NANOTECHNOLOGY 2022; 17:864-870. [PMID: 35725927 DOI: 10.1038/s41565-022-01145-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/03/2022] [Indexed: 05/15/2023]
Abstract
Continuous monitoring of arterial blood pressure (BP) in non-clinical (ambulatory) settings is essential for understanding numerous health conditions, including cardiovascular diseases. Besides their importance in medical diagnosis, ambulatory BP monitoring platforms can advance disease correlation with individual behaviour, daily habits and lifestyle, potentially enabling analysis of root causes, prognosis and disease prevention. Although conventional ambulatory BP devices exist, they are uncomfortable, bulky and intrusive. Here we introduce a wearable continuous BP monitoring platform that is based on electrical bioimpedance and leverages atomically thin, self-adhesive, lightweight and unobtrusive graphene electronic tattoos as human bioelectronic interfaces. The graphene electronic tattoos are used to monitor arterial BP for >300 min, a period tenfold longer than reported in previous studies. The BP is recorded continuously and non-invasively, with an accuracy of 0.2 ± 4.5 mm Hg for diastolic pressures and 0.2 ± 5.8 mm Hg for systolic pressures, a performance equivalent to Grade A classification.
Collapse
Affiliation(s)
- Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
- Microelectronics Research Center, The University of Texas, Austin, TX, USA
| | - Kaan Sel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Bassem Ibrahim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Neelotpala Kumar
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ali Akbari
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Roozbeh Jafari
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Microelectronics Research Center, The University of Texas, Austin, TX, USA.
| |
Collapse
|
32
|
Kireev D, Liu S, Jin H, Patrick Xiao T, Bennett CH, Akinwande D, Incorvia JAC. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat Commun 2022; 13:4386. [PMID: 35902599 PMCID: PMC9334620 DOI: 10.1038/s41467-022-32078-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022] Open
Abstract
CMOS-based computing systems that employ the von Neumann architecture are relatively limited when it comes to parallel data storage and processing. In contrast, the human brain is a living computational signal processing unit that operates with extreme parallelism and energy efficiency. Although numerous neuromorphic electronic devices have emerged in the last decade, most of them are rigid or contain materials that are toxic to biological systems. In this work, we report on biocompatible bilayer graphene-based artificial synaptic transistors (BLAST) capable of mimicking synaptic behavior. The BLAST devices leverage a dry ion-selective membrane, enabling long-term potentiation, with ~50 aJ/µm2 switching energy efficiency, at least an order of magnitude lower than previous reports on two-dimensional material-based artificial synapses. The devices show unique metaplasticity, a useful feature for generalizable deep neural networks, and we demonstrate that metaplastic BLASTs outperform ideal linear synapses in classic image classification tasks. With switching energy well below the 1 fJ energy estimated per biological synapse, the proposed devices are powerful candidates for bio-interfaced online learning, bridging the gap between artificial and biological neural networks.
Collapse
Affiliation(s)
- Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Samuel Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Harrison Jin
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - T Patrick Xiao
- Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | | | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA.
| |
Collapse
|
33
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
34
|
Stuart T, Hanna J, Gutruf P. Wearable devices for continuous monitoring of biosignals: Challenges and opportunities. APL Bioeng 2022; 6:021502. [PMID: 35464617 PMCID: PMC9010050 DOI: 10.1063/5.0086935] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The ability for wearable devices to collect high-fidelity biosignals continuously over weeks and months at a time has become an increasingly sought-after characteristic to provide advanced diagnostic and therapeutic capabilities. Wearable devices for this purpose face a multitude of challenges such as formfactors with long-term user acceptance and power supplies that enable continuous operation without requiring extensive user interaction. This review summarizes design considerations associated with these attributes and summarizes recent advances toward continuous operation with high-fidelity biosignal recording abilities. The review also provides insight into systematic barriers for these device archetypes and outlines most promising technological approaches to expand capabilities. We conclude with a summary of current developments of hardware and approaches for embedded artificial intelligence in this wearable device class, which is pivotal for next generation autonomous diagnostic, therapeutic, and assistive health tools.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
- Neuroscience GIDP, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
35
|
Xu J, Li X, Chang H, Zhao B, Tan X, Yang Y, Tian H, Zhang S, Ren TL. Electrooculography and Tactile Perception Collaborative Interface for 3D Human-Machine Interaction. ACS NANO 2022; 16:6687-6699. [PMID: 35385249 DOI: 10.1021/acsnano.2c01310] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The human-machine interface (HMI) previously relied on a single perception interface that cannot realize three-dimensional (3D) interaction and convenient and accurate interaction in multiple scenes. Here, we propose a collaborative interface including electrooculography (EOG) and tactile perception for fast and accurate 3D human-machine interaction. The EOG signals are mainly used for fast, convenient, and contactless 2D (XY-axis) interaction, and the tactile sensing interface is mainly utilized for complex 2D movement control and Z-axis control in the 3D interaction. The honeycomb graphene electrodes for the EOG signal acquisition and tactile sensing array are prepared by a laser-induced process. Two pairs of ultrathin and breathable honeycomb graphene electrodes are attached around the eyes for monitoring nine different eye movements. A machine learning algorithm is designed to train and classify the nine different eye movements with an average prediction accuracy of 92.6%. Furthermore, an ultrathin (90 μm), stretchable (∼1000%), and flexible tactile sensing interface assembled by a pair of 4 × 4 planar electrode arrays is attached to the arm for 2D movement control and Z-axis interaction, which can realize single-point, multipoint and sliding touch functions. Consequently, the tactile sensing interface can achieve eight directions control and even more complex movement trajectory control. Meanwhile, the flexible and ultrathin tactile sensor exhibits an ultrahigh sensitivity of 1.428 kPa-1 in the pressure range 0-300 Pa with long-term response stability and repeatability. Therefore, the collaboration between EOG and the tactile perception interface will play an important role in rapid and accurate 3D human-machine interaction.
Collapse
Affiliation(s)
- Jiandong Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Hao Chang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Bingchen Zhao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xichao Tan
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Sheng Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
37
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
38
|
Faisal SN, Amjadipour M, Izzo K, Singer JA, Bendavid A, Lin CT, Iacopi F. Non-invasive on-skin sensors for brain machine interfaces with epitaxial graphene. J Neural Eng 2021; 18. [PMID: 34874291 DOI: 10.1088/1741-2552/ac4085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Abstract
Objective. Brain-machine interfaces are key components for the development of hands-free, brain-controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion.Approach.Here, we explore the use of epitaxial graphene (EG) grown on silicon carbide on silicon for detecting the EEG signals with high sensitivity.Main results and significance.This dry and non-invasive approach exhibits a markedly improved skin contact impedance when benchmarked to commercial dry electrodes, as well as superior robustness, allowing prolonged and repeated use also in a highly saline environment. In addition, we report the newly observed phenomenon of surface conditioning of the EG electrodes. The prolonged contact of the EG with the skin electrolytes functionalize the grain boundaries of the graphene, leading to the formation of a thin surface film of water through physisorption and consequently reducing its contact impedance more than three-fold. This effect is primed in highly saline environments, and could be also further tailored as pre-conditioning to enhance the performance and reliability of the EG sensors.
Collapse
Affiliation(s)
- Shaikh Nayeem Faisal
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mojtaba Amjadipour
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kimi Izzo
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - James Aaron Singer
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia
| | - Chin-Teng Lin
- Australian Artificial Intelligence Institute, FEIT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
39
|
Pazos MD, Hu Y, Elani Y, Browning KL, Jiang N, Yetisen AK. Tattoo Inks for Optical Biosensing in Interstitial Fluid. Adv Healthc Mater 2021; 10:e2101238. [PMID: 34510804 DOI: 10.1002/adhm.202101238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The persistence of traditional tattoo inks presents an advantage for continuous and long-term health monitoring in point of care devices. The replacement of tattoo pigments with optical biosensors aims a promising alternative for monitoring blood biomarkers. Tattoo inks functionalization enables the control of interstitial biomarkers with correlated concentrations in plasma, to diagnose diseases, evaluate progression, and prevent complications associated with physio pathological disorders or medication mismatches. The specific biomarkers in interstitial fluid provide a new source of information, especially for skin diseases. The study of tattoo inks displays insufficient regulation in their composition, a lack of reports of the related complications, and a need for further studies on their degradation kinetics. This review focuses on tattoo optical biosensors for monitoring dermal interstitial biomarkers and discusses the clinical advantages and main challenges for in vivo implantation. Tattoo functionalization provides a minimally invasive, reversible, biocompatible, real-time sensing with long-term permanence and multiplexing capabilities for the control, diagnosis, and prevention of illness; it enables self-controlling management by the patient, but also the possibility of sending the records to the doctor.
Collapse
Affiliation(s)
- Martalu D Pazos
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
- Leo Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Copenhagen University, Copenhagen, 2100, Denmark
| | - Yubing Hu
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Kathryn L Browning
- Leo Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Copenhagen University, Copenhagen, 2100, Denmark
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ali K Yetisen
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|