1
|
Zhang Y, Sigaeva A, Elías-Llumbet A, Fan S, Woudstra W, de Boer R, Escobar E, Reyes-San-Martin C, Kisabacak R, Oosterhuis D, Gorter AR, Coenen B, Perona Martinez FP, van den Bogaart G, Olinga P, Schirhagl R. Free radical detection in precision-cut mouse liver slices with diamond-based quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2317921121. [PMID: 39401360 PMCID: PMC11513939 DOI: 10.1073/pnas.2317921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Free radical generation plays a key role in many biological processes including cell communication, maturation, and aging. In addition, free radical generation is usually elevated in cells under stress as is the case for many different pathological conditions. In liver tissue, cells produce radicals when exposed to toxic substances but also, for instance, in cancer, alcoholic liver disease and liver cirrhosis. However, free radicals are small, short-lived, and occur in low abundance making them challenging to detect and especially to time resolve, leading to a lack of nanoscale information. Recently, our group has demonstrated that diamond-based quantum sensing offers a solution to measure free radical generation in single living cells. The method is based on defects in diamonds, the so-called nitrogen-vacancy centers, which change their optical properties based on their magnetic surrounding. As a result, this technique reveals magnetic resonance signals by optical means offering high sensitivity. However, compared to cells, there are several challenges that we resolved here: Tissues are more fragile, have a higher background fluorescence, have less particle uptake, and do not adhere to microscopy slides. Here, we overcame those challenges and adapted the method to perform measurements in living tissues. More specifically, we used precision-cut liver slices and were able to detect free radical generation during a stress response to ethanol, as well as the reduction in the radical load after adding an antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alina Sigaeva
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Arturo Elías-Llumbet
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia Santiago1027, Chile
| | - Siyu Fan
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Willem Woudstra
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Elkin Escobar
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Molecular Genetics Group, Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exacts Sciences, University of Antioquia, Medellin1226, Colombia
| | - Claudia Reyes-San-Martin
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Robin Kisabacak
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Dorenda Oosterhuis
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alan R. Gorter
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Britt Coenen
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Felipe P. Perona Martinez
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Peter Olinga
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
2
|
Wojtas D, Mzyk A, Li R, Zehetbauer M, Schafler E, Jarzębska A, Sułkowski B, Schirhagl R. Verifying the cytotoxicity of a biodegradable zinc alloy with nanodiamond sensors. BIOMATERIALS ADVANCES 2024; 162:213927. [PMID: 38917649 DOI: 10.1016/j.bioadv.2024.213927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Metals are widely utilized as implant materials for bone fixtures as well as stents. Biodegradable versions of these implants are highly desirable since patients do not have to undergo a second surgery for the materials to be removed. Attractive options for such materials are zinc silver alloys since they also offer the benefit of being antibacterial. However, it is important to investigate the effect of the degradation products of such alloys on the surrounding cells, taking into account silver cytotoxicity. Here we investigated zinc alloyed with 1 % of silver (Zn1Ag) and how differently concentrated extracts (1 %-100 %) of this material impact human umbilical vein endothelial cells (HUVECs). More specifically, we focused on free radical generation and oxidative stress as well as the impact on cell viability. To determine free radical production we used diamond-based quantum sensing as well as conventional fluorescent assays. The viability was assessed by observing cell morphology and the metabolic activity via the MTT assay. We found that 1 % and 10 % extracts are well tolerated by the cells. However, at higher extract concentrations we observed severe impact on cell viability and oxidative stress. We were also able to show that quantum sensing was able to detect significant free radical generation even at the lowest tested concentrations.
Collapse
Affiliation(s)
- Daniel Wojtas
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland; Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands; Department of Health Technology, Danish Technical University, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark.
| | - Runrun Li
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Michael Zehetbauer
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - Erhard Schafler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - Anna Jarzębska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
| | - Bartosz Sułkowski
- Faculty of Non-ferrous Metals, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands.
| |
Collapse
|
3
|
Sigaeva A, Li R, van Laar JJ, Wierenga L, Schirhagl R. Timing and Mechanisms of Nanodiamond Uptake in Colon Cancer Cells. Nanotechnol Sci Appl 2024; 17:147-166. [PMID: 39081854 PMCID: PMC11287467 DOI: 10.2147/nsa.s464075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction As nanodiamonds become more and more widely used for intracellular labelling and measurements, the task of delivering these nanoparticles inside cells becomes more and more important. Certain cell types easily take up nanodiamonds, while others require special procedures. Methods In previous research, we found that HT-29 cells (a colon cancer cell line), which are notoriously difficult in the context of nanodiamond internalization, show increased uptake rates, when pre-treated with trypsin- ethylenediaminetetraacetic acid (trypsin-EDTA). However, the uptake mechanism has not been studied before. This article focuses on a more detailed investigation of the reasons underlying this phenomenon. We start by identifying the timing of fluorescent nanodiamond (FND) uptake in trypsin-EDTA pre-treated cells. We then use a combination of chemical inhibitors and Immunocytochemistry to identify the main pathways employed by HT-29 cells in the internalization process. Results and Discussion We investigate how these pathways are affected by the trypsin-EDTA pre-treatment and conclude by offering possible explanations for this phenomenon. We found that nanodiamonds are internalized via different pathways. Clathrin-mediated endocytosis proves to be the dominating mechanism. Trypsin-EDTA treatment increases particle uptake and affects the uptake mechanism.
Collapse
Affiliation(s)
- Alina Sigaeva
- Department of Biomaterials and Biotechnology, Groningen University, University Medical Center Groningen, Groningen, the Netherlands
| | - Runrun Li
- Department of Biomaterials and Biotechnology, Groningen University, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Jelle van Laar
- Department of Biomaterials and Biotechnology, Groningen University, University Medical Center Groningen, Groningen, the Netherlands
| | - Leon Wierenga
- Department of Biomaterials and Biotechnology, Groningen University, University Medical Center Groningen, Groningen, the Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, Groningen University, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Sai Manogna K, Deva Prasad Raju B, Rajasekhara Reddy G, Kallem P, Shaik MI, John Sushma N. Investigations on anticancer activity of Eu 3+ doped hydroxyapatite nanocomposites against MCF7 and 4T1 breast cancer cell lines: A structural and luminescence Perspective. Heliyon 2024; 10:e25064. [PMID: 38352738 PMCID: PMC10862524 DOI: 10.1016/j.heliyon.2024.e25064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.
Collapse
Affiliation(s)
- K Sai Manogna
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| | - B Deva Prasad Raju
- Department of Physics, Sri Venkateswara University, Tirupati - 517501, India
| | - G Rajasekhara Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Parashuram Kallem
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, University Malaysia Terengganu, KulaNerus-21030, Terengganu, Malaysia
| | - N John Sushma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| |
Collapse
|
5
|
Varzi V, Fratini E, Falconieri M, Giovannini D, Cemmi A, Scifo J, Di Sarcina I, Aprà P, Sturari S, Mino L, Tomagra G, Infusino E, Landoni V, Marino C, Mancuso M, Picollo F, Pazzaglia S. Nanodiamond Effects on Cancer Cell Radiosensitivity: The Interplay between Their Chemical/Physical Characteristics and the Irradiation Energy. Int J Mol Sci 2023; 24:16622. [PMID: 38068942 PMCID: PMC10706717 DOI: 10.3390/ijms242316622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.
Collapse
Affiliation(s)
- Veronica Varzi
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Emiliano Fratini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mauro Falconieri
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| | - Daniela Giovannini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Alessia Cemmi
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Jessica Scifo
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Ilaria Di Sarcina
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Pietro Aprà
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Sofia Sturari
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Lorenzo Mino
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
- Chemistry Department, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giulia Tomagra
- Drug Science and Technology Department, University of Turin, Corso Raffaello 30, 10125 Turin, Italy;
| | - Erminia Infusino
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Valeria Landoni
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Carmela Marino
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Federico Picollo
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| |
Collapse
|
6
|
Lin N, van Zomeren K, van Veen T, Mzyk A, Zhang Y, Zhou X, Plosch T, Tietge UJF, Cantineau A, Hoek A, Schirhagl R. Quantum Sensing of Free Radicals in Primary Human Granulosa Cells with Nanoscale Resolution. ACS CENTRAL SCIENCE 2023; 9:1784-1798. [PMID: 37780363 PMCID: PMC10540281 DOI: 10.1021/acscentsci.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/03/2023]
Abstract
Cumulus granulosa cells (cGCs) and mural granulosa cells (mGCs), although derived from the same precursors, are anatomically and functionally heterogeneous. They are critical for female fertility by supporting oocyte competence and follicular development. There are various techniques used to investigate the role of free radicals in mGCs and cCGs. Yet, temporospatial resolution remains a challenge. We used a quantum sensing approach to study free radical generation at nanoscale in cGCs and mGCs isolated from women undergoing oocyte retrieval during in vitro fertilization (IVF). Cells were incubated with bare fluorescent nanodiamonds (FNDs) or mitochondria targeted FNDs to detect free radicals in the cytoplasm and mitochondria. After inducing oxidative stress with menadione, we continued to detect free radical generation for 30 min. We observed an increase in free radical generation in cGCs and mGCs from 10 min on. Although cytoplasmic and mitochondrial free radical levels are indistinguishable in the physiological state in both cGCs and mGCs, the free radical changes measured in mitochondria were significantly larger in both cell types, suggesting mitochondria are sites of free radical generation. Furthermore, we observed later occurrence and a smaller percentage of cytoplasmic free radical change in cGCs, indicating that cGCs may be more resistant to oxidative stress.
Collapse
Affiliation(s)
- Nuan Lin
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | - Koen van Zomeren
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teelkien van Veen
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yue Zhang
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Xiaoling Zhou
- Center
for Reproductive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Torsten Plosch
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Uwe J. F. Tietge
- Division
of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, SE-141 52 Stockholm, Sweden
- Clinical
Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, SE-141 86 Stockholm, Sweden
| | - Astrid Cantineau
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Annemieke Hoek
- Department
of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
7
|
Vo D, You T, Lin Y, Angela S, Le, T, Hsiao W. Toxicity Assessments of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:73-94. [DOI: 10.1002/9781394202164.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
8
|
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, Wu X, Olinga P, Wlodarzyk-Biegun M, Schirhagl R. Fluorescent Nanodiamonds for Tracking Single Polymer Particles in Cells and Tissues. Anal Chem 2023; 95:13046-13054. [PMID: 37612789 PMCID: PMC10483464 DOI: 10.1021/acs.analchem.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Polymer nanoparticles are widely used in drug delivery and are also a potential concern due to the increased burden of nano- or microplastics in the environment. In order to use polymer nanoparticles safely and understand their mechanism of action, it is useful to know where within cells and tissues they end up. To this end, we labeled polymer nanoparticles with nanodiamond particles. More specifically, we have embedded nanodiamond particles in the polymer particles and characterized the composites. Compared to conventional fluorescent dyes, these labels have the advantage that nanodiamonds do not bleach or blink, thus allowing long-term imaging and tracking of polymer particles. We have demonstrated this principle both in cells and entire liver tissues.
Collapse
Affiliation(s)
- Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Thea A. Vedelaar
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Yue Zhang
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kaiqi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Hui Wang
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Xixi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Peter Olinga
- Department
of Pharmaceutical Technology and Biopharmacy, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Małgorzata
K. Wlodarzyk-Biegun
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- Biotechnology
Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
9
|
Pouwels SD, Sigaeva A, de Boer S, Eichhorn IA, Koll L, Kuipers J, Schirhagl R, Heijink IH, Burgess JK, Slebos DJ. Host-device interactions: exposure of lung epithelial cells and fibroblasts to nickel, titanium, or nitinol affect proliferation, reactive oxygen species production, and cellular signaling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:38. [PMID: 37486435 PMCID: PMC10366254 DOI: 10.1007/s10856-023-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Endoscopic implantation of medical devices for the treatment of lung diseases, including airway stents, unidirectional valves and coils, is readily used to treat central airway disease and emphysema. However, granulation and fibrotic tissue formation impairs treatment effectiveness. To date little is known about the interaction between implanted devices, often made from metals, such as nickel, titanium or nitinol, and cells in the airways. Here, we study the response of lung epithelial cells and fibroblasts to implant device materials. The adhesion and proliferation of bronchial epithelial cells and lung fibroblasts upon exposure to 10 × 3 × 1 mm pieces of nickel, titanium or nitinol is examined using light and scanning electron microscopy. Pro-inflammatory cytokine mRNA expression and release, signaling kinase activity and intracellular free radical production are assessed. Nitinol, and to a lesser extent nickel and titanium, surfaces support the attachment and growth of lung epithelial cells. Nitinol induces a rapid and significant alteration of kinase activity. Cells directly exposed to nickel or titanium produce free radicals, but those exposed to nitinol do not. The response of lung epithelial cells and fibroblasts depends on the metal type to which they are exposed. Nitinol induces cellular surface growth and the induction of kinase activity, while exposure of lung epithelial cells to nickel and titanium induces free radical production, but nitinol does not.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Alina Sigaeva
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Shanna de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ilse A Eichhorn
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Lisanne Koll
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Irene H Heijink
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
10
|
Sagadevan S, Schirhagl R, Rahman MZ, Bin Ismail MF, Lett JA, Fatimah I, Mohd Kaus NH, Oh WC. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Imbir G, Trembecka-Wójciga K, Ozga P, Schirhagl R, Mzyk A. Elastic moduli of polyelectrolyte multilayer films regulate endothelium-blood interaction under dynamic conditions. Colloids Surf B Biointerfaces 2023; 225:113269. [PMID: 36963315 DOI: 10.1016/j.colsurfb.2023.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A broad spectrum of biomaterials has been explored in order to design cardiovascular implants of sufficient hemocompatibility. Most of them were extensively tested for the ability to facilitate repopulation by patient cells. It was shown that stiffness, surface roughness, or hydrophilicity of polyelectrolyte films have an impact on adhesion, proliferation, and differentiation of cells. At the same time, it is still unknown how these properties influence cell functionality and as a consequence interactions with blood components under dynamic conditions. In this study, we aimed to determine the impact of chemical cross-linking of Chitosan (Chi) and Chrondroitin Sulphate (CS) on endothelium-blood cross-talk. We have found that the morphology of the endothelium monolayer was not altered by changes in coating properties. However, free radical generation by endothelial cells varied depending on the elastic properties of the coating. Simultaneously, we have observed a significant decrease in the level of adhering and circulating active platelets as well as aggregates when the endothelium monolayer was formed on stiffer films than on the other coating variants. Moreover, the same type of films has promoted significantly higher adhesion of blood morphotic elements when they were not functionalized by endothelium. The observed changes in hemocompatibility indicate the importance of a design of coatings that will promote cellularization in vivo in a relatively short time and which will regulate cell function.
Collapse
Affiliation(s)
- Gabriela Imbir
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 152 Radzikowski Street, 31-342 Cracow, Poland.
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
| | - Piotr Ozga
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Aldona Mzyk
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland; Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
12
|
Sharmin R, Nusantara AC, Nie L, Wu K, Elias Llumbet A, Woudstra W, Mzyk A, Schirhagl R. Intracellular Quantum Sensing of Free-Radical Generation Induced by Acetaminophen (APAP) in the Cytosol, in Mitochondria and the Nucleus of Macrophages. ACS Sens 2022; 7:3326-3334. [PMID: 36354956 PMCID: PMC9706807 DOI: 10.1021/acssensors.2c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acetaminophen overdoses cause cell injury in the liver. It is widely accepted that liver toxicity is initiated by the reactive N-acetyl-para-aminophenol (APAP) metabolite N-acetyl-p-benzoquinone imine (NAPQI), which first depletes glutathione and then irreversibly binds to mitochondrial proteins and nuclear DNA. As a consequence, mitochondrial respiration is inhibited, and DNA strands break. NAPQI also promotes the oxidative stress since glutathione is one of the main free-radical scavengers in the cell. However, so far it is unknown where exactly free radicals are generated. In this study, we used relaxometry, a novel technique that allows nanoscale magnetic resonance imaging detection of free radicals. The method is based on fluorescent nanodiamonds, which change their optical properties based on their magnetic surrounding. To achieve subcellular resolution, these nanodiamonds were targeted to cellular locations, that is, the cytoplasm, mitochondria, and the nucleus. Since relaxometry is sensitive to spin noise from radicals, we were able to measure the radical load in these different organelles. For the first time, we measured APAP-induced free-radical production in an organelle-specific manner, which helps predict and better understand cellular toxicity.
Collapse
Affiliation(s)
- Rokshana Sharmin
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Kaiqi Wu
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Arturo Elias Llumbet
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands,Laboratory
of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of
Medicine, University of Chile, Independencia, 1027 Independencia Santiago, Chile
| | - Willem Woudstra
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aldona Mzyk
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands,Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Romana Schirhagl
- University
Medical Center Groningen, Department Biomedical Engineering, Groningen University, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
13
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
14
|
Sigaeva A, Shirzad H, Martinez FP, Nusantara AC, Mougios N, Chipaux M, Schirhagl R. Diamond-Based Nanoscale Quantum Relaxometry for Sensing Free Radical Production in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105750. [PMID: 36169083 DOI: 10.1002/smll.202105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diamond magnetometry makes use of fluorescent defects in diamonds to convert magnetic resonance signals into fluorescence. Because optical photons can be detected much more sensitively, this technique currently holds several sensitivity world records for room temperature magnetic measurements. It is orders of magnitude more sensitive than conventional magnetic resonance imaging (MRI) for detecting magnetic resonances. Here, the use of diamond magnetometry to detect free radical production in single living cells with nanometer resolution is experimentally demonstrated. This measuring system is first optimized and calibrated with chemicals at known concentrations. These measurements serve as benchmarks for future experiments. While conventional MRI typically has millimeter resolution, measurements are performed on individual cells to detect nitric oxide signaling at the nanoscale, within 10-20 nm from the internalized particles localized with a diffraction limited optical resolution. This level of detail is inaccessible to the state-of-the-art techniques. Nitric oxide is detected and the dynamics of its production and inhibition in the intra- and extracellular environment are followed.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Hoda Shirzad
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Felipe Perona Martinez
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Anggrek Citra Nusantara
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Nikos Mougios
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Mayeul Chipaux
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| |
Collapse
|
15
|
Tian Y, Nusantara AC, Hamoh T, Mzyk A, Tian X, Perona Martinez F, Li R, Permentier HP, Schirhagl R. Functionalized Fluorescent Nanodiamonds for Simultaneous Drug Delivery and Quantum Sensing in HeLa Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39265-39273. [PMID: 35984747 PMCID: PMC9437893 DOI: 10.1021/acsami.2c11688] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we present multifunctional fluorescent nanodiamonds (FNDs) for simultaneous drug delivery and free radical detection. For this purpose, we modified FNDs containing nitrogen vacancy (NV) centers with a diazoxide derivative. We found that our particles enter cells more easily and are able to deliver this cancer drug into HeLa cells. The particles were characterized by infrared spectroscopy, dynamic light scattering, and secondary electron microscopy. Compared to the free drug, we observe a sustained release over 72 h rather than 12 h for the free drug. Apart from releasing the drug, with these particles, we can measure the drug's effect on free radical generation directly. This has the advantage that the response is measured locally, where the drug is released. These FNDs change their optical properties based on their magnetic surrounding. More specifically, we make use of a technique called relaxometry to detect spin noise from the free radical at the nanoscale with subcellular resolution. We further compared the results from our new technique with a conventional fluorescence assay for the detection of reactive oxygen species. This provides a new method to investigate the relationship between drug release and the response by the cell via radical formation or inhibition.
Collapse
Affiliation(s)
- Yuchen Tian
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Thamir Hamoh
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
- Institute
of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059, Cracow, Poland
| | - Xiaobo Tian
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Felipe Perona Martinez
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Hjalmar P. Permentier
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|
16
|
Padamati SK, Vedelaar TA, Perona Martínez F, Nusantara AC, Schirhagl R. Insight into a Fenton-like Reaction Using Nanodiamond Based Relaxometry. NANOMATERIALS 2022; 12:nano12142422. [PMID: 35889646 PMCID: PMC9319944 DOI: 10.3390/nano12142422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Copper has several biological functions, but also some toxicity, as it can act as a catalyst for oxidative damage to tissues. This is especially relevant in the presence of H2O2, a by-product of oxygen metabolism. In this study, the reactions of copper with H2O2 have been investigated with spectroscopic techniques. These results were complemented by a new quantum sensing technique (relaxometry), which allows nanoscale magnetic resonance measurements at room temperature, and at nanomolar concentrations. For this purpose, we used fluorescent nanodiamonds (FNDs) containing ensembles of specific defects called nitrogen-vacancy (NV) centers. More specifically, we performed so-called T1 measurements. We use this method to provide real-time measurements of copper during a Fenton-like reaction. Unlike with other chemical fluorescent probes, we can determine both the increase and decrease in copper formed in real time.
Collapse
|
17
|
Heiligenstein X, Lucas MS. One for All, All for One: A Close Look at In-Resin Fluorescence Protocols for CLEM. Front Cell Dev Biol 2022; 10:866472. [PMID: 35846358 PMCID: PMC9280628 DOI: 10.3389/fcell.2022.866472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sample preparation is the novel bottleneck for high throughput correlative light and electron microscopy (CLEM). Protocols suitable for both imaging methods must therefore balance the requirements of each technique. For fluorescence light microscopy, a structure of interest can be targeted using: 1) staining, which is often structure or tissue specific rather than protein specific, 2) dye-coupled proteins or antibodies, or 3) genetically encoded fluorescent proteins. Each of these three methods has its own advantages. For ultrastructural investigation by electron microscopy (EM) resin embedding remains a significant sample preparation approach, as it stabilizes the sample such that it withstands the vacuum conditions of the EM, and enables long-term storage. Traditionally, samples are treated with heavy metal salts prior to resin embedding, in order to increase imaging contrast for EM. This is particularly important for volume EM (vEM) techniques. Yet, commonly used contrasting agents (e.g., osmium tetroxide, uranyl acetate) tend to impair fluorescence. The discovery that fluorescence can be preserved in resin-embedded specimens after mild heavy metal staining was a game changer for CLEM. These so-called in-resin fluorescence protocols present a significant leap forward for CLEM approaches towards high precision localization of a fluorescent signal in (volume) EM data. Integrated microscopy approaches, combining LM and EM detection into a single instrument certainly require such an “all in one” sample preparation. Preserving, or adding, dedicated fluorescence prior to resin embedding requires a compromise, which often comes at the expense of EM imaging contrast and membrane visibility. Especially vEM can be strongly hampered by a lack of heavy metal contrasting. This review critically reflects upon the fundamental aspects of resin embedding with regard to 1) specimen fixation and the physics and chemistry underlying the preservation of protein structure with respect to fluorescence and antigenicity, 2) optimization of EM contrast for transmission or scanning EM, and 3) the choice of embedding resin. On this basis, various existing workflows employing in-resin fluorescence are described, highlighting their common features, discussing advantages and disadvantages of the respective approach, and finally concluding with promising future developments for in-resin CLEM.
Collapse
Affiliation(s)
| | - Miriam S. Lucas
- Scientific Center for Light and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Miriam S. Lucas,
| |
Collapse
|
18
|
Loginov SV, Fermie J, Fokkema J, Agronskaia AV, De Heus C, Blab GA, Klumperman J, Gerritsen HC, Liv N. Correlative Organelle Microscopy: Fluorescence Guided Volume Electron Microscopy of Intracellular Processes. Front Cell Dev Biol 2022; 10:829545. [PMID: 35478966 PMCID: PMC9035751 DOI: 10.3389/fcell.2022.829545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
Intracellular processes depend on a strict spatial and temporal organization of proteins and organelles. Therefore, directly linking molecular to nanoscale ultrastructural information is crucial in understanding cellular physiology. Volume or three-dimensional (3D) correlative light and electron microscopy (volume-CLEM) holds unique potential to explore cellular physiology at high-resolution ultrastructural detail across cell volumes. However, the application of volume-CLEM is hampered by limitations in throughput and 3D correlation efficiency. In order to address these limitations, we describe a novel pipeline for volume-CLEM that provides high-precision (<100 nm) registration between 3D fluorescence microscopy (FM) and 3D electron microscopy (EM) datasets with significantly increased throughput. Using multi-modal fiducial nanoparticles that remain fluorescent in epoxy resins and a 3D confocal fluorescence microscope integrated into a Focused Ion Beam Scanning Electron Microscope (FIB.SEM), our approach uses FM to target extremely small volumes of even single organelles for imaging in volume EM and obviates the need for post-correlation of big 3D datasets. We extend our targeted volume-CLEM approach to include live-cell imaging, adding information on the motility of intracellular membranes selected for volume-CLEM. We demonstrate the power of our approach by targeted imaging of rare and transient contact sites between the endoplasmic reticulum (ER) and lysosomes within hours rather than days. Our data suggest that extensive ER-lysosome and mitochondria-lysosome interactions restrict lysosome motility, highlighting the unique capabilities of our integrated CLEM pipeline for linking molecular dynamic data to high-resolution ultrastructural detail in 3D.
Collapse
Affiliation(s)
- Sergey V. Loginov
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Job Fermie
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jantina Fokkema
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra V. Agronskaia
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Cilia De Heus
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gerhard A. Blab
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Nalan Liv,
| |
Collapse
|
19
|
Schmidheini L, Tiefenauer RF, Gatterdam V, Frutiger A, Sannomiya T, Aramesh M. Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. BIOSENSORS 2022; 12:bios12030148. [PMID: 35323419 PMCID: PMC8946096 DOI: 10.3390/bios12030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/01/2023]
Abstract
Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.
Collapse
Affiliation(s)
- Lukas Schmidheini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Raphael F. Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Volker Gatterdam
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Takumi Sannomiya
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
- Department of Materials Science and Engineering, Division of Biomedical Engineering, Uppsala University, 751 21 Uppsala, Sweden
| |
Collapse
|
20
|
Gbetuwa M, Lu LS, Wang TJ, Chen YJ, Chiou JF, Su TY, Yang TS. Nucleus Near-Infrared (nNIR) Irradiation of Single A549 Cells Induces DNA Damage and Activates EGFR Leading to Mitochondrial Fission. Cells 2022; 11:cells11040624. [PMID: 35203275 PMCID: PMC8870661 DOI: 10.3390/cells11040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min. In contrast, the fission/fusion balance of mitochondria directly exposed to cNIR does not change. While the same phenomenon is also triggered by single molecular interactions between epidermal growth factor (EGF) and its receptor EGFR, pharmacological studies with cetuximab, PD153035, and caffeine suggest EGF signaling crosstalk to DNA damaging response to mediate rapid mitochondrial fission as a result of nNIR irradiation. These results suggest that nuclear DNA integrity is a novel biological target for cellular response to NIR.
Collapse
Affiliation(s)
- Momoh Gbetuwa
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan;
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5206)
| |
Collapse
|
21
|
Li R, Vedelaar T, Mzyk A, Morita A, Padamati SK, Schirhagl R. Following Polymer Degradation with Nanodiamond Magnetometry. ACS Sens 2022; 7:123-130. [PMID: 34982542 PMCID: PMC8809337 DOI: 10.1021/acssensors.1c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Degradable polymers are widely used in the biomedical fields due to non-toxicity and great biocompatibility and biodegradability, and it is crucial to understand how they degrade. These polymers are exposed to various biochemical media in medical practice. Hence, it is important to precisely follow the degradation of the polymer in real time. In this study, we made use of diamond magnetometry for the first time to track polymer degradation with nanoscale precision. The method is based on a fluorescent defect in nanodiamonds, which changes its optical properties based on its magnetic surrounding. Since optical signals can be read out more sensitively than magnetic signals, this method allows unprecedented sensitivity. We used a specific mode of diamond magnetometry called relaxometry or T1 measurements. These are sensitive to magnetic noise and thus can detect paramagnetic species (gadolinium in this case). Nanodiamonds were incorporated into polylactic acid (PLA) films and PLA nanoparticles in order to follow polymer degradation. However, in principle, they can be incorporated into other polymers too. We found that T1 constants decreased gradually with the erosion of the film exposed to an alkaline condition. In addition, the mobility of nanodiamonds increased, which allows us to estimate polymer viscosity. The degradation rates obtained using this approach were in good agreement with data obtained by quartz crystal microbalance, Fourier-transform infrared spectroscopy, and atomic force microscopy.
Collapse
Affiliation(s)
- Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Thea Vedelaar
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Krakow 30-059, Poland
| | - Aryan Morita
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Sandeep Kumar Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| |
Collapse
|
22
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
23
|
Sharmin R, Hamoh T, Sigaeva A, Mzyk A, Damle VG, Morita A, Vedelaar T, Schirhagl R. Fluorescent Nanodiamonds for Detecting Free-Radical Generation in Real Time during Shear Stress in Human Umbilical Vein Endothelial Cells. ACS Sens 2021; 6:4349-4359. [PMID: 34797983 DOI: 10.1021/acssensors.1c01582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Free-radical generation is suspected to play a key role in cardiovascular diseases. Another crucial factor is shear stress. Human umbilical vein endothelial cells (HUVECS), which form the lining of blood vessels, require a physiological shear stress to activate many vasoactive factors. These are needed for maintaining vascular cell functions such as nonthrombogenicity, regulation of blood flow, and vascular tone. Additionally, blood clots form at regions of high shear stress within a blood vessel. Here, we use a new method called diamond magnetometry which allows us to measure the dynamics of free-radical generation in real time under shear stress. This quantum sensing technique allows free-radical detection with nanoscale resolution at the single-cell level. We investigate radical formation in HUVECs in a microfluidic environment under different flow conditions typically found in veins and arteries. Here, we looked into free-radical formation before, during, and after flow. We found that the free-radical production varied depending on the flow conditions. To confirm the magnetometry results and to differentiate between radicals, we performed conventional fluorescent reactive oxygen species (ROS) assays specific for superoxide, nitric oxide, and overall ROS.
Collapse
Affiliation(s)
- Rokshana Sharmin
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Thamir Hamoh
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Alina Sigaeva
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aldona Mzyk
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Viraj G. Damle
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aryan Morita
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1 Sekip Utara, 55281 Yogyakarta, Indonesia
| | - Thea Vedelaar
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Romana Schirhagl
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| |
Collapse
|
24
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
25
|
Srinivasa Raja A, de Boer P, Giepmans BNG, Hoogenboom JP. Electron-Beam Induced Luminescence and Bleaching in Polymer Resins and Embedded Biomaterial. Macromol Biosci 2021; 21:e2100192. [PMID: 34480515 DOI: 10.1002/mabi.202100192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Indexed: 11/11/2022]
Abstract
Electron microscopy is crucial for imaging biological ultrastructure at nanometer resolution. However, electron irradiation also causes specimen damage, reflected in structural and chemical changes that can give rise to alternative signals. Here, luminescence induced by electron-beam irradiation is reported across a range of materials widely used in biological electron microscopy. Electron-induced luminescence is spectrally characterized in two epoxy (Epon, Durcupan) and one methacrylate resin (HM20) over a broad electron fluence range, from 10-4 to 103 mC cm-2 , both with and without embedded biological samples. Electron-induced luminescence is pervasive in polymer resins, embedded biomaterial, and occurs even in fixed, whole cells in the absence of resin. Across media, similar patterns of intensity rise, spectral red-shifting, and bleaching upon increasing electron fluence are observed. Increased landing energies cause reduced scattering in the specimen shifting the luminescence profiles to higher fluences. Predictable and tunable electron-induced luminescence in natural and synthetic polymer media is advantageous for turning many polymers into luminescent nanostructures or to fluorescently visualize (micro)plastics. Furthermore, these findings provide perspective to direct electron-beam excitation approaches like cathodoluminescence that may be obscured by these nonspecific electron-induced signals.
Collapse
Affiliation(s)
- Aditi Srinivasa Raja
- Department of Imaging Physics, Delft University of Technology, Delft, 2628 CJ, The Netherlands
| | - Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physics, Delft University of Technology, Delft, 2628 CJ, The Netherlands
| |
Collapse
|
26
|
Williams RM, Chen S, Langenbacher RE, Galassi TV, Harvey JD, Jena PV, Budhathoki-Uprety J, Luo M, Heller DA. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat Chem Biol 2021; 17:129-137. [PMID: 33414556 PMCID: PMC8288144 DOI: 10.1038/s41589-020-00690-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2020] [Indexed: 01/28/2023]
Abstract
Although nanotechnology often addresses biomedical needs, nanoscale tools can also facilitate broad biological discovery. Nanoscale delivery, imaging, biosensing, and bioreactor technologies may address unmet questions at the interface between chemistry and biology. Currently, many chemical biologists do not include nanomaterials in their toolbox, and few investigators develop nanomaterials in the context of chemical tools to answer biological questions. We reason that the two fields are ripe with opportunity for greater synergy. Nanotechnologies can expand the utility of chemical tools in the hands of chemical biologists, for example, through controlled delivery of reactive and/or toxic compounds or signal-binding events of small molecules in living systems. Conversely, chemical biologists can work with nanotechnologists to address challenging biological questions that are inaccessible to both communities. This Perspective aims to introduce the chemical biology community to nanotechnologies that may expand their methodologies while inspiring nanotechnologists to address questions relevant to chemical biology.
Collapse
Affiliation(s)
- Ryan M. Williams
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Shi Chen
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Rachel E. Langenbacher
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, United States
| | - Thomas V. Galassi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, United States
| | - Jackson D. Harvey
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, United States
| | - Prakrit V. Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina, United States,Corresponding authors
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, United States,Corresponding authors
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York, United States,Corresponding authors
| |
Collapse
|
27
|
Hebisch E, Hjort M, Volpati D, Prinz CN. Nanostraw-Assisted Cellular Injection of Fluorescent Nanodiamonds via Direct Membrane Opening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006421. [PMID: 33502091 DOI: 10.1002/smll.202006421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Due to their stable fluorescence, biocompatibility, and amenability to functionalization, fluorescent nanodiamonds (FND) are promising materials for long term cell labeling and tracking. However, transporting them to the cytosol remains a major challenge, due to low internalization efficiencies and endosomal entrapment. Here, nanostraws in combination with low voltage electroporation pulses are used to achieve direct delivery of FND to the cytosol. The nanostraw delivery leads to efficient and rapid FND transport into cells compared to when incubating cells in a FND-containing medium. Moreover, whereas all internalized FND delivered by incubation end up in lysosomes, a significantly larger proportion of nanostraw-injected FND are in the cytosol, which opens up for using FND as cellular probes. Furthermore, in order to answer the long-standing question in the field of nano-biology regarding the state of the cell membrane on hollow nanostructures, live cell stimulated emission depletion (STED) microscopy is performed to image directly the state of the membrane on nanostraws. The time-lapse STED images reveal that the cell membrane opens entirely on top of nanostraws upon application of gentle electrical pulses, which supports the hypothesis that many FND are delivered directly to the cytosol, avoiding endocytosis and lysosomal entrapment.
Collapse
Affiliation(s)
- Elke Hebisch
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Martin Hjort
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
- Navan Technologies Inc., 733 Industrial Rd, San Carlos, CA, United States
| | - Diogo Volpati
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| |
Collapse
|
28
|
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. NANOSCALE ADVANCES 2021; 3:10-23. [PMID: 36131870 PMCID: PMC9419860 DOI: 10.1039/d0na00454e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The successful cytosolic delivery of nanoparticles is hampered by their endosomal entrapment and degradation. To push forward the smart development of nanoparticles we must reliably detect and quantify their endosomal escape process. However, the current methods employed are not quantitative enough at the nanoscale to achieve this. Nanoscopy is a rapidly evolving field that has developed a diverse set of powerful techniques in the last two decades, opening the door to explore nanomedicine with an unprecedented resolution and specificity. The understanding of key steps in the drug delivery process - such as endosomal escape - would benefit greatly from the implementation of the most recent advances in microscopy. In this review, we provide the latest insights into endosomal escape of nanoparticles obtained by nanoscopy, and we discuss the features that would allow these techniques to make a great impact in the field.
Collapse
Affiliation(s)
- Teodora Andrian
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| | - Silvia Pujals
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona Av. Diagonal 647 08028 Barcelona Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| |
Collapse
|
29
|
Perona Martínez F, Nusantara AC, Chipaux M, Padamati SK, Schirhagl R. Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in Chemical Reactions in Biologically Relevant Conditions. ACS Sens 2020; 5:3862-3869. [PMID: 33269596 PMCID: PMC8651177 DOI: 10.1021/acssensors.0c01037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Diamond
magnetometry is a quantum sensing method involving detection
of magnetic resonances with nanoscale resolution. For instance, T1
relaxation measurements, inspired by equivalent concepts in magnetic
resonance imaging (MRI), provide a signal that is equivalent to T1
in conventional MRI but in a nanoscale environment. We use nanodiamonds
(between 40 and 120 nm) containing ensembles of specific defects called
nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement,
we pump the NV center in the ground state (using a laser at 532 nm)
and observe how long the NV center can remain in this state. Here,
we use this method to provide real-time measurements of free radicals
when they are generated in a chemical reaction. Specifically, we focus
on the photolysis of H2O2 as well as the so-called
Haber–Weiss reaction. Both of these processes are important
reactions in biological environments. Unlike other fluorescent probes,
diamonds are able to determine spin noise from different species in
real time. We also investigate different diamond probes and their
ability to sense gadolinium spin labels. Although this study was performed
in a clean environment, we take into account the effects of salts
and proteins that are present in a biological environment. We conduct
our experiments with nanodiamonds, which are compatible with intracellular
measurements. We perform measurements between 0 and 108 nM, and we are able to reach detection limits down to the nanomolar
range and typically find T1 times of a few 100 μs. This is an
important step toward label-free nano-MRI signal quantification in
biological environments.
Collapse
Affiliation(s)
- Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Anggrek Citra Nusantara
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandeep Kumar Padamati
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
30
|
Prabhakar N, Belevich I, Peurla M, Heiligenstein X, Chang HC, Sahlgren C, Jokitalo E, Rosenholm JM. Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes. NANOMATERIALS 2020; 11:nano11010014. [PMID: 33374705 PMCID: PMC7822478 DOI: 10.3390/nano11010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023]
Abstract
Three-dimensional correlative light and electron microscopy (3D CLEM) is attaining popularity as a potential technique to explore the functional aspects of a cell together with high-resolution ultrastructural details across the cell volume. To perform such a 3D CLEM experiment, there is an imperative requirement for multi-modal probes that are both fluorescent and electron-dense. These multi-modal probes will serve as landmarks in matching up the large full cell volume datasets acquired by different imaging modalities. Fluorescent nanodiamonds (FNDs) are a unique nanosized, fluorescent, and electron-dense material from the nanocarbon family. We hereby propose a novel and straightforward method for executing 3D CLEM using FNDs as multi-modal landmarks. We demonstrate that FND is biocompatible and is easily identified both in living cell fluorescence imaging and in serial block-face scanning electron microscopy (SB-EM). We illustrate the method by registering multi-modal datasets.
Collapse
Affiliation(s)
- Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence:
| | - Ilya Belevich
- Electron Microscopy Unit, Helsinki Institute of Life Science—Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (I.B.); (E.J.)
| | - Markus Peurla
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
- Cancer Research Laboratory FICAN West, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan;
| | - Cecilia Sahlgren
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Eija Jokitalo
- Electron Microscopy Unit, Helsinki Institute of Life Science—Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (I.B.); (E.J.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| |
Collapse
|
31
|
Prabhakar N, Peurla M, Shenderova O, Rosenholm JM. Fluorescent and Electron-Dense Green Color Emitting Nanodiamonds for Single-Cell Correlative Microscopy. Molecules 2020; 25:E5897. [PMID: 33322105 PMCID: PMC7764487 DOI: 10.3390/molecules25245897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Correlative light and electron microscopy (CLEM) is revolutionizing how cell samples are studied. CLEM provides a combination of the molecular and ultrastructural information about a cell. For the execution of CLEM experiments, multimodal fiducial landmarks are applied to precisely overlay light and electron microscopy images. Currently applied fiducials such as quantum dots and organic dye-labeled nanoparticles can be irreversibly quenched by electron beam exposure during electron microscopy. Generally, the sample is therefore investigated with a light microscope first and later with an electron microscope. A versatile fiducial landmark should offer to switch back from electron microscopy to light microscopy while preserving its fluorescent properties. Here, we evaluated green fluorescent and electron dense nanodiamonds for the execution of CLEM experiments and precisely correlated light microscopy and electron microscopy images. We demonstrated that green color emitting fluorescent nanodiamonds withstand electron beam exposure, harsh chemical treatments, heavy metal straining, and, importantly, their fluorescent properties remained intact for light microscopy.
Collapse
Affiliation(s)
- Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Markus Peurla
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
- Cancer Research Laboratory FICAN West, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Olga Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Drive, Suite 120, Raleigh, NC 27617, USA;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| |
Collapse
|
32
|
Keevend K, Krummenacher R, Kungas E, Gerken LRH, Gogos A, Stiefel M, Herrmann IK. Correlative Cathodoluminescence Electron Microscopy: Immunolabeling Using Rare-Earth Element Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004615. [PMID: 33090693 DOI: 10.1002/smll.202004615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies on the assessment of structure-function relationships at the nanoscale. Although electron microscopy (EM) gives access to ultrastructural imaging with nanometric resolution, the unambiguous localization of specific molecules is challenging. An EM approach capable of localizing biomolecules with respect to the cellular ultrastructure will offer a direct route to the molecular blueprints of biological systems. In an approach departing from conventional correlative imaging, an electron beam may be used as excitation source to generate optical emission with nanometric resolution, that is, cathodoluminescence (CL). Once suitable luminescent labels become available, CL may be harnessed to enable identification of biomolecule labels based on spectral signatures rather than electron density and size. This work presents CL-enabled immunolabeling based on rare-earth element doped nanoparticle-labels allowing specific molecules to be visualized at nanoscale resolution in the context of the cellular ultrastructure. Folic acid decorated nanoparticles exhibiting single particle CL emission are employed to specifically label receptors and identify characteristic receptor clustering on the surface of cancer cells. This demonstration of CL immunotargeting gives access to protein localization in the context of the cellular ultrastructure and paves the way for immunolabeling of multiple proteins in EM.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| | - Roman Krummenacher
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Egle Kungas
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Lukas R H Gerken
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| | - Alexander Gogos
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Michael Stiefel
- Laboratory for Transport at Nanoscale Interfaces, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
33
|
Morita A, Hamoh T, Sigaeva A, Norouzi N, Nagl A, van der Laan KJ, Evans EPP, Schirhagl R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. NANOMATERIALS 2020; 10:nano10101962. [PMID: 33023102 PMCID: PMC7601435 DOI: 10.3390/nano10101962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Neda Norouzi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Andreas Nagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Emily P. P. Evans
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Correspondence:
| |
Collapse
|
34
|
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. NANOSCALE 2020; 12:15588-15603. [PMID: 32677648 DOI: 10.1039/d0nr02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | |
Collapse
|
35
|
Damle VG, Sharmin R, Morita A, Nie L, Schirhagl R. Micro Versus Macro - The Effect of Environmental Confinement on Cellular Nanoparticle Uptake. Front Bioeng Biotechnol 2020; 8:869. [PMID: 32793585 PMCID: PMC7393206 DOI: 10.3389/fbioe.2020.00869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
While the microenvironment is known to alter the cellular behavior in terms of metabolism, growth and the degree of endoplasmic reticulum stress, its influence on the nanoparticle uptake is not yet investigated. Specifically, it is not clear if the cells cultured in a microenvironment ingest different amounts of nanoparticles than cells cultured in a macroenvironment (for example a petri dish). To answer this question, here we used J774 murine macrophages and fluorescent nanodiamonds (FND) as a model system to systematically compare the uptake efficiency of cells cultured in a petri dish and in a microfluidic channel. Specifically, equal numbers of cells were cultured in two devices followed by the FND incubation. Then cells were fixed, stained and imaged to quantify the FND uptake. We show that the FND uptake in the cells cultured in petri dishes is significantly higher than the uptake in a microfluidic chip where the alteration in CO2 environment, the cell culture medium pH and the surface area to volume ratio seem to be the underlying causes leading to this observed difference.
Collapse
Affiliation(s)
- Viraj G. Damle
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Linyan Nie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Abstract
Biomedical imaging allows in vivo studies of organisms, providing valuable information of biological processes at both cellular and tissue levels. Nanodiamonds have recently emerged as a new type of probe for fluorescence imaging and contrast agent for magnetic resonance and photoacoustic imaging. Composed of sp3-carbon atoms, diamond is chemically inert and inherently biocompatible. Uniquely, its matrix can host a variety of optically and magnetically active defects suited for bioimaging applications. Since the first production of fluorescent nanodiamonds in 2005, a large number of experiments have demonstrated that fluorescent nanodiamonds are useful as photostable markers and nanoscale sensors in living cells and organisms. In this review, we focus our discussion on the recent advancements of nanodiamond-enabled biomedical imaging for preclinical applications.
Collapse
Affiliation(s)
- Yen-Yiu Liu
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Be-Ming Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 106, Taiwan
| |
Collapse
|
37
|
Liu B, Chen S, Rose AL, Chen D, Cao F, Zwinderman M, Kiemel D, Aïssi M, Dekker FJ, Haisma HJ. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res 2020; 48:517-532. [PMID: 31799598 PMCID: PMC6954403 DOI: 10.1093/nar/gkz1136] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the rapid development of CRISPR/Cas9-mediated gene editing technology, the gene editing potential of CRISPR/Cas9 is hampered by low efficiency, especially for clinical applications. One of the major challenges is that chromatin compaction inevitably limits the Cas9 protein access to the target DNA. However, chromatin compaction is precisely regulated by histone acetylation and deacetylation. To overcome these challenges, we have comprehensively assessed the impacts of histone modifiers such as HDAC (1–9) inhibitors and HAT (p300/CBP, Tip60 and MOZ) inhibitors, on CRISPR/Cas9 mediated gene editing efficiency. Our findings demonstrate that attenuation of HDAC1, HDAC2 activity, but not other HDACs, enhances CRISPR/Cas9-mediated gene knockout frequencies by NHEJ as well as gene knock-in by HDR. Conversely, inhibition of HDAC3 decreases gene editing frequencies. Furthermore, our study showed that attenuation of HDAC1, HDAC2 activity leads to an open chromatin state, facilitates Cas9 access and binding to the targeted DNA and increases the gene editing frequencies. This approach can be applied to other nucleases, such as ZFN and TALEN.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Siwei Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Anouk La Rose
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Fangyuan Cao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Martijn Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Dominik Kiemel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands.,Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, 69120, Germany
| | - Manon Aïssi
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
38
|
Morita A, Hamoh T, Perona Martinez FP, Chipaux M, Sigaeva A, Mignon C, van der Laan KJ, Hochstetter A, Schirhagl R. The Fate of Lipid-Coated and Uncoated Fluorescent Nanodiamonds during Cell Division in Yeast. NANOMATERIALS 2020; 10:nano10030516. [PMID: 32178407 PMCID: PMC7153471 DOI: 10.3390/nano10030516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Fluorescent nanodiamonds are frequently used as biolabels. They have also recently been established for magnetic resonance and temperature sensing at the nanoscale level. To properly use them in cell biology, we first have to understand their intracellular fate. Here, we investigated, for the first time, what happens to diamond particles during and after cell division in yeast (Saccharomyces cerevisiae) cells. More concretely, our goal was to answer the question of whether nanodiamonds remain in the mother cells or end up in the daughter cells. Yeast cells are widely used as a model organism in aging and biotechnology research, and they are particularly interesting because their asymmetric cell division leads to morphologically different mother and daughter cells. Although yeast cells have a mechanism to prevent potentially harmful substances from entering the daughter cells, we found an increased number of diamond particles in daughter cells. Additionally, we found substantial excretion of particles, which has not been reported for mammalian cells. We also investigated what types of movement diamond particles undergo in the cells. Finally, we also compared bare nanodiamonds with lipid-coated diamonds, and there were no significant differences in respect to either movement or intracellular fate.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Felipe P. Perona Martinez
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Mayeul Chipaux
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Charles Mignon
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Axel Hochstetter
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Correspondence:
| |
Collapse
|
39
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|
40
|
Su LJ, Lin HH, Wu MS, Pan L, Yadav K, Hsu HH, Ling TY, Chen YT, Chang HC. Intracellular Delivery of Luciferase with Fluorescent Nanodiamonds for Dual-Modality Imaging of Human Stem Cells. Bioconjug Chem 2019; 30:2228-2237. [PMID: 31268690 DOI: 10.1021/acs.bioconjchem.9b00458] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delivering functional proteins (such as enzymes) into cells is important in various biological studies and is often accomplished indirectly by transfection with DNA or mRNA encoding recombinant proteins. However, the transfection efficiency of conventional plasmid methods is low for primary cells, which are crucial sources of cell therapy. Here, we present a new platform based on the use of fluorescent nanodiamond (FND) as a biocompatible nanocarrier to enable rapid, effective, and homogeneous labeling of human mesenchymal stem cells (MSCs) with luciferase for multiplex assays and ultrasensitive detection. More than 100 pg of FND and 100 million copies of firefly luciferase can be delivered into each MSC through endocytosis. Moreover, these endocytic luciferase molecules are catalytically active for hours, allowing the cells to be imaged and tracked in vitro as well as in vivo by both fluorescence and bioluminescence imaging. Our results demonstrate that luciferase-conjugated FNDs are useful as multifunctional labels of human stem cells for diverse theranostic applications.
Collapse
Affiliation(s)
- Long-Jyun Su
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Hsin-Hung Lin
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Meng-Shiue Wu
- Department of Pharmacology , National Taiwan University , Taipei 100 , Taiwan
| | - Lei Pan
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Kanchan Yadav
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, College of Medicine and the Hospital , National Taiwan University , Taipei 100 , Taiwan
| | - Thai-Yen Ling
- Department of Pharmacology , National Taiwan University , Taipei 100 , Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 106 , Taiwan
| |
Collapse
|
41
|
Johnstone GE, Cairns GS, Patton BR. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190589. [PMID: 31417755 PMCID: PMC6689623 DOI: 10.1098/rsos.190589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Particles of diamond in the 5-100 nm size range, known as nanodiamond (ND), have shown promise as robust fluorophores for optical imaging. We demonstrate here that, due to their photostability, they are not only suitable for two-photon imaging, but also allow significant resolution enhancement when combined with computational super-resolution techniques. We observe a resolution of 42.5 nm when processing two-photon images with the Super-Resolution Radial Fluctuations algorithm. We show manipulation of the point-spread function of the microscope using adaptive optics. This demonstrates how the photostability of ND can also be of use when characterizing adaptive optics technologies or testing the resilience of super-resolution or aberration correction algorithms.
Collapse
Affiliation(s)
| | | | - Brian R. Patton
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK
| |
Collapse
|
42
|
Knötigová PT, Mašek J, Hubatka F, Kotouček J, Kulich P, Šimečková P, Bartheldyová E, Machala M, Švadláková T, Krejsek J, Vaškovicová N, Skoupý R, Krzyžánek V, Macaulay S, Katzuba M, Fekete L, Ashcheulov P, Raška M, Kratochvílová I, Turánek J. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm 2019; 16:3441-3451. [PMID: 31184896 DOI: 10.1021/acs.molpharmaceut.9b00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.
Collapse
Affiliation(s)
| | - Josef Mašek
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | | | - Jan Kotouček
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | | | | | | | - Tereza Švadláková
- Faculty of Medicine, Department of Clinical Immunology and Allergology , Charles University , Hradec Králové 500 03 , Czech Republic
| | - Jan Krejsek
- Faculty of Medicine, Department of Clinical Immunology and Allergology , Charles University , Hradec Králové 500 03 , Czech Republic
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | - Radim Skoupý
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | | | | | - Ladislav Fekete
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | - Petr Ashcheulov
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | - Milan Raška
- Veterinary Research Institute , Brno 62100 , Czech Republic.,Department of Immunology, Faculty of Medicine and Dentistry , Palacky University Olomouc , Olomouc 775 15 , Czech Republic
| | - Irena Kratochvílová
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | | |
Collapse
|
43
|
Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically. SCOPE OF REVIEW This paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy. MAJOR CONCLUSIONS smFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| |
Collapse
|
44
|
Top-down fabrication of high-uniformity nanodiamonds by self-assembled block copolymer masks. Sci Rep 2019; 9:6914. [PMID: 31061512 PMCID: PMC6502864 DOI: 10.1038/s41598-019-43304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/01/2022] Open
Abstract
Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0 ± 5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.
Collapse
|
45
|
Han S, Raabe M, Hodgson L, Mantell J, Verkade P, Lasser T, Landfester K, Weil T, Lieberwirth I. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. NANO LETTERS 2019; 19:2178-2185. [PMID: 30810045 PMCID: PMC6437650 DOI: 10.1021/acs.nanolett.9b00752] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.
Collapse
Affiliation(s)
- Shen Han
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Raabe
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, BS8 1TD Bristol, United Kingdom
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, BS8 1TD Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, BS8 1TD Bristol, United Kingdom
| | - Theo Lasser
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Laboratoire d’Optique Biomédical, École Polytechnique Fédérale
de Lausanne, CH-1015 Lausanne, Switzerland
| | - Katharina Landfester
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- E-mail:
(T.W.)
| | - Ingo Lieberwirth
- Max-Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail: (I.L.)
| |
Collapse
|
46
|
Prabhakar N, Rosenholm JM. Nanodiamonds for advanced optical bioimaging and beyond. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Saraf J, Kalia K, Bhattacharya P, Tekade RK. Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discov Today 2019; 24:584-594. [DOI: 10.1016/j.drudis.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
|
48
|
Usoltseva LO, Volkov DS, Nedosekin DA, Korobov MV, Proskurnin MA, Zharov VP. Absorption spectra of nanodiamond aqueous dispersions by optical absorption and optoacoustic spectroscopies. PHOTOACOUSTICS 2018; 12:55-66. [PMID: 30450280 PMCID: PMC6222039 DOI: 10.1016/j.pacs.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/07/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
The multispectral modality and technique for optically dense samples of optoacoustic spectroscopy were applied to measure spectra and high absorbances of concentrated aqueous dispersions of undoped nanodiamonds. The data from optoacoustic and optical transmission measurements and DSC data of the mean particle size by the Gibbs-Kelvin equation are compared to estimate the difference in composition of various nanodiamond trademarks. Optoacoustic spectra confirm the contribution of surface dimer chains into the absorption of nanodiamonds in the long wavelength range. Optoacoustic and conventional absorption spectra of aqueous solutions of nanodiamond fractions after centrifugation (15300g) and ultracentrifugation (130000g) revealed a separation of a highly absorbing non-diamond sp2 phase. The two-step separation by ultracentrifugation followed by extra centrifugation made it possible to isolate a highly absorbing and soluble nanodiamond phase with the particle size of 3.6 nm, showing a change in spectra compared to the starting nanodiamond material.
Collapse
Affiliation(s)
- L O Usoltseva
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D S Volkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Nedosekin
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - M V Korobov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M A Proskurnin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V P Zharov
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
49
|
van der Laan KJ, Naulleau J, Damle VG, Sigaeva A, Jamot N, Perona-Martinez FP, Chipaux M, Schirhagl R. Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae. Anal Chem 2018; 90:13506-13513. [PMID: 30345733 DOI: 10.1021/acs.analchem.8b03431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the theories aiming to explain cellular aging is the free radical theory of aging, which describes the possible role of increased production and accumulation of free radicals. Fluorescent nanodiamonds (FNDs) are proposed to provide a tool to detect these radicals, as they function as magnetic sensors that change their optical properties depending on their magnetic surrounding. Therefore, they could enable the study of aging at a molecular level and unravel the exact role of free radicals in this process. In this study, important steps toward this goal are made. FNDs are introduced in chronologically aging yeast cells. Furthermore, the behavior of FNDs in these aging cells is studied to demonstrate the potency of using FNDs in the search for causes of cellular aging.
Collapse
Affiliation(s)
- Kiran J van der Laan
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Julie Naulleau
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Viraj G Damle
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Alina Sigaeva
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Nicolas Jamot
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Felipe P Perona-Martinez
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Mayeul Chipaux
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen , University of Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| |
Collapse
|
50
|
Ong SY, van Harmelen RJJ, Norouzi N, Offens F, Venema IM, Habibi Najafi MB, Schirhagl R. Interaction of nanodiamonds with bacteria. NANOSCALE 2018; 10:17117-17124. [PMID: 30182122 DOI: 10.1039/c8nr05183f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanocarbons come in many forms and among their applications is the engineering of biocompatible and antibacterial materials. Studies have shown that diamond nanoparticles might have the interesting combination of both properties: they are highly biocompatible, while surprisingly reducing bacterial viability or growth at the same time. In this article, we consider for the first time the interaction of milled HPHT nanodiamonds with bacteria. These nanoparticles are capable of hosting nitrogen-vacancy (NV) centers, which provide stable fluorescence with potential use in sensing applications. An initial study was performed to assess the interaction of partially oxidized monocrystalline nanodiamonds with Gram positive S. aureus ATCC 12600 and Gram negative E. coli ATCC 8739. It was shown that for S. aureus ATCC 12600, the presence of these nanodiamonds leads to a sharp reduction of colony forming ability under optimal conditions. A different effect was observed on Gram negative E. coli ATCC 8739, where no significant adverse effects of ND presence was observed. The mode of interaction was further studied by electron microscopy and confocal microscopy. The effects of NDs on S. aureus viability were found to depend on many factors, including the concentration and size of nanoparticles, the suspension medium and incubation time.
Collapse
Affiliation(s)
- S Y Ong
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|