1
|
Karaman EF, Abudayyak M, Guler ZR, Bektas S, Kaptan E, Ozden S. The effects of fumonisin B1 on intercellular communications and miRNA modulations: Non-genotoxic carcinogenesis mechanisms in human kidney cells. Toxicology 2024; 509:153968. [PMID: 39414224 DOI: 10.1016/j.tox.2024.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293). Both cell lines showed increased apoptosis rates at 50 and 100 µM, while FB1 exposure significantly reduced gap junctional intercellular communication (GJIC) and decreased the expression levels of related genes, including Cx43, Cx45, e-cadherin, Cadherin-2, and β-catenin. After FB1 treatments alteration on the regulation of miRNAs including let-7a-5p, miR-125a-5p, miR-222-3p, miR-92a-3p, let-7b-5p, let-7e-5p, miR-21-5p, miR-155-5p, let-7i-5p, let-7d-5p, let-7f-5p, miR-181b-5p, miR-15b-5p, miR-23b-3p, miR-20b-5p, miR-196a-5p miRNAs have been shown. Let-7a-5p was selected among the altered miRNAs to elucidate the relationship between miRNAs and GJIC after FB1 exposure as it is one of the common miRNAs that changes in both cell lines and one of its target genes is Cx45, which is an important gene for GJIC. However, transfection analysis did not show any differences, resulting in Cx45 not being a direct target of let-7a-5p in HK-2 and HEK-293 cells. Through comprehensive analysis, we elucidated that FB1's impact on intercellular signaling cascades and its regulatory role on miRNA expression profiles, offering valuable insights into carcinogenesis beyond traditional genotoxic paradigms. Understanding these mechanisms is crucial for elucidating the mechanisms of FB1-induced toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, Istanbul 34015, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey.
| |
Collapse
|
2
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, Jiang GB, Liu B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact Mater 2023; 23:118-128. [DOI: 10.1016/j.bioactmat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
|
4
|
Chamard C, Maller JJ, Menjot N, Debourdeau E, Nael V, Ritchie K, Carriere I, Daien V. Association Between Vision and Brain Cortical Thickness in a Community-Dwelling Elderly Cohort. Eye Brain 2022; 14:71-82. [PMID: 35859801 PMCID: PMC9292457 DOI: 10.2147/eb.s358384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Visual impairment is a major cause of disability and impairment of cognitive function in older people. Brain structural changes associated with visual function impairment are not well understood. The objective of this study was to assess the association between visual function and cortical thickness in older adults. Methods Participants were selected from the French population-based ESPRIT cohort of 2259 community-dwelling adults ≥65 years old enrolled between 1999 and 2001. We considered visual function and brain MRI images at the 12-year follow-up in participants who were right-handed and free of dementia and/or stroke, randomly selected from the whole cohort. High-resolution structural T1-weighted brain scans acquired with a 3-Tesla scanner. Regional reconstruction and segmentation involved using the FreeSurfer image-analysis suite. Results A total of 215 participants were included (mean [SD] age 81.8 [3.7] years; 53.0% women): 30 (14.0%) had central vision loss and 185 (86.0%) normal central vision. Vision loss was associated with thinner cortical thickness in the right insula (within the lateral sulcus of the brain) as compared with the control group (mean thickness 2.38 [0.04] vs 2.50 [0.03] mm, 4.8% thinning, pcorrected= 0.04) after adjustment for age, sex, lifetime depression and cardiovascular disease. Conclusion The present study describes a significant thinning of the right insular cortex in older adults with vision loss. The insula subserves a wide variety of functions in humans ranging from sensory and affective processing to high-level cognitive processing. Reduced insula thickness associated with vision loss may increase cognitive burden in the ageing brain.
Collapse
Affiliation(s)
- Chloé Chamard
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France.,Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France
| | - Jerome J Maller
- General Electric Healthcare, Melbourne, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Melbourne, VIC, Australia
| | - Nicolas Menjot
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier, F-34000, France
| | - Eloi Debourdeau
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France
| | - Virginie Nael
- Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, INSERM, Bordeaux, F-33000, France
| | - Karen Ritchie
- Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France.,Department of Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Isabelle Carriere
- Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France.,Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France.,The Save Sight Institute, Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Connexin 43 Gene Ablation Does Not Alter Human Pluripotent Stem Cell Germ Lineage Specification. Biomolecules 2021; 12:biom12010015. [PMID: 35053163 PMCID: PMC8773696 DOI: 10.3390/biom12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/23/2023] Open
Abstract
During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification. We screened the mRNA profile and protein expression patterns of select human Cx isoforms in undifferentiated human induced pluripotent stem cells (iPSCs), and after directed differentiation into the three embryonic germ lineages: ectoderm, definitive endoderm, and mesoderm. Transcript analyses by qPCR revealed upregulation of Cx45 and Cx62 in iPSC-derived ectoderm; Cx45 in mesoderm; and Cx30.3, Cx31, Cx32, Cx36, Cx37, and Cx40 in endoderm relative to control human iPSCs. Generated Cx43 (GJA1) CRISPR-Cas9 knockout iPSCs successfully differentiated into cells of all three germ layers, suggesting that Cx43 is dispensable during directed iPSC lineage specification. Furthermore, qPCR screening of select Cx transcripts in our GJA1-/- iPSCs showed no significant Cx upregulation in response to the loss of Cx43 protein. Future studies will reveal possible compensation by additional Cxs, suggesting targets for future CRISPR-Cas9 ablation studies in human iPSC lineage specification.
Collapse
|
6
|
Zeidler M, Kummer KK, Schöpf CL, Kalpachidou T, Kern G, Cader MZ, Kress M. NOCICEPTRA: Gene and microRNA Signatures and Their Trajectories Characterizing Human iPSC-Derived Nociceptor Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102354. [PMID: 34486248 PMCID: PMC8564443 DOI: 10.1002/advs.202102354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/07/2023]
Abstract
Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Kai K. Kummer
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Clemens L. Schöpf
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | | | - Georg Kern
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - M. Zameel Cader
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Michaela Kress
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| |
Collapse
|
7
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
8
|
Esseltine JL, Brooks CR, Edwards NA, Subasri M, Sampson J, Séguin C, Betts DH, Laird DW. Dynamic regulation of connexins in stem cell pluripotency. Stem Cells 2019; 38:52-66. [DOI: 10.1002/stem.3092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/18/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jessica L. Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Division of BioMedical Sciences, Faculty of Medicine; Memorial University of Newfoundland; St. John's Newfoundland and Labrador Canada
| | - Courtney R. Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Nicole A. Edwards
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Mathushan Subasri
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Jacinda Sampson
- Department of Neurology; Stanford University Medical Center; Palo Alto California
| | - Cheryle Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| |
Collapse
|
9
|
Wörsdörfer P, Wagner N, Ergün S. The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochem Cell Biol 2018; 150:327-339. [PMID: 30039329 DOI: 10.1007/s00418-018-1697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Since almost 4 decades, connexins have been discussed as important regulators of embryogenesis. Several different members of the gene family can be detected in the preimplantation embryo and during gastrulation. However, genetically engineered mice deficient for every connexin expressed during early development are available and even double-deficient mice were generated. Interestingly, all of these mice complete gastrulation without any abnormalities. This raises the question if the role of connexins has been overrated or if other gene family members compensate and mask their importance. To answer this question, embryos completely devoid of any gap junctional communication need to be investigated. This is challenging because a variety of connexin genes are co-expressed and some null mutations lead to a lethal phenotype. In addition, maternal connexin transcripts were described to persist until the blastocyst stage. In this review, we summarize the current knowledge about the role of connexins during preimplantation development and in embryonic stem cells. We propose that the use of pluripotent stem cells, trophoblast stem cells, as well as artificial embryo-like structures and organoid cultures in combination with multiplex CRISPR/Cas9-based genome editing provides a powerful platform to comprehensively readdress this issue and decipher the role of connexins during lineage decision, differentiation, and morphogenesis in a cell culture model for mouse and human development.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany.
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| |
Collapse
|
10
|
Du C, Feng Y, Qiu D, Xu Y, Pang M, Cai N, Xiang AP, Zhang Q. Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Res Ther 2018. [PMID: 29523187 PMCID: PMC5845228 DOI: 10.1186/s13287-018-0794-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes. Although previous efforts have succeeded in generating hepatocytes from human pluripotent stem cells in vitro by viral-based expression of transcription factors and/or addition of growth factors during the differentiation process, the safety issue of viral transduction and high cost of cytokines would hinder the downstream applications. Recently, the use of small molecules has emerged as a powerful tool to induce cell fate transition for their superior stability, safety, cell permeability, and cost-effectiveness. Methods In the present study, we established a novel efficient hepatocyte differentiation strategy of human pluripotent stem cells with pure small-molecule cocktails. This method induced hepatocyte differentiation in a stepwise manner, including definitive endoderm differentiation, hepatic specification, and hepatocyte maturation within only 13 days. Results The differentiated hepatic-like cells were morphologically similar to hepatocytes derived from growth factor-based methods and primary hepatocytes. These cells not only expressed specific hepatic markers at the transcriptional and protein levels, but also possessed main liver functions such as albumin production, glycogen storage, cytochrome P450 activity, and indocyanine green uptake and release. Conclusions Highly efficient and expedited hepatic differentiation from human pluripotent stem cells could be achieved by our present novel, pure, small-molecule cocktails strategy, which provides a cost-effective platform for in vitro studies of the molecular mechanisms of human liver development and holds significant potential for future clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-0794-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yuan Feng
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Dongbo Qiu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Nan Cai
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Andy Peng Xiang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Biotherapy Center & Cell-gene Therapy Translational Medicine Research Center, Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Römer C, Singh M, Hurst LD, Izsvák Z. How to tame an endogenous retrovirus: HERVH and the evolution of human pluripotency. Curr Opin Virol 2017; 25:49-58. [PMID: 28750248 DOI: 10.1016/j.coviro.2017.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
HERVH is one of the most successful endogenous retrovirus in the human genome. Relative to other endogenous retroviruses, slower degradation of HERVH internal sequences indicates their potential relevance for the host. HERVH is transcriptionally active during human preimplantation embryogenesis. In this review, we focus on the role of HERVH in regulating human pluripotency. The HERVH-mediated pluripotency network has been evolved recently in primates. Nevertheless, it became an essential feature of human pluripotency. We discuss how HERVH modulates the human pluripotency network by providing alternative transcription factor binding sites, functioning as a long-range enhancer, and as being a major source for pluripotency specific long non-coding RNAs and chimeric transcripts.
Collapse
Affiliation(s)
- Christine Römer
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Manvendra Singh
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Laurence D Hurst
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|