1
|
Niu X, Utayde MF, Sanders KEG, Cunningham TJ, Zhang G, Kensinger EA, Payne JD. The effects of shared, depression-specific, and anxiety-specific internalizing symptoms on negative and neutral episodic memories following post-learning sleep. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01209-5. [PMID: 39138784 DOI: 10.3758/s13415-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
Emotional memory bias is a common characteristic of internalizing symptomatology and is enhanced during sleep. The current study employs bifactor S-1 modeling to disentangle depression-specific anhedonia, anxiety-specific anxious arousal, and the common internalizing factor, general distress, and test whether these internalizing symptoms interact with sleep to influence memory for emotional and neutral information. Healthy adults (N = 281) encoded scenes featuring either negative objects (e.g., a vicious looking snake) or neutral objects (e.g., a chipmunk) placed on neutral backgrounds (e.g., an outdoor scene). After a 12-hour period of daytime wakefulness (n = 140) or nocturnal sleep (n = 141), participants judged whether objects and backgrounds were the same, similar, or new compared with what they viewed during encoding. Participants also completed the mini version of the Mood and Anxiety Symptom Questionnaire. Higher anxious arousal predicted worse memory across all stimuli features, but only after a day spent being awake-not following a night of sleep. No significant effects were found for general distress and anhedonia in either the sleep or wake condition. In this study, internalizing symptoms were not associated with enhanced emotional memory. Instead, memory performance specifically in individuals with higher anxious arousal was impaired overall, regardless of emotional valence, but this was only the case when the retention interval spanned wakefulness (i.e., not when it spanned sleep). This suggests that sleep may confer a protective effect on general memory impairments associated with anxiety.
Collapse
Affiliation(s)
- Xinran Niu
- Department of Psychology, University of Notre Dame, E466 Corbett Family Hall, Notre Dame, IN, 46556, USA
| | - Mia F Utayde
- Department of Psychology, University of Notre Dame, E466 Corbett Family Hall, Notre Dame, IN, 46556, USA
| | - Kristin E G Sanders
- Department of Psychology, University of Notre Dame, E466 Corbett Family Hall, Notre Dame, IN, 46556, USA
| | - Tony J Cunningham
- The Center for Sleep & Cognition, Harvard Medical School & Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Guangjian Zhang
- Department of Psychology, University of Notre Dame, E466 Corbett Family Hall, Notre Dame, IN, 46556, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, E466 Corbett Family Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Moreira-Neto A, Neves LM, Miliatto A, Juday V, Marquesini R, Lafer B, Cardoso EF, Ugrinowitsch C, Nucci MP, Silva-Batista C. Clinical and neuroimaging correlates in a pilot randomized trial of aerobic exercise for major depression. J Affect Disord 2024; 347:591-600. [PMID: 38092282 DOI: 10.1016/j.jad.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Aerobic exercise (AE) combined with pharmacotherapy is known to reduce depressive symptoms; however, studies have not focused on long-term AE for volumetric changes of brain regions (amygdala, thalamus, and nucleus accumbens [NAcc]) linked to the control of affective responses and hopelessness in individuals with major depression (MD). In addition, AE with motor complexity (AEMC) would be more effective than AE in causing brain plasticity. We compared the effects of 24 weeks of AE and AEMC combined with pharmacotherapy on clinical and volumetric outcomes in individuals with MD. METHODS Forty medicated individuals with MD were randomly assigned to nonexercising control (C), AE, and AEMC groups. The training groups exercised for 60 min, twice a week for 24 weeks. Clinical and volumetric outcomes were assessed before and after the 24 weeks. Effect size (ES) and confidence interval (CI) were calculated for within-group and between-groups changes. RESULTS AE and AEMC reduced hopelessness (ES = -0.73 and ES = -0.62, respectively) and increased affective responses (ES = 1.24 and ES = 1.56, respectively). Only AE increased amygdala (ES = 0.27 left and ES = 0.34 right), thalamus (ES = 0.33 left and ES = 0.26 right) and left NAcc (ES = 0.54) volumes. AE was more effective than the C group in reducing hopelessness and causing brain plasticity. The changes in the right amygdala volume showed a strong trend in explaining 72 % of the changes in affective responses following AE (p = 0.06). LIMITATION Lack of posttraining follow-up and small sample size. CONCLUSION These preliminary data indicate that AE combined with pharmacotherapy can cause clinical improvement and brain plasticity in individuals with MD.
Collapse
Affiliation(s)
- Acácio Moreira-Neto
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil; Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | - Lucas Melo Neves
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Post-Graduate Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Angelo Miliatto
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | | | - Raquel Marquesini
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Ellison Fernando Cardoso
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Mariana Penteado Nucci
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil; Department of Neurology, Oregon Health & Science University, Portland, OR, United States of America
| |
Collapse
|
3
|
Whitehead JC, Spiousas I, Armony JL. Individual differences in the evaluation of ambiguous visual and auditory threat-related expressions. Eur J Neurosci 2024; 59:370-393. [PMID: 38185821 DOI: 10.1111/ejn.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
This study investigated the neural correlates of the judgement of auditory and visual ambiguous threat-related information, and the influence of state anxiety on this process. Healthy subjects were scanned using a fast, high-resolution functional magnetic resonance imaging (fMRI) multiband sequence while they performed a two-alternative forced-choice emotion judgement task on faces and vocal utterances conveying explicit anger or fear, as well as ambiguous ones. Critically, the latter was specific to each subject, obtained through a morphing procedure and selected prior to scanning following a perceptual decision-making task. Behavioural results confirmed a greater task-difficulty for subject-specific ambiguous stimuli and also revealed a judgement bias for visual fear, and, to a lesser extent, for auditory anger. Imaging results showed increased activity in regions of the salience and frontoparietal control networks (FPCNs) and deactivation in areas of the default mode network for ambiguous, relative to explicit, expressions. In contrast, the right amygdala (AMG) responded more strongly to explicit stimuli. Interestingly, its response to the same ambiguous stimulus depended on the subjective judgement of the expression. Finally, we found that behavioural and neural differences between ambiguous and explicit expressions decreased as a function of state anxiety scores. Taken together, our results show that behavioural and brain responses to emotional expressions are determined not only by emotional clarity but also modality and the subjects' subjective perception of the emotion expressed, and that some of these responses are modulated by state anxiety levels.
Collapse
Affiliation(s)
- Jocelyne C Whitehead
- Human Neuroscience, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- BRAMS Laboratory, Centre for Research on Brain, Language and Music, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Ignacio Spiousas
- BRAMS Laboratory, Centre for Research on Brain, Language and Music, Montreal, Quebec, Canada
- Laboratorio Interdisciplinario del Tiempo y la Experiencia (LITERA), CONICET, Universidad de San Andrés, Victoria, Argentina
| | - Jorge L Armony
- Human Neuroscience, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- BRAMS Laboratory, Centre for Research on Brain, Language and Music, Montreal, Quebec, Canada
- Laboratorio Interdisciplinario del Tiempo y la Experiencia (LITERA), CONICET, Universidad de San Andrés, Victoria, Argentina
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Cortês AB, Duarte JV, Castelo-Branco M. Hysteresis reveals a happiness bias effect in dynamic emotion recognition from ambiguous biological motion. J Vis 2023; 23:5. [PMID: 37962533 PMCID: PMC10653266 DOI: 10.1167/jov.23.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Considering the nonlinear dynamic nature of emotion recognition, it is believed to be strongly dependent on temporal context. This can be investigated by resorting to the phenomenon of hysteresis, which features a form of serial dependence, entailed by continuous temporal stimulus trajectories. Under positive hysteresis, the percept remains stable in visual memory (persistence) while in negative hysteresis, it shifts earlier (adaptation) to the opposite interpretation. Here, we asked whether positive or negative hysteresis occurs in emotion recognition of inherently ambiguous biological motion, while testing for the controversial debate of a negative versus positive emotional bias. Participants (n = 22) performed a psychophysical experiment in which they were asked to judge stimulus transitions between two emotions, happiness and sadness, from an actor database, and report perceived emotion across time, from one emotion to the opposite as physical cues were continuously changing. Our results reveal perceptual hysteresis in ambiguous emotion recognition, with positive hysteresis (visual persistence) predominating. However, negative hysteresis (adaptation/fatigue) was also observed in particular in the direction from sadness to happiness. This demonstrates a positive (happiness) bias in emotion recognition in ambiguous biological motion recognition. Finally, the interplay between positive and negative hysteresis suggests an underlying competition between visual persistence and adaptation mechanisms during ambiguous emotion recognition.
Collapse
Affiliation(s)
- Ana Borges Cortês
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Kim H, Küster D, Girard JM, Krumhuber EG. Human and machine recognition of dynamic and static facial expressions: prototypicality, ambiguity, and complexity. Front Psychol 2023; 14:1221081. [PMID: 37794914 PMCID: PMC10546417 DOI: 10.3389/fpsyg.2023.1221081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
A growing body of research suggests that movement aids facial expression recognition. However, less is known about the conditions under which the dynamic advantage occurs. The aim of this research was to test emotion recognition in static and dynamic facial expressions, thereby exploring the role of three featural parameters (prototypicality, ambiguity, and complexity) in human and machine analysis. In two studies, facial expression videos and corresponding images depicting the peak of the target and non-target emotion were presented to human observers and the machine classifier (FACET). Results revealed higher recognition rates for dynamic stimuli compared to non-target images. Such benefit disappeared in the context of target-emotion images which were similarly well (or even better) recognised than videos, and more prototypical, less ambiguous, and more complex in appearance than non-target images. While prototypicality and ambiguity exerted more predictive power in machine performance, complexity was more indicative of human emotion recognition. Interestingly, recognition performance by the machine was found to be superior to humans for both target and non-target images. Together, the findings point towards a compensatory role of dynamic information, particularly when static-based stimuli lack relevant features of the target emotion. Implications for research using automatic facial expression analysis (AFEA) are discussed.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Departmet of Experimental Psychology, University College London, London, United Kingdom
| | - Dennis Küster
- Cognitive Systems Lab, Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Jeffrey M. Girard
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| | - Eva G. Krumhuber
- Departmet of Experimental Psychology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Zhang A, Qiao D, Wang Y, Yang C, Wang Y, Sun N, Hu X, Liu Z, Zhang K. Distinguishing between bipolar depression and unipolar depression based on the reward circuit activities and clinical characteristics: A machine learning analysis. J Affect Disord 2023; 327:46-53. [PMID: 36708957 DOI: 10.1016/j.jad.2023.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/31/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Differentiating bipolar depression (BD) from unipolar depression (UD) is a major clinical challenge. Identifying the potential classifying biomarkers between these two diseases is vital to optimize personalized management of depressed individuals. METHODS Here, we aimed to integrate neuroimaging and clinical data with machine learning method to classify BD and UD at the individual level. Data were collected from 31 healthy controls (HC group) and 80 depressive patients with an average follow-up period of 7.51 years. Of these patients, 32 got diagnosis conversion from major depressive disorder (MDD) to BD (BD group) and 48 remain persistent diagnosis of MDD (MDD group). Using graph theory and functional connectivity (FC) analysis, we investigated the differences in reward circuit properties among three groups. Then we applied a support vector machine and leave-one-out cross-validation methods to classify BD and UD patients based on neuroimaging and clinical data. RESULTS Compared with MDD and HC, BD showed decreased degree centrality of right mediodorsal thalamus (MD) and nodal efficiency (NE) of left ventral pallidum. Compared with BD and HC, MDD showed decreased NE of right MD and increased FC between right MD and bilateral dorsolateral prefrontal cortex and left ventromedial prefrontal cortex. Notably, the classifier obtained high classification accuracies (87.50 %) distinguishing BD and UD patients based on reward circuit properties and clinical features. LIMITATIONS The classifying model requires out-of-sample replication analysis. CONCLUSION The reward circuit dysfunction can not only provide additional information to assist clinical differential diagnosis, but also in turn informed treatment decision of depressive patients.
Collapse
Affiliation(s)
- Aixia Zhang
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dan Qiao
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yuchen Wang
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chunxia Yang
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yanfang Wang
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ning Sun
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaodong Hu
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhifen Liu
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Kerang Zhang
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
7
|
Bachmann T. Within-object element ambiguity allows for a strange illusion of alternating facial expression and structure. Front Hum Neurosci 2022; 16:956036. [DOI: 10.3389/fnhum.2022.956036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
|
8
|
Yang X, Su Y, Yang F, Song Y, Yan J, Luo Y, Zeng J. Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis. Psychol Med 2022; 52:1-14. [PMID: 36047042 DOI: 10.1017/s0033291722002707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aberrations in how people form expectations about rewards and how they respond to receiving rewards are thought to underlie major depressive disorder (MDD). However, the underlying mechanism linking the appetitive reward system, specifically anticipation and outcome, is still not fully understood. To examine the neural correlates of monetary anticipation and outcome in currently depressed subjects with MDD, we performed two separate voxel-wise meta-analyses of functional neuroimaging studies using the monetary incentive delay task. During reward anticipation, the depressed patients exhibited an increased response in the bilateral middle cingulate cortex (MCC) extending to the anterior cingulate cortex, the medial prefrontal cortex, the left inferior frontal gyrus (IFG), and the postcentral gyrus, but a reduced response in the mesolimbic circuit, including the left striatum, insula, amygdala, right cerebellum, striatum, and IFG, compared to controls. During the outcome stage, MDD showed higher activity in the left inferior temporal gyrus, and lower activity in the mesocortical pathway, including the bilateral MCC, left caudate nucleus, precentral gyrus, thalamus, cerebellum, right striatum, insula, IFG, middle frontal gyrus, and temporal pole. Our findings suggest that cMDD may be characterised by state-dependent hyper-responsivity in cortical regions during the anticipation phase, and hypo-responsivity of the mesocortico-limbic circuit across the two phases of the reward response. Our study showed dissociable neural circuit responses to monetary stimuli during reward anticipation and outcome, which help to understand the dysfunction in different aspects of reward processing, particularly motivational v. hedonic deficits in depression.
Collapse
Affiliation(s)
- Xun Yang
- School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
| | - Yueyue Su
- School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
| | - Fan Yang
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Chengdu Chenghua District Maternal and Child Health Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Song
- School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
| | - Jiangnan Yan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Ya Luo
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Cumulative lifetime stressor exposure assessed by the STRAIN predicts economic ambiguity aversion. Nat Commun 2022; 13:1686. [PMID: 35354811 PMCID: PMC8967930 DOI: 10.1038/s41467-022-28530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Uncertainty is inherent in most decisions humans make. Economists distinguish between two types of decision-making under non-certain conditions: those involving risk (i.e., known outcome probabilities) and those that involve ambiguity (i.e., unknown outcome probabilities). Prior research has identified individual differences that explain risk preferences, but little is known about factors associated with ambiguity aversion. Here, we hypothesized that cumulative exposure to major psychosocial stressors over the lifespan might be one factor that predicts individuals’ ambiguity aversion. Across two studies (Study 1: n = 58, Mage = 25.7; Study 2: n = 188, Mage = 39.81), we used a comprehensive lifetime stressor exposure inventory (i.e., the Stress and Adversity Inventory for Adults, or STRAIN) and a standard economic approach to quantify risk and ambiguity preferences. Greater lifetime stressor exposure as measured by the STRAIN, particularly in early life, was associated with higher aversion to ambiguity but not risk preferences. Uncertainty is a factor in most decisions. Here the authors quantify tolerance for two forms of economic uncertainty—risk and ambiguity—and show that greater lifetime stressor exposure (as assessed by a comprehensive lifetime stressor exposure inventory) was associated with higher aversion to decisions involving ambiguity, but not risk.
Collapse
|
10
|
Nakamura A, Yomogida Y, Ota M, Matsuo J, Ishida I, Hidese S, Kunugi H. The cerebellum as a moderator of negative bias of facial expression processing in depressive patients. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2021.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Nakano T, Takamura M, Nishimura H, Machizawa MG, Ichikawa N, Yoshino A, Okada G, Okamoto Y, Yamawaki S, Yamada M, Suhara T, Yoshimoto J. Resting-state brain activity can predict target-independent aptitude in fMRI-neurofeedback training. Neuroimage 2021; 245:118733. [PMID: 34800664 DOI: 10.1016/j.neuroimage.2021.118733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurofeedback (NF) aptitude, which refers to an individual's ability to change brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical applications to screen patients suitable for NF treatment. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude, independent of NF-targeting brain regions. We combined the data from fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the multiple regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Subsequently, the reproducibility of the prediction model was validated using independent test data from another site. The identified FC model revealed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting that NF aptitude may be involved in the attentional mode-orientation modulation system's characteristics in task-free resting-state brain activity.
Collapse
Affiliation(s)
- Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Masahiro Takamura
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Haruki Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Maro G Machizawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Naho Ichikawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasumasa Okamoto
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan; Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
13
|
Perigenual and Subgenual Anterior Cingulate Afferents Converge on Common Pyramidal Cells in Amygdala Subregions of the Macaque. J Neurosci 2021; 41:9742-9755. [PMID: 34649954 DOI: 10.1523/jneurosci.1056-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed "hotspots." In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were ∼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast "driver" function. Together, the results reveal a nested interaction in which pgACC ("conflict/social monitoring") terminals converge with the broader sgACC ("salience") terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting "internal arousal" states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.
Collapse
|
14
|
Raio CM, Harp NR, Brown CC, Neta M. Reappraisal-but not Suppression-Tendencies Determine Negativity Bias After Laboratory and Real-World Stress Exposure. AFFECTIVE SCIENCE 2021; 2:455-467. [PMID: 34704072 PMCID: PMC8531907 DOI: 10.1007/s42761-021-00059-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Higher reactivity to stress exposure is associated with an increased tendency to appraise ambiguous stimuli as negative. However, it remains unknown whether tendencies to use emotion regulation strategies—such as cognitive reappraisal, which involves altering the meaning or relevance of affective stimuli—can shape individual differences regarding how stress affects perceptions of ambiguity. Here, we examined whether increased reappraisal use is one factor that can determine whether stress exposure induces increased negativity bias. In Study 1, healthy participants (n = 43) rated the valence of emotionally ambiguous (surprised) faces before and after an acute stress or control manipulation and reported reappraisal habits. Increased negativity ratings were milder for stressed individuals that reported more habitual reappraisal use. In Study 2 (n = 97), we extended this investigation to real-world perceived stress before and during the COVID-19 pandemic. We found that reappraisal tendency moderates the relationship between perceived stress and increased negativity bias. Collectively, these findings suggest that the propensity to reappraise determines negativity bias when evaluating ambiguity under stress.
Collapse
Affiliation(s)
- Candace M. Raio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY USA
| | - Nicholas R. Harp
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Catherine C. Brown
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
15
|
Kinchella J, Guo K. Facial Expression Ambiguity and Face Image Quality Affect Differently on Expression Interpretation Bias. Perception 2021; 50:328-342. [PMID: 33709837 DOI: 10.1177/03010066211000270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We often show an invariant or comparable recognition performance for perceiving prototypical facial expressions, such as happiness and anger, under different viewing settings. However, it is unclear to what extent the categorisation of ambiguous expressions and associated interpretation bias are invariant in degraded viewing conditions. In this exploratory eye-tracking study, we systematically manipulated both facial expression ambiguity (via morphing happy and angry expressions in different proportions) and face image clarity/quality (via manipulating image resolution) to measure participants' expression categorisation performance, perceived expression intensity, and associated face-viewing gaze distribution. Our analysis revealed that increasing facial expression ambiguity and decreasing face image quality induced the opposite direction of expression interpretation bias (negativity vs. positivity bias, or increased anger vs. increased happiness categorisation), the same direction of deterioration impact on rating expression intensity, and qualitatively different influence on face-viewing gaze allocation (decreased gaze at eyes but increased gaze at mouth vs. stronger central fixation bias). These novel findings suggest that in comparison with prototypical facial expressions, our visual system has less perceptual tolerance in processing ambiguous expressions which are subject to viewing condition-dependent interpretation bias.
Collapse
|
16
|
Shah WH, Rasool A, Tahir I, Rehman RU. Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00326-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Escitalopram ameliorates differences in neural activity between healthy comparison and major depressive disorder groups on an fMRI Emotional conflict task: A CAN-BIND-1 study. J Affect Disord 2020; 264:414-424. [PMID: 31757619 DOI: 10.1016/j.jad.2019.11.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Identifying objective biomarkers can assist in predicting remission/non-remission to treatment, improving remission rates, and reducing illness burden in major depressive disorder (MDD). METHODS Sixteen MDD 8-week remitters (MDD-8), twelve 16-week remitters (MDD-16), 14 non-remitters (MDD-NR) and 30 healthy comparison participants (HC) completed a functional magnetic resonance imaging emotional conflict task at baseline, prior to treatment with escitalopram, and 8 weeks after treatment initiation. Patients were followed 16 weeks to assess remitter status. RESULTS All groups demonstrated emotional Stroop in reaction time (RT) at baseline and Week 8. There were no baseline differences between HC and MDD-8, MDD-16, or MDD-NR in RT or accuracy. By Week 8, MDD-8 demonstrated poorer accuracy compared to HC. Compared to HC, the baseline blood-oxygen level dependent (BOLD) signal was decreased in MDD-8 in brain-stem and thalamus; in MDD-16 in lateral occipital cortex, middle temporal gyrus, and cuneal cortex; in MDD-NR in lingual and occipital fusiform gyri, thalamus, putamen, caudate, cingulate gyrus, insula, cuneal cortex, and middle temporal gyrus. By Week 8, there were no BOLD activity differences between MDD groups and HC. LIMITATIONS The Emotional Conflict Task lacks a neutral (non-emotional) condition, restricting interpretation of how mood may influence perception of non-emotionally valenced stimuli. CONCLUSIONS The Emotional Conflict Task is not an objective biomarker for remission trajectory in patients with MDD receiving escitalopram treatment. Escitalopram may have influenced emotion recognition in MDD groups in terms of augmented accuracy and BOLD signal in response to an Emotional Conflict Task, following 8 weeks of escitalopram treatment.
Collapse
|
18
|
Sakata H, Kim Y, Nejime M, Konoike N, Miyachi S, Nakamura K. Laminar Pattern of Projections Indicates the Hierarchical Organization of the Anterior Cingulate-Temporal Lobe Emotion System. Front Neuroanat 2019; 13:74. [PMID: 31417370 PMCID: PMC6685409 DOI: 10.3389/fnana.2019.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
The anterior cingulate cortex (ACC), surrounding the genu of the corpus callosum, plays important roles in emotional processing and is functionally divided into the dorsal, perigenual, and subgenual subregions (dACC, pgACC, and sgACC, respectively). Previous studies have suggested that the pgACC and sgACC have distinctive roles in the regulation of emotion. In order to elicit appropriate emotional responses, these ACC regions require sensory information from the environment. Anatomically, the ACC has rich connections with the temporal lobe, where the higher-order processing of sensory information takes place. To clarify the organization of sensory inputs into the ACC subregions, we injected neuronal tracers into the pgACC, sgACC, and dACC and compared the afferent connections. Previously, we analyzed the afferent projections from the amygdala and found a distinct pattern for the sgACC. In the present study, the patterns of the afferent projections were analyzed in the temporal cortex, especially the temporal pole (TP) and medial temporal areas. After tracers were injected into the sgACC, we observed labeled neurons in the TP and the subiculum of the hippocampal formation. The majority of the labeled cell bodies were found in the superficial layers of the TP ("feedforward" type projections). The pgACC received afferent projections from the TP, the entorhinal cortex (EC), and the parahippocampal cortex (PHC), but not from the hippocampus. In each area, the labeled cells were mainly found in the deep layers ("feedback" type projection). The pattern for the dACC was similar to that for the pgACC. Previous studies suggested that the pgACC, but not the sgACC receive projections from the dorsolateral prefrontal cortex (DLPFC). These data suggest that the sgACC plays crucial roles for emotional responses based on sensory and mnemonic inputs from the anterior temporal lobe, whereas the pgACC is more related to the cognitive control of emotion.
Collapse
Affiliation(s)
- Honami Sakata
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Yuri Kim
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masafumi Nejime
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Naho Konoike
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shigehiro Miyachi
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
19
|
Wang YZ, Han Y, Zhao JJ, Du Y, Zhou Y, Liu Y, Zhang YF, Li L. Brain activity in patients with deficiency versus excess patterns of major depression: A task fMRI study. Complement Ther Med 2019; 42:292-297. [DOI: 10.1016/j.ctim.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022] Open
|
20
|
Cortisol responses enhance negative valence perception for ambiguous facial expressions. Sci Rep 2017; 7:15107. [PMID: 29118319 PMCID: PMC5678141 DOI: 10.1038/s41598-017-14846-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Stress exposure elicits a prolonged neuroendocrine response, marked by cortisol release, which can influence important forms of affective decision-making. Identifying how stress reactivity shapes subjective biases in decisions about emotional ambiguity (i.e., valence bias) provides insight into the role stress plays in basic affective processing for healthy and clinical populations alike. Here, we sought to examine how stress reactivity affects valence decisions about emotional ambiguity. Given that stress prioritizes automatic emotional processing which, in the context of valence bias, is associated with increased negativity, we tested how individual differences in acute stress responses influence valence bias and how this decision process evolves over time. Participants provided baseline ratings of clear (happy, angry) and ambiguous (surprised) facial expressions, then re-rated similar stimuli after undergoing an acute stress or control manipulation a week later; salivary cortisol was measured throughout to assay stress reactivity. Elevations in cortisol were associated with more negative ratings of surprised faces, and with more direct response trajectories toward negative ratings (i.e., less response competition). These effects were selectively driven by the stress group, evidencing that increased stress reactivity is associated with a stronger negativity bias during ambiguous affective decision-making.
Collapse
|