1
|
Liu H, Liang C, Liu H, Liang P, Cheng H. MiR-10b-5p attenuates spinal cord injury and alleviates LPS-induced PC12 cells injury by inhibiting TGF-β1 decay and activating TGF-β1/Smad3 pathway through PTBP1. Eur J Med Res 2024; 29:554. [PMID: 39558432 PMCID: PMC11575087 DOI: 10.1186/s40001-024-02133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition characterized by significant sensory, motor, and autonomic dysfunctions, leading to severe physical, psychological, and financial burdens. The current therapeutic approaches for SCI show limited effectiveness, highlighting the urgent need for innovative treatments. MicroRNAs (miRNAs) like miR-10b-5p are known to play pivotal roles in gene expression regulation and have been implicated in various neurodegenerative diseases, including SCI. Polypyrimidine tract binding protein 1 (PTBP1) has also been associated with neural injury responses and recovery. This study aims to explore the interaction between miR-10b-5p and PTBP1 in the context of SCI, hypothesizing that miR-10b-5p regulates PTBP1 to influence SCI pathogenesis and recovery using a rat model of SCI and lipopolysaccharide (LPS)-induced PC12 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to measure miR-10b-5p levels, revealing its low expression in SCI rats. We then assessed neurological function, histopathological changes, and spinal cord water content. We found that administering the agomiR-10b-5p significantly improved neurological function and decreased the spinal cord water content and normal motor neuron loss in SCI rats. Additionally, we explored the functions of miR-10b-5p in LPS-treated PC12 cells. Our results showed that miR-10b-5p repressed LPS-stimulated apoptosis, inflammation, and oxidative stress in PC12 cells. PTBP1 was predicted as a potential target gene of miR-10b-5p using the TargetScan database. Pulldown and luciferase reporter assays further demonstrated that miR-10b-5p binds to the 3' untranslated region (UTR) of PTBP1. RT-qPCR revealed that miR-10b-5p negatively modulated PTBP1 expression both in vivo and in vitro. Furthermore, rescue assays indicated that miR-10b-5p alleviated SCI in rats and LPS-triggered injury in PC12 cells by downregulating PTBP1. We also investigated the regulation of miR-10b-5p and PTBP1 on the transforming growth factor-beta 1 (TGF-β1)/small mother against decapentaplegic (Smad3) pathway. We found that miR-10b-5p targeted PTBP1 to repress TGF-β1 decay and facilitated TGF-β1/Smad3 pathway activation. In conclusion, our results demonstrate that miR-10b-5p alleviates SCI by repressing TGF-β1 decay and inducing TGF-β1/Smad3 pathway activation through PTBP1 downregulation. This study provides novel insights into potential targeted therapy plans for SCI.
Collapse
Affiliation(s)
- Huandong Liu
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hongfei Liu
- Department of Encephalopathy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Ping Liang
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Huilin Cheng
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
2
|
Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, Dong J, Ouyang L, Momeni MR. Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol 2024; 61:5974-5991. [PMID: 38261255 DOI: 10.1007/s12035-024-03954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
Collapse
Affiliation(s)
- Xiangyang Xu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Ruyin Liu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Yunpeng Li
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Cheng Zhang
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Chuanghao Guo
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiong Zhu
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiaan Dong
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Liyun Ouyang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11700, Malaysia.
| | | |
Collapse
|
3
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Zhong Y, Zhang Y, Zhu Z. Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol 2024; 90:191-199. [PMID: 38535971 DOI: 10.23736/s0375-9393.23.17614-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant complication following surgery. The precise mechanisms underlying POCD remain elusive, although it is speculated that they involve central nervous system inflammation, oxidative stress and cellular apoptosis. MicroRNAs (miRNAs), a class of non-coding RNAs widely distributed in eukaryotes, have been implicated in the pathogenesis of neurodegenerative disorders and could potentially impact POCD. This review explores the association between miRNAs and POCD and provides an overview of the progress of current research on miRNAs in the pathogenesis, diagnosis, and treatment of POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China -
| |
Collapse
|
5
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
6
|
Azad TD, Ran KR, Liu J, Vattipally VN, Khela H, Leite E, Materi JD, Davidar AD, Bettegowda C, Theodore N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023; 28:703-713. [PMID: 38126897 DOI: 10.1080/1354750x.2023.2298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute spinal cord injury (SCI) requires prompt diagnosis and intervention to minimize the risk of permanent neurologic deficit. Presently, SCI diagnosis and interventional planning rely on magnetic resonance imaging (MRI), which is not always available or feasible for severely injured patients. Detection of disease-specific biomarkers in biofluids via liquid biopsy may provide a more accessible and objective means of evaluating patients with suspected SCI. Cell-free DNA, which has been used for diagnosing and monitoring oncologic disease, may detect damage to spinal cord neurons via tissue-specific methylation patterns. Other types of biomarkers, including proteins and RNA species, have also been found to reflect neuronal injury and may be included as part of a multi-analyte assay to improve liquid biopsy performance. The feasibility of implementing liquid biopsy into current practices of SCI management is supported by the relative ease of blood sample collection as well as recent advancements in droplet digital polymerase chain reaction technology. In this review, we detail the current landscape of biofluid biomarkers for acute SCI and propose a framework for the incorporation of a putative blood test into the clinical management of SCI.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jiaqi Liu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Harmon Khela
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Enzo Leite
- Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil
| | - Joshua D Materi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
7
|
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, Li Y, Bai F, Jing Y, Li Z, Li Z, Yang D, Gao F, Du L, Li J, Yu Y. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 2023; 16:1099256. [PMID: 36818651 PMCID: PMC9931912 DOI: 10.3389/fnmol.2023.1099256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a global medical problem with high disability and mortality rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury has a complex etiology, lack of diagnostic methods, poor treatment effect and other problems, which lead to the difficulty of spinal cord regeneration and repair, and poor functional recovery. Recent studies have shown that gene expression plays an important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding RNA molecules that target mRNA expression in order to silence, translate, or interfere with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs contribute to these events. This article reviews the pathophysiological mechanism of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in secondary neuroinflammation after SCI, so as to provide new ideas and basis for the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs in neurological diseases may also make them potential biomarkers and therapeutic targets for spinal cord injuries.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,*Correspondence: Jianjun Li,
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Yan Yu,
| |
Collapse
|
8
|
Li Z, Rong YL, Zhang YS. MiR-33-5p alleviates spinal cord injury in rats and protects PC12 cells from lipopolysaccharide-induced apoptosis. Kaohsiung J Med Sci 2023; 39:52-60. [PMID: 36354186 DOI: 10.1002/kjm2.12610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) exert critical effects in spinal cord injury (SCI). The miR-33-5p level is found to be lower in rats with SCI compared with that in control (untreated) and sham-operated (laminectomy but no contusion) rats. Therefore, we investigated the biological functions of miR-33-5p and related mechanisms in SCI pathogenesis and development. An in vivo SCI model and a lipopolysaccharide (LPS)-induced cell model of SCI were established. A downregulated level of miR-33-5p in experimental SCI and in LPS-treated PC12 cells was revealed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). MiR-33-5p upregulation alleviated the leakage of the blood-spinal cord barrier (BSCB) induced by SCI and improved the neurological functions of SCI rats, as evidenced by the Basso, Beattie, and Bresnahan (BBB) scores and Evans blue staining. The regulatory relationship between miR-33-5p and Rps6kb1 was verified by luciferase reporter assays, which demonstrated that miR-33-5p bound to the Rps6kb1 3'UTR. Moreover, as MTT assays and flow cytometry showed, the suppressive effects of miR-33-5p upregulation on cell apoptosis were attenuated by Rps6kb1 upregulation. In conclusion, miR-33-5p ameliorates SCI in rats and inhibits the LPS-induced apoptosis of PC12 cells.
Collapse
Affiliation(s)
- Zhe Li
- Department of Second Orthopaedic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan-Long Rong
- Department of Orthopedic, TieMei General Hospital of Liaoning Province Health Industrial Group, Tieling, Liaoning, China
| | - Yuan-Shi Zhang
- Department of Second Orthopaedic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Gayen CD, Bessen MA, Dorrian RM, Quarrington RD, Mulaibrahimovic A, Doig RLO, Freeman BJC, Leonard AV, Jones CF. A survival model of thoracic contusion spinal cord injury in the domestic pig. J Neurotrauma 2022; 40:965-980. [PMID: 36200622 DOI: 10.1089/neu.2022.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) frequently results in motor, sensory and autonomic dysfunction for which there is currently no cure. Recent preclinical and clinical research has led to promising advances in treatment; however, therapeutics indicating promise in rodents have not translated successfully in human trials, likely due, in part, to gross anatomical and physiological differences between the species. Therefore, large animal models of SCI may facilitate the study of secondary injury processes that are influenced by scale, and assist the translation of potential therapeutic interventions. The aim of this study was to characterize two severities of thoracic contusion SCI in female domestic pigs, measuring motor function and spinal cord lesion characteristics, over two weeks post-SCI. A custom instrumented weight drop injury device was used to release a 50 g impactor from 10 cm (n=3) or 20 cm (n=7) onto the exposed dura, to induce a contusion at the T10 thoracic spinal level. Hind limb motor function was assessed at 8 and 13 days post-SCI using a 10-point scale. Volume and extent of lesion-associated signal hyperintensity in T2-weighted magnetic resonance (MR) images was assessed at 3, 7 and 14 days post-injury. Animals were transcardially perfused at 14 days post-SCI and spinal cord tissue was harvested for histological analysis. Bowel function was retained in all animals and transient urinary retention occurred in two animals after catheter removal. All animals displayed hind limb motor deficits. Animals in the 10 cm group demonstrated some stepping and weight bearing and scored a median 2-3 points higher on the 10-point motor function scale at 8 and 13 days post-SCI, than the 20 cm group. Histological lesion volume was 20 % greater, and 30 % less white matter was spared, in the 20 cm group than in the 10 cm group. The MR signal hyperintensity in the 20 cm injury group had a median cranial-caudal extent approximately 1.5 times greater than the 10 cm injury group at all three time points, and median volumes 1.8, 2.5 and 4.5 times greater at day 3, 7 and 14 post-injury, respectively. Regional differences in axonal injury were observed between groups, with amyloid precursor protein immunoreactivity greatest in the 20 cm group in spinal cord sections adjacent the injury epicenter. This study demonstrated graded injuries in a domestic pig strain, with outcome measures comparable to miniature pig models of contusion SCI. The model provides a vehicle for the study of SCI and potential treatments, particularly where miniature pig strains are not available and/or where small animal models are not appropriate for the research question.
Collapse
Affiliation(s)
- Christine D Gayen
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Madeleine A Bessen
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan M Dorrian
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adnan Mulaibrahimovic
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan L O'Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Brian J C Freeman
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide South Australia, Australia
| | - Anna V Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Sabirov D, Ogurcov S, Baichurina I, Blatt N, Rizvanov A, Mukhamedshina Y. Molecular diagnostics in neurotrauma: Are there reliable biomarkers and effective methods for their detection? Front Mol Biosci 2022; 9:1017916. [PMID: 36250009 PMCID: PMC9557129 DOI: 10.3389/fmolb.2022.1017916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
To date, a large number of studies are being carried out in the field of neurotrauma, researchers not only establish the molecular mechanisms of the course of the disorders, but are also involved in the search for effective biomarkers for early prediction of the outcome and therapeutic intervention. Particular attention is paid to traumatic brain injury and spinal cord injury, due to the complex cascade of reactions in primary and secondary injury that affect pathophysiological processes and regenerative potential of the central nervous system. Despite a wide range of methods available methods to study biomarkers that correlate with the severity and degree of recovery in traumatic brain injury and spinal cord injury, development of reliable test systems for clinical use continues. In this review, we evaluate the results of recent studies looking for various molecules acting as biomarkers in the abovementioned neurotrauma. We also summarize the current knowledge of new methods for studying biological molecules, analyzing their sensitivity and limitations, as well as reproducibility of results. In this review, we also highlight the importance of developing reliable and reproducible protocols to identify diagnostic and prognostic biomolecules.
Collapse
Affiliation(s)
- Davran Sabirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, Kazan, Russia
| | - Irina Baichurina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Irina Baichurina,
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
11
|
Network Pharmacology and Molecular Docking-Based Investigation of Potential Targets of Astragalus membranaceus and Angelica sinensis Compound Acting on Spinal Cord Injury. DISEASE MARKERS 2022; 2022:2141882. [PMID: 36157206 PMCID: PMC9499798 DOI: 10.1155/2022/2141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Background. Astragalus membranaceus (Huang-qi, AM) and Angelica sinensis (Dang-gui, AS) are common Chinese herbal medicines and have historically been used in spinal cord injury (SCI) therapies. However, the underlying molecular mechanisms of AM&AS remain little understood. The purpose of this research was to explore the bioactive components and the mechanisms of AM&AS in treating SCI according to network pharmacology and the molecular docking approach. Methods. AM&AS active ingredients were first searched from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Traditional Chinese Medicine Information Database (TCM-ID). Meanwhile, we collected relevant target genes of SCI through the GeneCards database, OMIM database, PharmGkb database, DurgBank database, and TDD database. By utilizing the STRING database, we constructed a network of protein-protein interactions (PPIs). In addition, we used R and STRING to perform GO and KEGG function enrichment analyses. Subsequently, AutoDock Vina was employed for a molecular docking study on the most active ingredients and most targeted molecules to validate the results of the network pharmacology analysis mentioned above. Result. The overall number of AM&AS active compounds identified was 22, while the number of SCI-related targets identified was 159. Then, the 4 key active ingredients were MOL000098 quercetin, MOL000422 kaempferol, MOL000354 isorhamnetin, and MOL000392 formononetin. A total of fourteen core targets were TP53, ESR1, MAPK1, MTC, HIF1A, HSP90AA1, FOS, MAPK14, STAT1, AKT1, EGFR, RELA, CCND1, and RB1. The KEGG enrichment analysis results indicated that lipid and atherosclerosis, PI3K-Akt signaling pathway, human cytomegalovirus infection, fluid shear stress, and atherosclerosis, etc., were enhanced with SCI development. Based on the analyses of docked molecules, four main active compounds had high affinity for the key targets. Conclusions. Altogether, it identified the mechanisms by which AM&AS was used for SCI treatment, namely, active ingredients, targets and signaling pathways. Consequently, further research into AM&AS treating SCI can be conducted on this scientific basis.
Collapse
|
12
|
Ebrahimy N, Gasterich N, Behrens V, Amini J, Fragoulis A, Beyer C, Zhao W, Sanadgol N, Zendedel A. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 2022; 304:120726. [PMID: 35750202 DOI: 10.1016/j.lfs.2022.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.
Collapse
Affiliation(s)
- Nahal Ebrahimy
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany.
| |
Collapse
|
13
|
Weber-Levine C, Hersh AM, Jiang K, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Kerensky M, Liu A, Adams M, Izzi J, Doloff JC, Manbachi A, Theodore N. Porcine Model of Spinal Cord Injury: A Systematic Review. Neurotrauma Rep 2022; 3:352-368. [PMID: 36204385 PMCID: PMC9531891 DOI: 10.1089/neur.2022.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Kerensky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melanie Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
15
|
Effects of Extracorporeal Shockwave Therapy on Functional Recovery and Circulating miR-375 and miR-382-5p after Subacute and Chronic Spinal Cord Contusion Injury in Rats. Biomedicines 2022; 10:biomedicines10071630. [PMID: 35884935 PMCID: PMC9313454 DOI: 10.3390/biomedicines10071630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022] Open
Abstract
Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT—applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model. Outcomes were evaluated by gait analysis, µCT and histological analysis of spinal cords. A panel of serum-derived miRNAs after SCI and after ESWT was investigated to identify injury-, regeneration- and treatment-associated expression patterns. Rats receiving ESWT showed significant improvement in motor function in both a subacute and a chronic experimental setting. This effect was not reflected in changes in morphology, µCT-parameters or histological markers after ESWT. Expression analysis of various miRNAs, however, revealed changes after SCI and ESWT, with increased miR-375, indicating a neuroprotective effect, and decreased miR-382-5p potentially improving neuroplasticity via its regulatory involvement with BDNF. We were able to demonstrate a functional improvement of ESWT-treated animals after SCI in a subacute and chronic setting. Furthermore, the identification of miR-375 and miR-382-5p could potentially provide new targets for therapeutic intervention in future studies.
Collapse
|
16
|
Spinal cord injury: a study protocol for a systematic review and meta-analysis of microRNA alterations. Syst Rev 2022; 11:61. [PMID: 35382886 PMCID: PMC8985297 DOI: 10.1186/s13643-022-01921-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating condition with no current neurorestorative treatments. Clinical trials have been hampered by a lack of meaningful diagnostic and prognostic markers of injury severity and neurologic recovery. Objective biomarkers and novel therapies for SCI represent urgent unmet clinical needs. Biomarkers of SCI that objectively stratify the severity of cord damage could expand the depth and scope of clinical trials and represent targets for the development of novel therapies for acute SCI. MicroRNAs (miRNAs) represent promising candidates both as informative molecules of injury severity and recovery, and as therapeutic targets. miRNAs are small, regulatory RNA molecules that are tissue-specific and evolutionarily conserved across species. miRNAs have been shown to represent powerful predictors of pathology, particularly with respect to neurologic disorders. METHODS Studies investigating miRNA alterations in all species of animal models and human studies of acute, traumatic SCI will be identified from PubMed, Embase, and Scopus. We aim to identify whether SCI is associated with a specific pattern of miRNA expression that is conserved across species, and whether SCI is associated with a tissue- or cell type-specific pattern of miRNA expression. The inclusion criteria for this study will include (1) studies published anytime, (2) including all species, and sexes with acute, traumatic SCI, (3) relating to the alteration of miRNA after SCI, using molecular-based detection platforms including qRT-PCR, microarray, and RNA-sequencing, (4) including statistically significant miRNA alterations in tissues, such as spinal cord, serum/plasma, and/or CSF, and (5) studies with a SHAM surgery group. Articles included in the review will have their titles, abstracts, and full texts reviewed by two independent authors. Random effects meta-regression will be performed, which allows for within-study and between-study variability, on the miRNA expression after SCI or SHAM surgery. We will analyze both the cumulative pooled dataset, as well as datasets stratified by species, tissue type, and timepoint to identify miRNA alterations that are specifically related to the injured spinal cord. We aim to identify SCI-related miRNA that are specifically altered both within a species, and those that are evolutionarily conserved across species, including humans. The analyses will provide a description of the evolutionarily conserved miRNA signature of the pathophysiological response to SCI. DISCUSSION Here, we present a protocol to perform a systematic review and meta-analysis to investigate the conserved inter- and intra-species miRNA changes that occur due to acute, traumatic SCI. This review seeks to serve as a valuable resource for the SCI community by establishing a rigorous and unbiased description of miRNA changes after SCI for the next generation of SCI biomarkers and therapeutic interventions. TRIAL REGISTRATION The protocol for the systematic review and meta-analysis has been registered through PROSPERO: CRD42021222552 .
Collapse
|
17
|
The Study of Cerebrospinal Fluid microRNAs in Spinal Cord Injury and Neurodegenerative Diseases: Methodological Problems and Possible Solutions. Int J Mol Sci 2021; 23:ijms23010114. [PMID: 35008540 PMCID: PMC8744986 DOI: 10.3390/ijms23010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Despite extensive research on neurological disorders, unanswered questions remain regarding the molecular mechanisms underpinning the course of these diseases, and the search continues for effective biomarkers for early diagnosis, prognosis, or therapeutic intervention. These questions are especially acute in the study of spinal cord injury (SCI) and neurodegenerative diseases. It is believed that the changes in gene expression associated with processes triggered by neurological disorders are the result of post-transcriptional gene regulation. microRNAs (miRNAs) are key regulators of post-transcriptional gene expression and, as such, are often looked to in the search for effective biomarkers. We propose that cerebrospinal fluid (CSF) is potentially a source of biomarkers since it is in direct contact with the central nervous system and therefore may contain biomarkers indicating neurodegeneration or damage to the brain and spinal cord. However, since the abundance of miRNAs in CSF is low, their isolation and detection is technically difficult. In this review, we evaluate the findings of recent studies of CSF miRNAs as biomarkers of spinal cord injury (SCI) and neurodegenerative diseases. We also summarize the current knowledge concerning the methods of studying miRNA in CSF, including RNA isolation and normalization of the data, highlighting the caveats of these approaches and possible solutions.
Collapse
|
18
|
Cavelier S, Quarrington RD, Jones CF. Mechanical properties of porcine spinal dura mater and pericranium. J Mech Behav Biomed Mater 2021; 126:105056. [PMID: 34953436 DOI: 10.1016/j.jmbbm.2021.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The objective of this study was to characterize and compare the mechanical properties of porcine pericranium and spinal dura mater, to evaluate the mechanical suitability of pericranium as a dural graft. METHOD Eighty-eight spinal dura (cervical, thoracic, and lumbar regions, in ventral longitudinal, dorsal longitudinal and circumferential orientations) and eighteen pericranium samples (ventral-dorsal, and lateral orientations) from four pigs, were harvested and subjected to uniaxial loading while hydrated. The stiffness, strain at toe-linear regions transition, strain at linear-yield regions transition and other structural and mechanical properties were measured. Stress-strain curves were fitted to a one-term Ogden model and Ogden parameters were calculated. Linear regression models with cluster-robust standard errors were used to assess the effect of region and orientation on material and structural properties. RESULTS Both spinal dura and pericranium exhibited distinct anisotropy and were stiffer in the longitudinal direction. The tissues exhibited structural and mechanical similarities especially in terms of stiffness and strains in the linear region. Stiffness ranged from 1.28 to 5.32 N/mm for spinal dura and 2.42-3.90 N/mm for pericranium. In the circumferential and longitudinal directions, the stiffness of spinal dura specimens was statistically similar to that of pericranium in the same orientation. The strain at the upper bound of the linear region of longitudinal pericranium (28.0%) was statistically similar to that of any spinal dura specimens (24.4-32.9%). CONCLUSIONS Autologous pericranium has advantageous physical properties for spinal duraplasty. The present study demonstrated that longitudinally oriented pericranium is mechanically compatible with spinal duraplasty procedures. Autologous pericranium grafts will likely support the mechanical loads transmitted from the spinal dura, but further biomechanical analyses are required to study the effect of the lower yield strain of circumferential pericranium compared to spinal dura. Finally, the Ogden parameters calculated for pericranium, and the spinal dura at each spinal level, will be useful for computational models incorporating these soft tissues.
Collapse
Affiliation(s)
- S Cavelier
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Department of Mechanical Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, QC, H3A 0C3, Canada
| | - R D Quarrington
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - C F Jones
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
19
|
Doelman A, Tigchelaar S, McConeghy B, Sinha S, Keung MS, Manouchehri N, Webster M, Fisk S, Morrison C, Streijger F, Nislow C, Kwon BK. Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics 2021; 22:775. [PMID: 34717545 PMCID: PMC8557039 DOI: 10.1186/s12864-021-07979-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.
Collapse
Affiliation(s)
- Adam Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Brian McConeghy
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Sunita Sinha
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Martin S. Keung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Corey Nislow
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
- Department of Orthopedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
20
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
21
|
Wang HD, Wei ZJ, Li JJ, Feng SQ. Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury. Neural Regen Res 2021; 17:963-971. [PMID: 34558509 PMCID: PMC8552873 DOI: 10.4103/1673-5374.324823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies in patients with spinal cord injuries (SCIs) have confirmed the diagnostic potential of biofluid-based biomarkers, as a topic of increasing interest in relation to SCI diagnosis and treatment. This paper reviews the research progress and application prospects of recently identified SCI-related biomarkers. Many structural proteins, such as glial fibrillary acidic protein, S100-β, ubiquitin carboxy-terminal hydrolase-L1, neurofilament light, and tau protein were correlated with the diagnosis, American Spinal Injury Association Impairment Scale, and prognosis of SCI to different degrees. Inflammatory factors, including interleukin-6, interleukin-8, and tumor necrosis factor α, are also good biomarkers for the diagnosis of acute and chronic SCI, while non-coding RNAs (microRNAs and long non-coding RNAs) also show diagnostic potential for SCI. Trace elements (Mg, Se, Cu, Zn) have been shown to be related to motor recovery and can predict motor function after SCI, while humoral markers can reflect the pathophysiological changes after SCI. These factors have the advantages of low cost, convenient sampling, and ease of dynamic tracking, but are also associated with disadvantages, including diverse influencing factors and complex level changes. Although various proteins have been verified as potential biomarkers for SCI, more convincing evidence from large clinical and prospective studies is thus required to identify the most valuable diagnostic and prognostic biomarkers for SCI.
Collapse
Affiliation(s)
- Hong-Da Wang
- Department of Orthopedics; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi-Jian Wei
- Department of Orthopedics; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin; Department of Orthopedics, Qilu Hospital; Shandong University Center for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jun-Jin Li
- Department of Orthopedics; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin; Department of Orthopedics, Qilu Hospital; Shandong University Center for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
22
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
23
|
Qiu T, Yin H, Wang Y, Zhao C, Cai D. miR-153 attenuates the inflammatory response and oxidative stress induced by spinal cord injury by targeting of NEUROD2. Am J Transl Res 2021; 13:7968-7975. [PMID: 34377277 PMCID: PMC8340145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a common spine surgical injury that leads to loss of activities of daily living. NEUROD2, a member of the neuroD family, is newly known to play a crucial role in SCI progression. We aimed to investigate the underlying mechanism wherein miR-153 and NEUROD2 modulate the process of SCI. METHODS Expression of miR-153 and NEUROD2 in spinal cord in mice of SCI were analyzed employing western blot and qRT-PCR assays. Microglial cells were transfected with mimic of miR-153 or siRNA targeting NEUROD2 to determine the impact of miR-153 and NEUROD2 on SCI induced inflammatory reaction and oxidative stress. A luciferase reporter assay was conducted to verify the regulation of miR-153 on NERUOD2. RESULTS MiR-153 expression was decreased in injured spinal cord, while NERUOD2 was increased in a time-dependent manner. Addition of miR-153 mimic or silencing NERUOD2 might significantly inhibit the production of inflammation cytokines and attenuated oxidative stress in microglia cells of SCI. Luciferase reporter assay suggested that NERUOD2 was a direct target of miR-153. CONCLUSION We proved that miR-153 attenuated inflammatory response and oxidative stress induced by SCI by targeting of NEUROD2, indicating a protective role in SCI progression.
Collapse
Affiliation(s)
- Taibin Qiu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Haidong Yin
- Department of Orthopaedics, Panyu Hospital of Chinese MedicineGuangzhou, Guangdong Province, China
| | - Yantao Wang
- Department of Orthopaedics, Panyu Hospital of Chinese MedicineGuangzhou, Guangdong Province, China
| | - Chang Zhao
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Daozhang Cai
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics 2021; 20:100096. [PMID: 34129941 PMCID: PMC8260874 DOI: 10.1016/j.mcpro.2021.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 01/16/2023] Open
Abstract
Despite the emergence of promising therapeutic approaches in preclinical studies, the failure of large-scale clinical trials leaves clinicians without effective treatments for acute spinal cord injury (SCI). These trials are hindered by their reliance on detailed neurological examinations to establish outcomes, which inflate the time and resources required for completion. Moreover, therapeutic development takes place in animal models whose relevance to human injury remains unclear. Here, we address these challenges through targeted proteomic analyses of cerebrospinal fluid and serum samples from 111 patients with acute SCI and, in parallel, a large animal (porcine) model of SCI. We develop protein biomarkers of injury severity and recovery, including a prognostic model of neurological improvement at 6 months with an area under the receiver operating characteristic curve of 0.91, and validate these in an independent cohort. Through cross-species proteomic analyses, we dissect evolutionarily conserved and divergent aspects of the SCI response and establish the cerebrospinal fluid abundance of glial fibrillary acidic protein as a biochemical outcome measure in both humans and pigs. Our work opens up new avenues to catalyze translation by facilitating the evaluation of novel SCI therapies, while also providing a resource from which to direct future preclinical efforts. • Targeted proteomic analysis of CSF and serum samples from 111 acute SCI patients. • Single- and multiprotein biomarkers of injury severity and recovery. • Parallel proteomic analysis in a large animal model identifies conserved biomarkers. • Evolutionary conservation and divergence of the proteomic response to SCI.
Collapse
|
25
|
Circ_HIPK3 alleviates CoCl 2-induced apoptotic injury in neuronal cells by depending on the regulation of the miR-222-3p/DUSP19 axis. Biochem Biophys Res Commun 2021; 553:126-133. [PMID: 33770577 DOI: 10.1016/j.bbrc.2021.03.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Circular RNA (circRNA) homeodomain-interacting protein kinase 3 (circ_HIPK3) has recently reported as regulator in spinal cord injury (SCI). The regulatory mechanism of circ_HIPK3 in SCI was further researched in this study. Circ_HIPK3 expression was inhibited by CoCl2 in AGE1.HN cells. The CoCl2-induced cell cycle arrest, cell proliferation inhibition and apoptosis promotion were mitigated by overexpression of circ_HIPK3. Circ_HIPK3 could target miR-222-3p and circ_HIPK3 repressed the CoCl2-induced neuronal cell injury by sponging miR-222-3p. DUSP19 was a target gene of miR-222-3p and circ_HIPK3 affected the expression of DUSP19 via binding to miR-222-3p. The regulation of circ_HIPK3 in CoCl2-induced injury of AGE1.HN cells was associated with the upregulation of DUSP19. Circ_HIPK3 acted as a pathogenic inhibitor in the progression of SCI via the miR-222-3p-mediated DUSP19 upregulation.
Collapse
|
26
|
Li JJ, Liu H, Zhu Y, Yan L, Liu R, Wang G, Wang B, Zhao B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:79-100. [PMID: 33267667 DOI: 10.1089/ten.teb.2020.0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Haifeng Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Ruxing Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Bin Wang
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Zhao
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
27
|
Keung MS, Streijger F, Herrity A, Ethridge J, Dougherty SM, Aslan S, Webster M, Fisk S, Deegan EG, Tessier-Cloutier B, Chen KYN, Morrison C, Okon EB, Tigchelaar S, Manouchehri N, Kim KT, Shortt K, So K, Damaser MS, Sherwood LC, Howland DR, Boakye M, Hubscher C, Stothers L, Kavanagh A, Kwon BK. Characterization of Lower Urinary Tract Dysfunction after Thoracic Spinal Cord Injury in Yucatan Minipigs. J Neurotrauma 2021; 38:1306-1326. [PMID: 33499736 DOI: 10.1089/neu.2020.7404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI. An iterative process to develop the protocol to perform urodynamics in female Yucatan minipigs began with a group of spinally intact, anesthetized pigs. Subsequently, urodynamic studies were performed in a group of awake, lightly restrained pigs, before and after a contusion-compression SCI at the T2 or T9-T11 spinal cord level. Bladder tissue was obtained for histological analysis at the end of the study. All anesthetized pigs had bladders that were acontractile, which resulted in overflow incontinence once capacity was reached. Uninjured, conscious pigs demonstrated appropriate relaxation and contraction of the external urethral sphincter during the voiding phase. SCI pigs demonstrated neurogenic detrusor overactivity and a significantly elevated post-void residual volume. Relative to the control, SCI bladders were heavier and thicker. The developed urodynamics protocol allows for repetitive evaluation of lower urinary tract function in pigs at different time points post-SCI. This technique manifests the potential for using the pig as an intermediary, large animal model for translational studies in NLUTD.
Collapse
Affiliation(s)
- Martin S Keung
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Neuroscience, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - April Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan M Dougherty
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Sevda Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Megan Webster
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily G Deegan
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Basile Tessier-Cloutier
- Pathology and Laboratory Medicine, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuan-Yin N Chen
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, School of Medicine, Kyungpook National University, National University Hospital, Daegu, South Korea
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot S Damaser
- Biomedical Engineering Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland U.S. Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, and University of Louisville, Louisville, Kentucky, USA
| | - Dena R Howland
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex U.S. Department of Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Max Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Charles Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Lynn Stothers
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Kavanagh
- Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Kyritsis N, Torres-Espín A, Schupp PG, Huie JR, Chou A, Duong-Fernandez X, Thomas LH, Tsolinas RE, Hemmerle DD, Pascual LU, Singh V, Pan JZ, Talbott JF, Whetstone WD, Burke JF, DiGiorgio AM, Weinstein PR, Manley GT, Dhall SS, Ferguson AR, Oldham MC, Bresnahan JC, Beattie MS. Diagnostic blood RNA profiles for human acute spinal cord injury. J Exp Med 2021; 218:e20201795. [PMID: 33512429 PMCID: PMC7852457 DOI: 10.1084/jem.20201795] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Diagnosis of spinal cord injury (SCI) severity at the ultra-acute stage is of great importance for emergency clinical care of patients as well as for potential enrollment into clinical trials. The lack of a diagnostic biomarker for SCI has played a major role in the poor results of clinical trials. We analyzed global gene expression in peripheral white blood cells during the acute injury phase and identified 197 genes whose expression changed after SCI compared with healthy and trauma controls and in direct relation to SCI severity. Unsupervised coexpression network analysis identified several gene modules that predicted injury severity (AIS grades) with an overall accuracy of 72.7% and included signatures of immune cell subtypes. Specifically, for complete SCIs (AIS A), ROC analysis showed impressive specificity and sensitivity (AUC: 0.865). Similar precision was also shown for AIS D SCIs (AUC: 0.938). Our findings indicate that global transcriptomic changes in peripheral blood cells have diagnostic and potentially prognostic value for SCI severity.
Collapse
Affiliation(s)
- Nikos Kyritsis
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Abel Torres-Espín
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Brain Tumor Center, University of California, San Francisco, San Francisco, CA
| | - J. Russell Huie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Austin Chou
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Xuan Duong-Fernandez
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Leigh H. Thomas
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Rachel E. Tsolinas
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Debra D. Hemmerle
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Lisa U. Pascual
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA
| | - Vineeta Singh
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jonathan Z. Pan
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
| | - Jason F. Talbott
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - William D. Whetstone
- Department of Emergency Medicine, University of California, San Francisco, San Francisco, CA
| | - John F. Burke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Anthony M. DiGiorgio
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Philip R. Weinstein
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Weill Institute for Neurosciences, Institute for Neurodegenerative Diseases, Spine Center, University of California, San Francisco, San Francisco, CA
| | - Geoffrey T. Manley
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Sanjay S. Dhall
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Brain Tumor Center, University of California, San Francisco, San Francisco, CA
| | - Jacqueline C. Bresnahan
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Michael S. Beattie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| |
Collapse
|
29
|
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci 2020; 21:ijms21238896. [PMID: 33255323 PMCID: PMC7734573 DOI: 10.3390/ijms21238896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.
Collapse
|
30
|
Yang W, Sun P. Promoting functions of microRNA-29a/199B in neurological recovery in rats with spinal cord injury through inhibition of the RGMA/STAT3 axis. J Orthop Surg Res 2020; 15:427. [PMID: 32948213 PMCID: PMC7501626 DOI: 10.1186/s13018-020-01956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background The prognostic and therapeutic potential of microRNAs (miRNAs) in spinal cord injury (SCI) has aroused increasing concerns. This study aims to research the functions of miR-29a/199B in the neurological function recovery after SCI and the mechanical mechanism. Methods A rat model with SCI was induced with sham-operated ones as control. The locomotor function and coordination of rat hindlimbs were determined by a Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and a ladder-climbing test, respectively. Expression of a neurofilament protein NF-200 and synaptophysin in gray matter of rats was determined to evaluate neuronal recovery in a cellular perspective. Binding relationships between miR-29a/199B with RGMA were predicted and validated using luciferase assays. Altered expression of miR-29a/199B and RGMA was introduced to explore their functions in rat neurological functions. The protein level and phosphorylation of STAT3 in gray matter were measured by western blot analysis. Results miR-29a and miR-199B were poorly expressed, while RGMA was abundantly expressed in gray matter at injury sites. Either miR-29a or miR-199B could bind to RGMA. Overexpression of miR-29a/199B or silencing of RGMA led to an increase in BBB locomotor scores, hindlimb coordination ability, and the expression of NF-200 and synaptophysin in gray matter. Further inhibition in miR-29a/199B blocked the promoting roles of RGMA silencing in neurological recovery. Upregulation of miR-29a/199B or downregulation of RGMA suppressed the phosphorylation of STAT3. Conclusion This study evidenced that miR-29a and miR-199B negatively regulated RGMA to suppress STAT3 phosphorylation, therefore promoting the neurological function recovery in rats following SCI.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, No.8, Caobao Road, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, No.8, Caobao Road, Shanghai, 200235, People's Republic of China.
| |
Collapse
|
31
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2020; 112:5086-5100. [PMID: 32919018 DOI: 10.1016/j.ygeno.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
32
|
miR-142-3p Expression Is Predictive for Severe Traumatic Brain Injury (TBI) in Trauma Patients. Int J Mol Sci 2020; 21:ijms21155381. [PMID: 32751105 PMCID: PMC7432828 DOI: 10.3390/ijms21155381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Predictive biomarkers in biofluids are the most commonly used diagnostic method, but established markers in trauma diagnostics lack accuracy. This study investigates promising microRNAs (miRNA) released from affected tissue after severe trauma that have predictive values for the effects of the injury. METHODS A retrospective analysis of prospectively collected data and blood samples of n = 33 trauma patients (ISS ≥ 16) is provided. Levels of miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3p and -423-3p in severely injured patients (PT) without traumatic brain injury (TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within 6 h after trauma. RESULTS The highest miR-423-3p expression was detected in patients with severe isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI (2-∆∆Ct, p = 0.009). A positive correlation between miR-423-3p level and increasing AIShead (p = 0.001) and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of the four groups. CONCLUSION miR-423-3p expression is significantly elevated after isolated traumatic brain injury and predictable for severe TBI in the first hours after trauma. miR-423-3p could represent a promising new biomarker to identify severe isolated TBI.
Collapse
|
33
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
34
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2019; 112:2092-2105. [PMID: 31830526 DOI: 10.1016/j.ygeno.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
35
|
Neurochemical biomarkers in spinal cord injury. Spinal Cord 2019; 57:819-831. [PMID: 31273298 DOI: 10.1038/s41393-019-0319-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN This is a narrative review of the literature on neurochemical biomarkers in spinal cord injury (SCI). OBJECTIVES The objective was to summarize the literature on neurochemical biomarkers in SCI and describe their use in facilitating clinical trials for SCI. Clinical trials in spinal cord injury (SCI) have been notoriously difficult to conduct, as exemplified by the paucity of definitive prospective randomized trials that have been completed, to date. This is related to the relatively low incidence and the complexity and heterogeneity of the human SCI condition. Given the increasing number of promising approaches that are emerging from the laboratory which are vying for clinical evaluation, novel strategies to help facilitate clinical trials are needed. METHODS A literature review was conducted, with a focus on neurochemical biomarkers that have been described in human neurotrauma. RESULTS We describe advances in our understanding of neurochemical biomarkers as they pertain to human SCI. The application of biomarkers from serum and cerebrospinal fluid (CSF) has been led by efforts in the human traumatic brain injury (TBI) literature. A number of promising biomarkers have been described in human SCI whereby they may assist in stratifying injury severity and predicting outcome. CONCLUSIONS Several time-specific biomarkers have been described for acute SCI and for chronic SCI. These appear promising for stratifying injury severity and potentially predicting outcome. The subsequent application within a clinical trial will help to demonstrate their utility in facilitating the study of novel approaches for SCI.
Collapse
|
36
|
Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, Hu JG, Lü HZ. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med (Maywood) 2019; 244:1149-1161. [PMID: 31450959 DOI: 10.1177/1535370219872759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables. Exosome miRNAs are widely distributed in body fluids and have many advantages comparing with free miRNAs. The specific miRNAs in the central nervous system can be transported to the peripheral circulation and concentrated in exosomes. Therefore, we hypothesized that there might be some physiological changes associated with spinal cord injury in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute spinal cord injury rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute spinal cord injury can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute spinal cord injury. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute spinal cord injury. More interestingly, we also found some valuable known and novel miRNAs. Further bioinformatics analysis and functional research will be of great help to make clear their role in the pathological process of spinal cord injury and judging whether they can be used as diagnostic markers. Impact statement This research hypothesized that there might be some physiological changes associated with SCI in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute SCI rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute SCI can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute SCI. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| |
Collapse
|
37
|
Tigchelaar S, Gupta R, Shannon CP, Streijger F, Sinha S, Flibotte S, Rizzuto MA, Street J, Paquette S, Ailon T, Charest-Morin R, Dea N, Fisher C, Dvorak MF, Dhall S, Mac-Thiong JM, Parent S, Bailey C, Christie S, Van Keuren-Jensen K, Nislow C, Kwon BK. MicroRNA Biomarkers in Cerebrospinal Fluid and Serum Reflect Injury Severity in Human Acute Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:2358-2371. [PMID: 30827169 DOI: 10.1089/neu.2018.6256] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with variability in injury mechanisms and neurologic recovery. Spinal cord impairment after SCI is measured and classified by a widely accepted standard neurological examination. In the very acute stages post-injury, however, this examination is extremely challenging (and often impossible) to conduct and has modest prognostic value in terms of neurological recovery. The lack of objective tools to classify injury severity and predict outcome is a barrier for clinical trials and thwarts development of therapies for those with SCI. Biological markers (biomarkers) represent a promising, complementary approach to these challenges because they represent an unbiased approach to classify injury severity and predict neurological outcome. Identification of a suitable panel of molecular biomarkers would comprise a fundamental shift in how patients with acute SCI are evaluated, stratified, and treated in clinical trials. MicroRNA are attractive biomarker candidates in neurological disorders for several reasons, including their stability in biological fluids, their conservation between humans and model mammals, and their tissue specificity. In this study, we used next-generation sequencing to identify microRNA associated with injury severity within the cerebrospinal fluid (CSF) and serum of human patients with acute SCI. The CSF and serum samples were obtained 1-5 days post-injury from 39 patients with acute SCI (24 American Spinal Injury Association Impairment Scale [AIS] A, 8 AIS B, 7 AIS C) and from five non-SCI controls. We identified a severity-dependent pattern of change in microRNA expression in CSF and identified a set of microRNA that are diagnostic of baseline AIS classification and prognostic of neurological outcome six months post-injury. The data presented here provide a comprehensive description of the CSF and serum microRNA expression changes that occur after acute human SCI. This data set reveals microRNA candidates that warrant further evaluation as biomarkers of injury severity after SCI and as key regulators in other neurological disorders.
Collapse
Affiliation(s)
- Seth Tigchelaar
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Rishab Gupta
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Casey P Shannon
- 2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, British Columbia, Canada
| | - Femke Streijger
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A Rizzuto
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaele Charest-Morin
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Fisher
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Dhall
- 6Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | | | - Stefan Parent
- 8Department of Surgery, Chu Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Christopher Bailey
- 9Division of Orthopaedic Surgery, Schulich Medicine & Dentistry, Victoria Hospital, London, Ontario, Canada
| | - Sean Christie
- 10Division of Neurosurgery, Halifax Infirmary, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Corey Nislow
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Brennan FH, Popovich PG. Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Curr Opin Neurol 2019; 31:334-344. [PMID: 29465433 DOI: 10.1097/wco.0000000000000550] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In adult mammals, a traumatic spinal cord injury (SCI) elicits a chronic unregulated neuroinflammatory response accompanied by seemingly paradoxical suppression of systemic immunity. These SCI-induced changes in immune function contribute to poor neurological outcomes and enhanced morbidity or mortality. Nonspecific anti-inflammatory or proinflammatory therapies are ineffective and can even worsen outcomes. Therefore, recent experimental SCI research has advanced the understanding of how neuroimmune cross-talk contributes to spinal cord and systemic pathology. RECENT FINDINGS It is now appreciated that the immune response caused by injury to the brain or spinal cord encompasses heterogeneous elements that can drive events on the spectrum between exacerbating pathology and promoting tissue repair, within the spinal cord and throughout the body. Recent novel discoveries regarding the role and regulation of soluble factors, monocytes/macrophages, microRNAs, lymphocytes and systemic immune function are highlighted in this review. SUMMARY A more nuanced understanding of how the immune system responds and reacts to nervous system injury will present an array of novel therapeutic opportunities for clinical SCI and other forms of neurotrauma.
Collapse
Affiliation(s)
- Faith H Brennan
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
39
|
Li F, Zhou MW. MicroRNAs in contusion spinal cord injury: pathophysiology and clinical utility. Acta Neurol Belg 2019; 119:21-27. [PMID: 30790223 DOI: 10.1007/s13760-019-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) in humans is a common central nervous system trauma. Pathophysiologically, SCI involves both primary and secondary damages. Therapeutically, targeting secondary damage including inflammation, neuropathic pain, apoptosis, demyelination, and glial reaction to promote functional benefits for SCI patients has long been considered a potential treatment strategy by neuroscientists and clinicians. As a type of small non-coding RNA, microRNAs (miRNAs) have been shown to play essential roles in the regulation of pathophysiologic processes of SCI and are considered to be an effective treatment method for SCI. Dysregulated expression of miRNAs is observed in SCI patients and animal models of SCI. Furthermore, miRNAs might also be used as biomarkers for diagnostic and prognostic purposes in SCI. Given contusion injury is the most clinically relevant type of SCI, this review mainly focuses on the role of miRNAs in the pathophysiology of contusion SCI and the putative utilization of miRNAs as diagnostic biomarkers and therapeutic targets for contusion SCI.
Collapse
Affiliation(s)
- Fang Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
40
|
Tang Y, Liu HL, Min LX, Yuan HS, Guo L, Han PB, Lu YX, Zhong JF, Wang DL. Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen Res 2019; 14:896-902. [PMID: 30688276 PMCID: PMC6375043 DOI: 10.4103/1673-5374.249238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tau protein, a microtubule-associated protein, has a high specific expression in neurons and axons. Because traumatic spinal cord injury mainly affects neurons and axons, we speculated that tau protein may be a promising biomarker to reflect the degree of spinal cord injury and prognosis of motor function. In this study, 160 female Sprague-Dawley rats were randomly divided into a sham group, and mild, moderate, and severe spinal cord injury groups. A laminectomy was performed at the T8 level to expose the spinal cord in all groups. A contusion lesion was made with the NYU-MASCIS impactor by dropping a 10 g rod from heights of 12.5 mm (mild), 25 mm (moderate) and 50 mm (severe) upon the exposed dorsal surface of the spinal cord. Tau protein levels were measured in serum and cerebrospinal fluid samples at 1, 6, 12, 24 hours, 3, 7, 14 and 28 days after operation. Locomotor function of all rats was assessed using the Basso, Beattie and Bresnahan locomotor rating scale. Tau protein concentration in the three spinal cord injury groups (both in serum and cerebrospinal fluid) rapidly increased and peaked at 12 hours after spinal cord injury. Statistically significant positive linear correlations were found between tau protein level and spinal cord injury severity in the three spinal cord injury groups, and between the tau protein level and Basso, Beattie, and Bresnahan locomotor rating scale scores. The tau protein level at 12 hours in the three spinal cord injury groups was negatively correlated with Basso, Beattie, and Bresnahan locomotor rating scale scores at 28 days (serum: r = −0.94; cerebrospinal fluid: r = −0.95). Our data suggest that tau protein levels in serum and cerebrospinal fluid might be a promising biomarker for predicting the severity and functional outcome of traumatic spinal cord injury.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, China
| | - Hong-Liang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ling-Xia Min
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hao-Shi Yuan
- Department of Spine Surgery, Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi Province, China
| | - Lei Guo
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing, China
| | - Peng-Bo Han
- Department of Spine Surgery, Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi Province, China
| | - Yu-Xin Lu
- Department of Spine Surgery, Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi Province, China
| | - Jian-Feng Zhong
- Department of Spine Surgery, Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi Province, China
| | - Dong-Lin Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
41
|
Paim LR, Schreiber R, de Rossi G, Matos-Souza JR, Costa E Silva ADA, Calegari DR, Cheng S, Marques FZ, Sposito AC, Gorla JI, Cliquet A, Nadruz W. Circulating microRNAs, Vascular Risk, and Physical Activity in Spinal Cord-Injured Subjects. J Neurotrauma 2018; 36:845-852. [PMID: 30122113 DOI: 10.1089/neu.2018.5880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to compare the expression of serum microRNAs (miRNAs) in individuals with spinal cord injury (SCI) (athletes [SCI-A] and sedentary [SCI-S]) and able-bodied (AB) individuals, and investigate the relationship of miRNAs with carotid intima-media thickness (cIMT) and serum oxidized LDL-cholesterol (oxLDL) among SCI subjects. Seventeen SCI-S, 23 SCI-A, and 22 AB males were evaluated by clinical and laboratory analysis, and had oxLDL and cIMT measured by enzyme-linked immunosorbent assay (ELISA) and ultrasonography, respectively. A total of 754 miRNAs were measured using a TaqMan OpenArray® Human MicroRNA system. SCI-S subjects had higher cIMT and oxLDL than SCI-A and AB. Compared with AB, only one miRNA was differently expressed in both SCI-A and SCI-S individuals, whereas 25 miRNAs were differently expressed in SCI-S, but not in SCI-A. Of these 25 miRNAs, 22 showed different expression between SCI-S and SCI-A. Several miRNAs correlated with oxLDL and cIMT among all SCI individuals. Notably, miR-125b-5p, miR-146a-5p, miR-328-3p, miR-191-5p, miR-103a-3p, and miR-30b-5p correlated with both oxLDL and cIMT, and showed distinct expression between the SCI-A and SCI-S groups. Gene set enrichment analysis demonstrated that miRNAs related to cIMT and oxLDL may be involved in molecular pathways regulating vascular function and remodeling. In conclusion, this exploratory analysis suggests that variations in circulating miRNA expression in individuals with SCI compared with AB subjects are markedly attenuated by regular physical activity. Several miRNAs may be involved in physical activity-related improvements in vascular risk and remodeling among SCI individuals.
Collapse
Affiliation(s)
- Layde R Paim
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Roberto Schreiber
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme de Rossi
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José R Matos-Souza
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Susan Cheng
- 4 Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Francine Z Marques
- 5 Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,6 Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Andrei C Sposito
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José I Gorla
- 2 School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil
| | - Alberto Cliquet
- 7 Department of Orthopedics, University of Campinas, Campinas, São Paulo, Brazil.,8 Department of Electrical Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Wilson Nadruz
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Kim KT, Streijger F, Manouchehri N, So K, Shortt K, Okon EB, Tigchelaar S, Cripton P, Kwon BK. Review of the UBC Porcine Model of Traumatic Spinal Cord Injury. J Korean Neurosurg Soc 2018; 61:539-547. [PMID: 30196652 PMCID: PMC6129752 DOI: 10.3340/jkns.2017.0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 02/01/2023] Open
Abstract
Traumatic spinal cord injury (SCI) research has recently focused on the use of rat and mouse models for in vivo SCI experiments. Such small rodent SCI models are invaluable for the field, and much has been discovered about the biologic and physiologic aspects of SCI from these models. It has been difficult, however, to reproduce the efficacy of treatments found to produce neurologic benefits in rodent SCI models when these treatments are tested in human clinical trials. A large animal model may have advantages for translational research where anatomical, physiological, or genetic similarities to humans may be more relevant for pre-clinically evaluating novel therapies. Here, we review the work carried out at the University of British Columbia (UBC) on a large animal model of SCI that utilizes Yucatan miniature pigs. The UBC porcine model of SCI may be a useful intermediary in the pre-clinical testing of novel pharmacological treatments, cell-based therapies, and the “bedside back to bench” translation of human clinical observations, which require preclinical testing in an applicable animal model.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea.,Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Peter Cripton
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Abstract
Central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), are important causes of death and long-term disability worldwide. MicroRNA (miRNA), small non-coding RNA molecules that negatively regulate gene expression, can serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. MiRNA-based therapeutics include miRNA mimics and inhibitors (antagomiRs) to respectively decrease and increase the expression of target genes. In this review, we summarize current miRNA-based therapeutic applications in stroke, TBI and SCI. Administration methods, time windows and dosage for effective delivery of miRNA-based drugs into CNS are discussed. The underlying mechanisms of miRNA-based therapeutics are reviewed including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis and neurogenesis. Pharmacological agents that protect against CNS injuries by targeting specific miRNAs are presented along with the challenges and therapeutic potential of miRNA-based therapies.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Ke-Jie Yin
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ke-Jie Yin, Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST S514, Pittsburgh, PA 15213, USA. Da Zhi Liu, Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
miR-411 suppresses acute spinal cord injury via downregulation of Fas ligand in rats. Biochem Biophys Res Commun 2018; 501:501-506. [PMID: 29738767 DOI: 10.1016/j.bbrc.2018.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To explore the role of miR-411/FasL in acute spinal cord injury (ASCI). METHODS The ASCI rat model was established, and expression of miR-411 and Fas ligand (FasL) was examined. Basso, Beattie and Bresnahan (BBB) score was used to evaluate the rats' neurological function. PC12 oxygen-glucose deprivation (OGD) model was also established. Gene manipulation (including miR-411 mimic or inhibitor) was used to modulate gene expression. Luciferase reporter assay was conducted to confirm the targeting relationship between miR-411 and FasL. Flow cytometry was applied in the measurement of PC12 cell apoptosis. Finally, the miR-411 mimic was injected into the vertebral canal of ASCI rats to determine the effects of miR-411 in vivo. RESULTS Compared with sham group, the expression of miR-411 and FasL was significantly decreased and increased in ASCI group, respectively (P < 0.05). Similarly, the expression of miR-411 and FasL was significantly lower and higher in OGD group than that in control group, respectively (P < 0.05). miR-411 directly controlled the FasL expression. miR-411 mimic can dramatically reduce the increased percentage of apoptosis cells caused by OGD when comparing to mimic control, which was greatly reversed by the overexpression of FasL (P < 0.05). Further, the BBB score was significantly elevated in the miR-411 mimic group when comparing to mimic control group, with decreased FasL expression (P < 0.05). CONCLUSION miR-411 mimic suppressed PC12 cell apoptosis via FasL, and relieved ASCI in rats.
Collapse
|
45
|
Zhenbao pill protects against acute spinal cord injury via miR-146a-5p regulating the expression of GPR17. Biosci Rep 2018; 38:BSR20171132. [PMID: 29187582 PMCID: PMC5773823 DOI: 10.1042/bsr20171132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to observe the effect of zhenbao pill on the motor function of acute spinal cord injury (ASCI) rats and the molecular mechanisms involving miR-146a-5p and G-protein-coupled receptor 17 (GPR17). ASCI rat model was established by modified Allen method, and then the rats were divided into three groups. SH-SY5Y cells were cultured overnight in hypoxia condition and transfected with miR-146a-5p mimic or miR-146a-5p inhibitor. The hind limb motor function of the rats was evaluated by Basso, Beattie, Bresnahan (BBB) scoring system. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of miR-146a-5p, GPR17, inducible nitric oxide synthase (iNOS), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α). Neuronal apoptosis was measured using flow cytometry assay. Luciferase reporter assay was performed to determine the regulation of miR-146a-5p on GPR17. Zhenbao pill could enhance hind limb motor function and attenuate the inflammatory response caused by ASCI. Moreover, zhenbao pill increased the level of miR-146a-5p and decreased GPR17 expression in vivo and in vitro Bioinformatics software predicted that GPR17 3'-UTR had a binding site with miR-146a-5p Luciferase reporter assay showed that miR-146a-5p had a negative regulatory effect on GPR17 expression. Knockdown of miR-146a-5p could reverse the effect of zhenbao pill on the up-regulation of GPR17 induced by hypoxia, reversed the inhibitory effect of zhenbao pill on the cell apoptosis induced by hypoxia and the recovery of zhenbao pill on hind limb motor function in ASCI rats. Zhenbao pill could inhibit neuronal apoptosis by regulating miR-146a-5p/GPR17 expression, and then promoting the recovery of spinal cord function.
Collapse
|
46
|
Zhou ZX, Mou SF, Chen XQ, Gong LL, Ge WS. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF‑κB in animal models of acute pharyngitis. Mol Med Rep 2017; 17:1269-1274. [PMID: 29115472 DOI: 10.3892/mmr.2017.7933] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that resveratrol can reduce blood sugar, improve insulin resistance, regulate abnormalities in lipid metabolism, and lower the secretion and expression of inflammatory factors. The present study investigated the anti‑inflammatory effects of resveratrol in animal models of acute pharyngitis, and its possible mechanisms. Commercial ELISA kits were used to measure tumor necrosis factor‑α, interleukin (IL)‑6, macrophage inflammatory protein‑2, cyclooxygenase‑2 levels and caspase‑3/9 activity. Toll‑like receptor (TLR)‑4, myeloid differentiation primary response protein MyD88, phosphorylated (p)‑nuclear factor (NF)‑κB and p‑IκB were analyzed using western blotting. In a rabbit model of acute pharyngitis, it was demonstrated that resveratrol inhibited tumor necrosis factor‑α and interleukin‑6 serum levels, macrophage inflammatory protein‑2 and cyclooxygenase‑2 activity levels, reactive oxygen species production and caspase‑3/9 activity. Resveratrol suppressed NACHT, LRR and PYD domains‑containing protein 3 and caspase‑1 protein expression, and reduced IL‑1β and IL‑18 protein expression in animal models of acute pharyngitis. Additionally, resveratrol suppressed TLR4 and myeloid differentiation primary response protein 88 protein expression, and reduced p‑NF‑κB and increased p‑IκB protein expression in animal models of acute pharyngitis. In conclusion, these findings indicated that the anti‑inflammatory activity of resveratrol prevents acute pharyngitis‑induced inflammation by inhibiting NF‑κB in animal models. Therefore, these data suggested an important clinical application of resveratrol in preventing acute pharyngitis.
Collapse
Affiliation(s)
- Zhong-Xin Zhou
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Shao-Feng Mou
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiao-Qin Chen
- Department of Neonatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Li-Li Gong
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Wen-Sheng Ge
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
47
|
Sha W, Zhang X, Zhou Z, Zhang K. The inhibition of microRNA-31 weakens acute spinal cord injury through nuclear factor-κB and TGF-β/Smad 2 in rat. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9122-9131. [PMID: 31966785 PMCID: PMC6965915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/02/2017] [Indexed: 06/10/2023]
Abstract
Therefore, the aim of the present study is to evaluate that the therapeutic potential of microRNA-31 after spinal cord injury (SCI) in rats and to expound the potential neuroprotective mechanisms. In SCI model, microRNA-31 expression was up-regulated, compared with negative group. In vitro model, over-expression of microRNA-31 increases cell apoptosis and inflammation, compared with negative control group. Over-expression of microRNA-31 induced nuclear factor-κB (NF-κB), TGF-β and p-Smad 2 protein expression in vitro model of SCI, compared with negative control group. NF-κB inhibitor suppressed the effects of microRNA-31 on inflammation of vitro model of SCI. Meanwhile, TGF-β inhibitor suppressed the effects of microRNA-31 on apoptosis of in vitro model of SCI. The results clearly show that anti-microRNA-31 weakens inflammation and apoptosis by NF-κB and TGF-β/Smad 2 pathway in SCI.
Collapse
Affiliation(s)
- Weiping Sha
- Department of Orthopedic Surgery, Zhangjiagang First People's Hospital, Soochow University Zhangjiagang 215600, Jiangsu, China
| | - Xingxiang Zhang
- Department of Orthopedic Surgery, Zhangjiagang First People's Hospital, Soochow University Zhangjiagang 215600, Jiangsu, China
| | - Zhiping Zhou
- Department of Orthopedic Surgery, Zhangjiagang First People's Hospital, Soochow University Zhangjiagang 215600, Jiangsu, China
| | - Kelun Zhang
- Department of Orthopedic Surgery, Zhangjiagang First People's Hospital, Soochow University Zhangjiagang 215600, Jiangsu, China
| |
Collapse
|