1
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Kuderha A, Adingo W, Chikere B, Kulimushi M, Jules K. A Framework for Unsupervised Profiling of Malaria Vectors' Insecticide Resistance Using Machine Learning Technique. Vector Borne Zoonotic Dis 2024; 24:364-371. [PMID: 38573213 DOI: 10.1089/vbz.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Background: There is a need to identify different insecticide resistance profiles that represent circumscription-encapsulation of knowledge about malaria vectors' insecticide resistance to increase our understanding of malaria vectors' insecticide resistance dynamics. Methods: Data used in this study are part of the aggregation of over 20,000 mosquito collections done between 1957 and 2018. We applied two data preprocessing steps. We developed three clustering machine learning models based on the K-means algorithm with three selected datasets. The elbow method was used to fine-tune the hyperparameters. We used the silhouette score to assess the clustering results produced by each of the three models. The proposed framework incorporates continuous learning, allowing the machine learning models to learn continuously. Results: For the first model, the optimal number of clusters (profiles) k was 17. For the second model, we found four profiles. For the third model, the optimal number of profiles was 7. Discussion: We found that the insecticide resistance profiles have dynamic resistance levels with respect to the insecticide component, species component, location component, and time component. This profiling task provided knowledge about the evolution of malaria vectors' insecticide resistance in the African continent by encapsulating the information on the complex interaction between the different dimensions of malaria vectors' insecticide resistance into different profiles. Policy makers can use the knowledge about the different profiles found from the analysis of available insecticide resistance monitoring data (through profiling) by using our proposed approach to set up malaria vector control strategies that consider the locations, species present in those locations, and potentially efficient insecticides.
Collapse
Affiliation(s)
- Ashuza Kuderha
- Département de Sciences de l'Informatique, Faculté de Sciences, Université Catholique de Bukavu, Bukavu, DR Congo
- Covenant Applied Informatics and Communication-Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria
- Département de Planification Régionale, Institut Supérieur de Développement Rural de Bukavu, Bukavu, DR Congo
| | - Wisdom Adingo
- Covenant Applied Informatics and Communication-Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Bruno Chikere
- Covenant Applied Informatics and Communication-Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Mugisho Kulimushi
- Centre de Recherche en Environnement et Géoressources, Université Catholique de Bukavu, Bukavu, DR Congo
- Département de Sciences de l'Environnement, Faculté de Sciences, Université Catholique de Bukavu, Bukavu, DR Congo
| | - Kala Jules
- Department of Data Science, School of STEM, International University of Grand Bassam, Grand Bassam, Ivory Coast
| |
Collapse
|
3
|
Almeida-Souza PA, de Oliveira CH, Brito LP, Teixeira TDJ, Celestino IA, Penha GB, dos Santos RM, Mendes WM, Ribeiro BM, Campos FS, Roehe PM, Guimarães NR, Iani FCM, Martins AJ, de Abreu FVS. High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil. Pathogens 2024; 13:457. [PMID: 38921757 PMCID: PMC11206328 DOI: 10.3390/pathogens13060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experiencing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais (MG), social media was used to optimize an entomological survey aimed at identifying vectors and viral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae. aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analyses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity for viral detection. These findings emphasize the urgent need for innovative vector studies and control strategies, as well as interdisciplinary approaches in public health interventions.
Collapse
Affiliation(s)
- Pedro Augusto Almeida-Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Unimontes, Montes Claros 39401-089, MG, Brazil
| | - Luiz Paulo Brito
- Laboratório de Biologia, Controle e Vigilância de Insetos Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Thaynara de Jesus Teixeira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Iago Alves Celestino
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Gabriele Barbosa Penha
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Ronaldo Medeiros dos Santos
- Departamento de Engenharia Florestal, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil;
| | | | | | - Fabrício Souza Campos
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (F.S.C.); (P.M.R.)
| | - Paulo Michel Roehe
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (F.S.C.); (P.M.R.)
| | | | - Felipe C. M. Iani
- Setor de Arbovirologia, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil;
| | - Ademir Jesus Martins
- Laboratório de Biologia, Controle e Vigilância de Insetos Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, UFRJ, Rio de Janeiro 21941-590, RJ, Brazil
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| |
Collapse
|
4
|
Agboka KM, Wamalwa M, Mutunga JM, Tonnang HEZ. A mathematical model for mapping the insecticide resistance trend in the Anopheles gambiae mosquito population under climate variability in Africa. Sci Rep 2024; 14:9850. [PMID: 38684842 PMCID: PMC11059405 DOI: 10.1038/s41598-024-60555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
The control of arthropod disease vectors using chemical insecticides is vital in combating malaria, however the increasing insecticide resistance (IR) poses a challenge. Furthermore, climate variability affects mosquito population dynamics and subsequently IR propagation. We present a mathematical model to decipher the relationship between IR in Anopheles gambiae populations and climate variability. By adapting the susceptible-infected-resistant (SIR) framework and integrating temperature and rainfall data, our model examines the connection between mosquito dynamics, IR, and climate. Model validation using field data achieved 92% accuracy, and the sensitivity of model parameters on the transmission potential of IR was elucidated (e.g. μPRCC = 0.85958, p-value < 0.001). In this study, the integration of high-resolution covariates with the SIR model had a significant impact on the spatial and temporal variation of IR among mosquito populations across Africa. Importantly, we demonstrated a clear association between climatic variability and increased IR (width = [0-3.78], α = 0.05). Regions with high IR variability, such as western Africa, also had high malaria incidences thereby corroborating the World Health Organization Malaria Report 2021. More importantly, this study seeks to bolster global malaria combat strategies by highlighting potential IR 'hotspots' for targeted intervention by National malria control programmes.
Collapse
Affiliation(s)
- Komi Mensah Agboka
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya.
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya
| | - James Mutuku Mutunga
- School of Engineering Design and Innovation Pennsylvania State University, University Park, PA, 16802, USA
| | - Henri E Z Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
5
|
Ibrahim EA, Wamalwa M, Odindi J, Tonnang HEZ. Insights and challenges of insecticide resistance modelling in malaria vectors: a review. Parasit Vectors 2024; 17:174. [PMID: 38570854 PMCID: PMC10993508 DOI: 10.1186/s13071-024-06237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Malaria is one of the most devastating tropical diseases, resulting in loss of lives each year, especially in children under the age of 5 years. Malaria burden, related deaths and stall in the progress against malaria transmission is evident, particularly in countries that have moderate or high malaria transmission. Hence, mitigating malaria spread requires information on the distribution of vectors and the drivers of insecticide resistance (IR). However, owing to the impracticality in establishing the critical need for real-world information at every location, modelling provides an informed best guess for such information. Therefore, this review examines the various methodologies used to model spatial, temporal and spatio-temporal patterns of IR within populations of malaria vectors, incorporating pest-biology parameters, adopted ecological principles, and the associated modelling challenges. METHODS The review focused on the period ending March 2023 without imposing restrictions on the initial year of publication, and included articles sourced from PubMed, Web of Science, and Scopus. It was also limited to publications that deal with modelling of IR distribution across spatial and temporal dimensions and excluded articles solely focusing on insecticide susceptibility tests or articles not published in English. After rigorous selection, 33 articles met the review's elibility criteria and were subjected to full-text screening. RESULTS Results show the popularity of Bayesian geostatistical approaches, and logistic and static models, with limited adoption of dynamic modelling approaches for spatial and temporal IR modelling. Furthermore, our review identifies the availability of surveillance data and scarcity of comprehensive information on the potential drivers of IR as major impediments to developing holistic models of IR evolution. CONCLUSIONS The review notes that incorporating pest-biology parameters, and ecological principles into IR models, in tandem with fundamental ecological concepts, potentially offers crucial insights into the evolution of IR. The results extend our knowledge of IR models that provide potentially accurate results, which can be translated into policy recommendations to combat the challenge of IR in malaria control.
Collapse
Affiliation(s)
- Eric Ali Ibrahim
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya
| | - John Odindi
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Henri Edouard Zefack Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
6
|
Lippi CA, Rund SSC, Ryan SJ. Characterizing the Vector Data Ecosystem. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:247-254. [PMID: 36752771 PMCID: PMC9989832 DOI: 10.1093/jme/tjad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/18/2023]
Abstract
A growing body of information on vector-borne diseases has arisen as increasing research focus has been directed towards the need for anticipating risk, optimizing surveillance, and understanding the fundamental biology of vector-borne diseases to direct control and mitigation efforts. The scope and scale of this information, in the form of data, comprising database efforts, data storage, and serving approaches, means that it is distributed across many formats and data types. Data ranges from collections records to molecular characterization, geospatial data to interactions of vectors and traits, infection experiments to field trials. New initiatives arise, often spanning the effort traditionally siloed in specific research disciplines, and other efforts wane, perhaps in response to funding declines, different research directions, or lack of sustained interest. Thusly, the world of vector data - the Vector Data Ecosystem - can become unclear in scope, and the flows of data through these various efforts can become stymied by obsolescence, or simply by gaps in access and interoperability. As increasing attention is paid to creating FAIR (Findable Accessible Interoperable, and Reusable) data, simply characterizing what is 'out there', and how these existing data aggregation and collection efforts interact, or interoperate with each other, is a useful exercise. This study presents a snapshot of current vector data efforts, reporting on level of accessibility, and commenting on interoperability using an illustration to track a specimen through the data ecosystem to understand where it occurs for the database efforts anticipated to describe it (or parts of its extended specimen data).
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Samuel S C Rund
- Center for Research Computing, Department of Biological Sciences, & Eck Institute for Global HealthUniversity of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
7
|
Campos M, Phelan J, Spadar A, Collins E, Gonçalves A, Pelloquin B, Vaselli NM, Meiwald A, Clark E, Stica C, Orsborne J, Sylla M, Edi C, Camara D, Mohammed AR, Afrane YA, Kristan M, Walker T, Gomez LF, Messenger LA, Clark TG, Campino S. High-throughput barcoding method for the genetic surveillance of insecticide resistance and species identification in Anopheles gambiae complex malaria vectors. Sci Rep 2022; 12:13893. [PMID: 35974073 PMCID: PMC9381500 DOI: 10.1038/s41598-022-17822-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.
Collapse
Affiliation(s)
- Monica Campos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adéritow Gonçalves
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, 719, Cabo Verde
| | - Bethanie Pelloquin
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | - Natasha Marcella Vaselli
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anne Meiwald
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caleb Stica
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James Orsborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa Sylla
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Cote d'Ivoire, Abidjan, Côte d'Ivoire
| | - Denka Camara
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé, BP. 595, Conakry, Guinea
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
8
|
Hancock PA, Lynd A, Wiebe A, Devine M, Essandoh J, Wat'senga F, Manzambi EZ, Agossa F, Donnelly MJ, Weetman D, Moyes CL. Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species. BMC Biol 2022; 20:46. [PMID: 35164747 PMCID: PMC8845222 DOI: 10.1186/s12915-022-01242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.
Collapse
Affiliation(s)
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | | - Maria Devine
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Francis Wat'senga
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Emile Z Manzambi
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd 16, Rockville, MD, 20852, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | |
Collapse
|
9
|
Hien AS, Soma DD, Maiga S, Coulibaly D, Diabaté A, Belemvire A, Diouf MB, Jacob D, Koné A, Dotson E, Awolola TS, Oxborough RM, Dabiré RK. Evidence supporting deployment of next generation insecticide treated nets in Burkina Faso: bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of pyrethroid-resistant Anopheles gambiae. Malar J 2021; 20:406. [PMID: 34663348 PMCID: PMC8524873 DOI: 10.1186/s12936-021-03936-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pyrethroid resistance poses a major threat to the efficacy of insecticide-treated nets (ITNs) in Burkina Faso and throughout sub-Saharan Africa, particularly where resistance is present at high intensity. For such areas, there are alternative ITNs available, including the synergist piperonyl butoxide (PBO)-based ITNs and dual active ingredient ITNs such as Interceptor G2 (treated with chlorfenapyr and alpha-cypermethrin). Before deploying alternative ITNs on a large scale it is crucial to characterize the resistance profiles of primary malaria vector species for evidence-based decision making. METHODS Larvae from the predominant vector, Anopheles gambiae sensu lato (s.l.) were collected from 15 sites located throughout Burkina Faso and reared to adults for bioassays to assess insecticide resistance status. Resistance intensity assays were conducted using WHO tube tests to determine the level of resistance to pyrethroids commonly used on ITNs at 1×, 5 × and 10 × times the diagnostic dose. WHO tube tests were also used for PBO synergist bioassays with deltamethrin and permethrin. Bottle bioassays were conducted to determine susceptibility to chlorfenapyr at a dose of 100 µg/bottle. RESULTS WHO tube tests revealed high intensity resistance in An. gambiae s.l. to deltamethrin and alpha-cypermethrin in all sites tested. Resistance intensity to permethrin was either moderate or high in 13 sites. PBO pre-exposure followed by deltamethrin restored full susceptibility in one site and partially restored susceptibility in all but one of the remaining sites (often reaching mortality greater than 80%). PBO pre-exposure followed by permethrin partially restored susceptibility in 12 sites. There was no significant increase in permethrin mortality after PBO pre-exposure in Kampti, Karangasso-Vigué or Mangodara; while in Seguenega, Orodara and Bobo-Dioulasso there was a significant increase in mortality, but rates remained below 50%. Susceptibility to chlorfenapyr was confirmed in 14 sites. CONCLUSION High pyrethroid resistance intensity in An. gambiae s.l. is widespread across Burkina Faso and may be a predictor of reduced pyrethroid ITN effectiveness. PBO + deltamethrin ITNs would likely provide greater control than pyrethroid nets. However, since susceptibility in bioassays was not restored in most sites following pre-exposure to PBO, Interceptor G2 may be a better long-term solution as susceptibility was recorded to chlorfenapyr in nearly all sites. This study provides evidence supporting the introduction of both Interceptor G2 nets and PBO nets, which were distributed in Burkina Faso in 2019 as part of a mass campaign.
Collapse
Affiliation(s)
- Aristide S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Dieudonné D Soma
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Samina Maiga
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Dramane Coulibaly
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Allison Belemvire
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Mame B Diouf
- U.S. President's Malaria Initiative, US Embassy Ouagadougou, Ouagadougou, Burkina Faso
| | - Djenam Jacob
- PMI VectorLink Project, Abt Associates Inc, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Adama Koné
- PMI VectorLink Burkina Faso, Abt Associates Inc, Ouagadougou, Burkina Faso
| | - Ellen Dotson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Taiwo S Awolola
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
- Centers for Disease Control and Prevention, U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Richard M Oxborough
- PMI VectorLink Project, Abt Associates Inc, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
10
|
Lissenden N, Kont MD, Essandoh J, Ismail HM, Churcher TS, Lambert B, Lenhart A, McCall PJ, Moyes CL, Paine MJI, Praulins G, Weetman D, Lees RS. Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. INSECTS 2021; 12:insects12090826. [PMID: 34564266 PMCID: PMC8465213 DOI: 10.3390/insects12090826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary A group of insecticides, called pyrethroids, are the main strategy for controlling the mosquito vectors of malaria. Pyrethroids are used in all insecticide-treated bednets, and many indoor residual spray programmes (in which insecticides are sprayed on the interior walls of houses). There are different types of pyrethroids within the class (e.g., deltamethrin and permethrin). Across the world, mosquitoes are showing signs of resistance to the pyrethroids, such as reduced mortality following contact. However, it is unclear if this resistance is uniform across the pyrethroid class (i.e., if a mosquito is resistant to deltamethrin, whether it is resistant to permethrin at the same level). In addition, it is not known if switching between different pyrethroids can be used to effectively maintain mosquito control when resistance to a single pyrethroid has been detected. This review examined the evidence from molecular studies, resistance testing from laboratory and field data, and mosquito behavioural assays to answer these questions. The evidence suggested that in areas where pyrethroid resistance exists, different mortality seen between the pyrethroids is not necessarily indicative of an operationally relevant difference in control performance, and there is no reason to rotate between common pyrethroids (i.e., deltamethrin, permethrin, and alpha-cypermethrin) as an insecticide resistance management strategy. Abstract Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.
Collapse
Affiliation(s)
- Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Audrey Lenhart
- U.S. Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA;
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | | | - Mark J. I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Giorgio Praulins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| |
Collapse
|
11
|
Larsen DA, Church RL. Pyrethroid Resistance in Anopheles gambiae Not Associated with Insecticide-Treated Mosquito Net Effectiveness Across Sub-Saharan Africa. Am J Trop Med Hyg 2021; 105:1097-1103. [PMID: 34424859 PMCID: PMC8592134 DOI: 10.4269/ajtmh.20-0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2021] [Indexed: 11/07/2022] Open
Abstract
Pyrethroid resistance is a major concern for malaria vector control programs that predominantly rely on insecticide-treated mosquito nets (ITNs). Contradictory results of the impact of resistance have been observed during field studies. We combined continent-wide estimates of pyrethroid resistance in Anopheles gambiae from 2006 to 2017, with continent-wide survey data to assess the effect of increasing pyrethroid resistance on the effectiveness of ITNs to prevent malaria infections in sub-Saharan Africa. We used a pooled-data approach and a meta-regression of survey regions to assess how pyrethroid resistance affects the association between ITN ownership and malaria outcomes for children 6 to 59 months of age. ITN ownership reduced the risk of malaria outcomes according to both the pooled and meta-regression approaches. According to the pooled analysis, there was no observed interaction between ITN ownership and estimated level of pyrethroid resistance (likelihood ratio [LR] test, 1.127 for malaria infection confirmed by the rapid diagnostic test, P = 0.2885; LR test = 0.161 for microscopy-confirmed malaria infection, P = 0.161; LR test = 0.646 for moderate or severe anemia, P = 0.4215). Using the meta-regression approach to determine the level of pyrethroid resistance did not explain any of the variance in subnational estimates of ITN effectiveness for any of the outcomes. ITNs decreased the risk of malaria independent of the levels of pyrethroid resistance in malaria vector populations.
Collapse
Affiliation(s)
- David A. Larsen
- Syracuse University Department of Public Health, Syracuse, New York
| | | |
Collapse
|
12
|
Nash RK, Lambert B, NʼGuessan R, Ngufor C, Rowland M, Oxborough R, Moore S, Tungu P, Sherrard-Smith E, Churcher TS. Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100047. [PMID: 35284856 PMCID: PMC8906077 DOI: 10.1016/j.crpvbd.2021.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) - the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools.
Collapse
Affiliation(s)
- Rebecca K. Nash
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK,Corresponding author.
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Raphael NʼGuessan
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d’Ivoire,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK,Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Sarah Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani, Tanzania,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland,University of Basel, Petersplatz 1, 4001, Basel, Switzerland,Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Patrick Tungu
- National Institute for Medical Research (NIMR), P.O. Box 9653, Dar Es Salaam, Tanzania
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
13
|
An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep 2021; 11:13457. [PMID: 34188090 PMCID: PMC8241841 DOI: 10.1038/s41598-021-92741-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Anopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.
Collapse
|
14
|
Buckingham SD, Partridge FA, Poulton BC, Miller BS, McKendry RA, Lycett GJ, Sattelle DB. Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance. PLoS Negl Trop Dis 2021; 15:e0008639. [PMID: 34081710 PMCID: PMC8205174 DOI: 10.1371/journal.pntd.0008639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/15/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides. By this means, we reliably quantified both time- and concentration-dependent actions of chemical insecticides faster than using the WHO standard larval assay. We illustrate the effectiveness of the system using an established larvicide (temephos) and demonstrate its capacity for library-scale chemical screening using the Medicines for Malaria Venture (MMV) Pathogen Box library. As a proof-of-principle, this library screen identified a compound, subsequently confirmed to be tolfenpyrad, as an effective larvicide. We have also used the INVAPP / Paragon system to compare responses in larvae derived from WHO classified deltamethrin resistant and sensitive mosquitoes. We show how this approach to monitoring larval response to insecticides can be adapted for use with a smartphone camera application and therefore has potential for further development as a simple portable field-assay with associated real-time, geo-located information to identify hotspots.
Collapse
Affiliation(s)
- Steven D. Buckingham
- UCL Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Frederick A. Partridge
- UCL Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Beth C. Poulton
- UCL Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Benjamin S. Miller
- London Centre for Nanotechnology, Faculty of Maths & Physical Sciences, University College London, London, United Kingdom
| | - Rachel A. McKendry
- London Centre for Nanotechnology, Faculty of Maths & Physical Sciences, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Sattelle
- UCL Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
15
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
16
|
Near-term climate change impacts on sub-national malaria transmission. Sci Rep 2021; 11:751. [PMID: 33436862 PMCID: PMC7803742 DOI: 10.1038/s41598-020-80432-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
The role of climate change on global malaria is often highlighted in World Health Organisation reports. We modelled a Zambian socio-environmental dataset from 2000 to 2016, against malaria trends and investigated the relationship of near-term environmental change with malaria incidence using Bayesian spatio-temporal, and negative binomial mixed regression models. We introduced the diurnal temperature range (DTR) as an alternative environmental measure to the widely used mean temperature. We found substantial sub-national near-term variations and significant associations with malaria incidence-trends. Significant spatio-temporal shifts in DTR/environmental predictors influenced malaria incidence-rates, even in areas with declining trends. We highlight the impact of seasonally sensitive DTR, especially in the first two quarters of the year and demonstrate how substantial investment in intervention programmes is negatively impacted by near-term climate change, most notably since 2010. We argue for targeted seasonally-sensitive malaria chemoprevention programmes.
Collapse
|
17
|
Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci Rep 2020; 10:14527. [PMID: 32883976 PMCID: PMC7471940 DOI: 10.1038/s41598-020-71187-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023] Open
Abstract
Despite significant reductions in malaria transmission across Africa since 2000, progress is stalling. This has been attributed to the development of insecticide resistance and behavioural adaptations in malaria vectors. Whilst insecticide resistance has been widely investigated, there is poorer understanding of the emergence, dynamics and impact of mosquito behavioural adaptations. We conducted a longitudinal investigation of malaria vector host choice over 3 years and resting behaviour over 4 years following a mass long-lasting insecticidal nets (LLINs) distribution in Tanzania. By pairing observations of mosquito ecology with environmental monitoring, we quantified longitudinal shifts in host-choice and resting behaviour that are consistent with adaptation to evade LLINs. The density of An. funestuss.l., declined significantly through time. In tandem, An. arabiensis and An. funestuss.l. exhibited an increased rate of outdoor relative to indoor resting; with An. arabiensis reducing the proportion of blood meals taken from humans in favour of cattle. By accounting for environmental variation, this study detected clear evidence of intra-specific shifts in mosquito behaviour that could be obscured in shorter-term or temporally-coarse surveys. This highlights the importance of mosquito behavioural adaptations to vector control, and the value of longer-term behavioural studies.
Collapse
|
18
|
Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc Natl Acad Sci U S A 2020; 117:22042-22050. [PMID: 32843339 PMCID: PMC7486715 DOI: 10.1073/pnas.2006781117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malaria control in Africa largely relies on the use of insecticides to prevent mosquitoes from transmitting the malaria parasite to humans; however, these mosquitoes have evolved resistance to these insecticides. To manage this threat to malaria control, it is vital that we map locations where the prevalence of resistance exceeds thresholds defined by insecticide resistance management plans. A geospatial model and data from Africa are used to predict locations where thresholds of resistance linked to specific recommended actions are exceeded. This model is shown to provide more accurate next-year predictions than two simpler approaches. The model is used to generate maps that aid insecticide resistance management planning and that allow targeted deployment of interventions that counter specific mechanisms of resistance. Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data.
Collapse
|
19
|
Penny MA, Camponovo F, Chitnis N, Smith TA, Tanner M. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control 2020; 10:e00145. [PMID: 32435704 PMCID: PMC7229487 DOI: 10.1016/j.parepi.2020.e00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/18/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022] Open
Abstract
Malaria burden has significantly changed or decreased over the last 20 years, however, it remains an important health problem requiring the rigorous application of existing tools and approaches, as well as the development and use of new interventions. A malaria vaccine has long been considered a possible new intervention to aid malaria burden reduction. However, after decades of development, only one vaccine to protect children has completed phase 3 studies. Before being widely recommended for use, it must further demonstrate safety, impact and feasibility in ongoing pilot implementation studies. Now is an appropriate time to consider the use-cases and health targets of future malaria vaccines. These must be considered in the context of likely innovations in other malaria tools such as vector control, as well as the significant knowledge gaps on the appropriate target antigens, and the immunology of vaccine-induced protection. Here we discuss the history of malaria vaccines and suggest some future use-cases for future malaria vaccines that will support achieving malaria health goals in different settings.
Collapse
Affiliation(s)
| | - Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Hancock PA, Hendriks CJM, Tangena JA, Gibson H, Hemingway J, Coleman M, Gething PW, Cameron E, Bhatt S, Moyes CL. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol 2020; 18:e3000633. [PMID: 32584814 PMCID: PMC7316233 DOI: 10.1371/journal.pbio.3000633] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends.
Collapse
Affiliation(s)
| | | | - Julie-Anne Tangena
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Harry Gibson
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Peter W. Gething
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
- Curtin University, Bentley, Perth, Australia
| | - Ewan Cameron
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Hospital, London, United Kingdom
| | | |
Collapse
|
21
|
Tangena JAA, Hendriks CMJ, Devine M, Tammaro M, Trett AE, Williams I, DePina AJ, Sisay A, Herizo R, Kafy HT, Chizema E, Were A, Rozier J, Coleman M, Moyes CL. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malar J 2020; 19:150. [PMID: 32276585 PMCID: PMC7149868 DOI: 10.1186/s12936-020-03216-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub-Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated. METHODS Data on IRS deployment were collated from a variety of sources, including the President's Malaria Initiative spray reports and National Malaria Control Programme reports, for all 46 malaria-endemic countries in sub-Saharan Africa from 1997 to 2017. The data were mapped to the applicable administrative divisions and the proportion of households sprayed for each of the four main insecticide classes; carbamates, organochlorines, organophosphates and pyrethroids was calculated. RESULTS The number of countries implementing IRS increased considerably over time, although the focal nature of deployment means the number of people protected remains low. From 1997 to 2010, DDT and pyrethroids were commonly used, then partly replaced by carbamates from 2011 and by organophosphates from 2013. IRS deployment since the publication of resistance management guidelines has typically avoided overlap between pyrethroid IRS and ITN use. However, annual rotations of insecticide classes with differing modes of action are not routinely used. CONCLUSION This study highlights the gaps between policy and practice, emphasizing the continuing potential of IRS to drive resistance. The data presented here can improve studies on the impact of IRS on malaria incidence and help to guide future malaria control efforts.
Collapse
Affiliation(s)
- Julie-Anne A Tangena
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Chantal M J Hendriks
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Maria Devine
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Meghan Tammaro
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Anna E Trett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ignatius Williams
- Monitoring, & Evaluation Department, AngloGold Ashanti Malaria Limited, AO0540595 Obuasi Mine Road, P. O. Box 10, Obuasi, Ghana
| | - Adilson José DePina
- Malaria Pre-Elimination Program, CCS-SIDA/MSSS, Avenida Cidade Lisboa, "Prédio Bô Casa" 1º Andar, CP, 855, Praia, Cabo Verde
- Ecole Doctorale Des Sciences de La Vie, de la Santé et de l´Environnement (ED‑SEV), Université Cheikh Anta Diop (UCAD) de Dakar, BP 1386, Dakar, Sénégal
| | | | - Ramandimbiarijaona Herizo
- Programme national de lutte contre le paludisme, Androhibe en face ENAM, BP 101, Antananarivo, Madagascar
| | - Hmooda Toto Kafy
- Integrated Vector Management Department, Federal Ministry of Health, Khartoum, Sudan
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, Lusaka, Zambia
| | - Allan Were
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Jennifer Rozier
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Michael Coleman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK.
| |
Collapse
|