1
|
Pan T, Zhang C, Orozco Terwengel P, Wang H, Ding L, Yang L, Hu C, Li W, Zhou W, Wu X, Zhang B. Comparative phylogeography reveals dissimilar genetic differentiation patterns in two sympatric amphibian species. Integr Zool 2024; 19:863-886. [PMID: 37880913 DOI: 10.1111/1749-4877.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Global climate change is expected to have a profound effect on species distribution. Due to the temperature constraints, some narrow niche species could shift their narrow range to higher altitudes or latitudes. In this study, we explored the correlation between species traits, genetic structure, and geographical range size. More specifically, we analyzed how these variables are affected by differences in fundamental niche breadth or dispersal ability in the members of two sympatrically distributed stream-dwelling amphibian species (frog, Quasipaa yei; salamander, Pachyhynobius shangchengensis), in Dabie Mountains, East China. Both species showed relatively high genetic diversity in most geographical populations and similar genetic diversity patterns (JTX, low; BYM, high) correlation with habitat changes and population demography. Multiple clustering analyses were used to disclose differentiation among the geographical populations of these two amphibian species. Q. yei disclosed the relatively shallow genetic differentiation, while P. shangchengensis showed an opposite pattern. Under different historical climatic conditions, all ecological niche modeling disclosed a larger suitable habitat area for Q. yei than for P. shangchengensis; these results indicated a wider environment tolerance or wider niche width of Q. yei than P. shangchengensis. Our findings suggest that the synergistic effects of environmental niche variation and dispersal ability may help shape genetic structure across geographical topology, particularly for species with extremely narrow distribution.
Collapse
Affiliation(s)
- Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Caiwen Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | | | - Hui Wang
- College of Food and Bioengineering, Bengbu University, Bengbu, China
| | - Ling Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Liuyang Yang
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wengang Li
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wenliang Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaobing Wu
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
2
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Liu Y, Bu Y, Wang J, Wei C. Geological events and climate change drive diversification and speciation of mute cicadas in eastern continental Asia. Mol Phylogenet Evol 2023; 184:107809. [PMID: 37172861 DOI: 10.1016/j.ympev.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The poor mobility of nymphs living underground, usually for many years and the weak flying ability of adults make cicadas unique for evolutionary biology and bio-geographical study. Cicadas of the genus Karenia are unusual in Cicadidae in lacking the timbals that produce sound. Population differentiation, genetic structure, dispersal and evolutionary history of the eastern Asian mute cicada Karenia caelatata were investigated based on morphological, acoustic and molecular data. The results reveal a high level of genetic differentiation in this species. Six independent clades with nearly unique sets of haplotypes corresponding to geographically isolated populations are recognized. Genetic and geographic distances are significantly correlated among lineages. The phenotypic differentiation is generally consistent with the high levels of genetic divergence across populations. Results of ecological niche modeling suggest that the potential distribution range of this mountain-habitat specialist during the Last Glacial Maximum was broader than its current range, indicating this species had benefited from the climate change during the early Pleistocene in southern China. Geological events such as orogeny in Southwest China and Pleistocene climate oscillations have driven the differentiation and divergence of this species, and basins, plains and rivers function as natural "barriers" to block the gene flow. Besides significant genetic divergence being found among clades, the populations occurring in the Wuyi Mountains and the Hengduan Mountains are significantly different in the calling song structure from other populations. This may have resulted from significant population differentiation and subsequent adaptation of related populations. We conclude that ecological differences in habitats, coupled with geographical isolation, have driven population divergence and allopatric speciation. This study provides a plausible example of incipient speciation in Cicadidae and improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this unusual cicada species. It informs future studies on population differentiation, speciation and phylogeography of other mountain-habitat insects in the East Asian continent.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China
| | - Yifan Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiali Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Zhong H, Sun Y, Wu H, Li S, Shen Z, Yang C, Wen M, Chen P, Gu Q. Pleistocene climate and geomorphology drive the evolution and phylogeographic pattern of Triplophysa robusta (Kessler, 1876). Front Genet 2022; 13:955382. [PMID: 36171893 PMCID: PMC9510703 DOI: 10.3389/fgene.2022.955382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Montane systems provide excellent opportunities to study the rapid radiation influenced by geological and climatic processes. We assessed the role of Pleistocene climatic oscillations and mountain building on the evolution history of Triplophysa robusta, a cold-adapted species restricted to high elevations in China. We found seven differentiated sublineages of T. robusta, which were established during the Mid Pleistocene 0.87–0.61 Mya. The species distribution modeling (SDM) showed an expansion of T. robusta during the Last Glacial Maximum (LGM) and a considerable retraction during the Last Interglacial (LIG). The deep divergence between Clade I distributed in Qinling Mountains and Clade II in Northeastern Qinghai-Tibet Plateau (QTP) was mainly the result of a vicariance event caused by the rapid uplifting of Qinling Mountains during the Early Pleistocene. While the middling to high level of historical gene flow among different sublineages could be attributed to the dispersal events connected to the repetition of the glacial period during the Pleistocene. Our findings suggested that frequent range expansions and regressions due to Pleistocene glaciers likely have been crucial for driving the phylogeographic pattern of T. robusta. Finally, we urge a burning question in future conservation projection on the vulnerable cold-adapted species endemic to high elevations, as they would be negatively impacted by the recent rapid climate warming.
Collapse
Affiliation(s)
- Hui Zhong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaxian Sun
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huihui Wu
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Shengnan Li
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhongyuan Shen
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Conghui Yang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Wen
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Chen
- Xinjiang Uygur Autonomous Region Fishery Research Institute, Urumchi, China
| | - Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
- *Correspondence: Qianhong Gu,
| |
Collapse
|
5
|
Yang T, Yang K, Zhang Y, Zhou R, Zhang F, Zhan G, Guo Z. Metabolites with antioxidant and α-glucosidase inhibitory activities produced by the endophytic fungi Aspergillus niger from Pachysandra terminalis. Biosci Biotechnol Biochem 2022; 86:1343-1348. [PMID: 35973685 DOI: 10.1093/bbb/zbac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
One new compound and 13 known compounds were isolated from Aspergillus niger, a plant endophytic fungus of Pachysandra terminalis collected from Qinling Mountains, Xi'an, China. The structure of new compound 1 was classically determined by extensive spectroscopic analysis. Compounds 5, 6, 8, and 14 were firstly reported from Aspergillus, while compound 2 was isolated from A. niger for the first time. All isolated compounds were further evaluated for their antioxidant and α-glucosidase inhibitory activities. Compounds 2 and 3 exhibited significant antioxidant activities with IC50 values of 31.64 μm and 24.32 μm, respectively, similar to the positive control ascorbic acid. Additionally, compound 1 displayed remarkable inhibitory activity against α-glucosidase with an IC50 value of 96.25 μm, which was 3.4-fold more potent than that of the positive control acarbose. Compound 1 has great potential for development as a new lead compound owing to its simple structure and remarkable biological activity.
Collapse
Affiliation(s)
- Tao Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Kailing Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Ruixi Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fuxin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Guanqun Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
6
|
Chen T, Jiao L, Ni L. The phylogeographical pattern of the Amur minnow Rhynchocypris lagowskii (Cypriniformes: Cyprinidae) in the Qinling Mountains. Ecol Evol 2022; 12:e8924. [PMID: 35600689 PMCID: PMC9108317 DOI: 10.1002/ece3.8924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, the phylogeographical pattern of the Amur minnow (Rhynchocypris lagowskii) widely distributed in the cold freshwaters of the Qinling Mountains was examined. A total of 464 specimens from 48 localities were sequenced at a 540-bp region of the mitochondrial cytochrome b (Cytb) gene, and 69 haplotypes were obtained. The mean ratio of the number of synonymous and nonsynonymous substitutions per site (dN/dS) was 0.028 and indicated purifying selection. Haplotype diversity (h) and nucleotide diversity (π) of natural populations of R. lagowskii varied widely between distinct localities. Phylogenetic trees based on Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and network analysis showed five well-differentiated lineages, but these did not completely correspond to localities and geographic distribution. Meanwhile, analysis of molecular variances (AMOVA) indicated the highest proportion of genetic variation was attributed to the differentiation between populations rather than by our defined lineages. In addition, there was no significant correlation between the pairwise Fst values and geographic distance (p > .05). Based on the molecular clock calibration, the time to the most recent common ancestor (TMRCA) was estimated to have emerged from the Late Miocene to the Early Pleistocene. Finally, the results of demographic history based on the neutrality test, mismatch distribution, and Bayesian skyline plot (BSP) analyses showed that collectively, the populations were stable during the Pleistocene while one lineage (lineage E) probably underwent a slight contraction during the Middle Pleistocene and a rapid expansion from the Middle to the Late Pleistocene. Therefore, the study suggests the current phylogeographical pattern of R. lagowskii was likely shaped by geological events that led to vicariance followed by dispersal and secondary contact, river capture, and climatic oscillation during the Late Miocene to the Early Pleistocene in the Qinling Mountains.
Collapse
Affiliation(s)
- Tao Chen
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilinP.R. China
- Faculty of Basic Medical SciencesGuilin Medical UniversityGuilinP.R. China
| | - Li Jiao
- College of Life SciencesShaanxi Normal UniversityXi’anP.R. China
| | - Lili Ni
- College of Life SciencesShaanxi Normal UniversityXi’anP.R. China
| |
Collapse
|
7
|
Wang F, Li M, Zheng H, Dong T, Zhang X. A Phylogeographical Analysis of the Beetle Pest Species Callosobruchus chinensis (Linnaeus, 1758) in China. INSECTS 2022; 13:145. [PMID: 35206719 PMCID: PMC8878040 DOI: 10.3390/insects13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
Callosobruchus chinensis (Coleoptera Bruchidae), is a pest of different varieties of legumes. In this paper, a phylogeographical analysis of C. chinensis was conducted to provide knowledge for the prevention and control of C. chinensis. A total of 224 concatenated mitochondrial sequences were obtained from 273 individuals. Suitable habitat shifts were predicted by the distribution modelling (SDM). Phylogeny, genetic structure and population demographic history were analyzed using multiple software. Finally, the least-cost path (LCP) method was used to identify possible dispersal corridors and genetic connectivity. The SDM results suggested that the distribution of C. chinensis experienced expansion and contraction with changing climate. Spatial distribution of mtDNA haplotypes showed there was partial continuity among different geographical populations of C. chinensis, except for the Hohhot (Inner Mongolia) population. Bayesian skyline plots showed that the population had a recent expansion during 0.0125 Ma and 0.025 Ma. The expansion and divergent events were traced back to Quaternary glaciations. The LCP method confirmed that there were no clear dispersal routes. Our findings indicated that climatic cycles of the Pleistocene glaciations, unsuitable climate and geographic isolation played important roles in the genetic differentiation of C. chinensis. Human activities weaken the genetic differentiation between populations. With the change in climate, the suitable areas of C. chinensis will disperse greatly in the future.
Collapse
Affiliation(s)
- Fang Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Min Li
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China;
| | - Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Tian Dong
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| |
Collapse
|
8
|
Zhang P, Zeng X, Fu J, Zheng Y. UCE Phylogenomics, detection of a putative hybrid population, and one older mitogenomic node age of Batrachuperus salamanders. Mol Phylogenet Evol 2021; 163:107239. [PMID: 34214665 DOI: 10.1016/j.ympev.2021.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/30/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
The prevalence of incomplete lineage sorting complicates the examination of hybridization and species-level paraphyly with gene trees of a small number of loci. In Asian mountain salamanders of the genus Batrachuperus, possible hybridization and species paraphyly had been identified by utilizing mitochondrial genealogy and fixed allozyme differences. Here we sampled 2909 UCEs in 44 local populations from all six Batrachuperus species, inferred gene and species trees, compared them with mitochondrial and allozyme results, and examined the potential hybridization and species paraphyly. The clustering pattern of single-locus trees, increased proportion of heterozygous SNPs, allele frequency-based migration edge estimation, and intrapopulation long branches (as expected from an increase of genetic lineage and nucleotide diversity) support that an eastern B. karlschmidti population has experienced admixture with B. tibetanus. On the 2909-UCE concatenated and species trees, lower nodal supports were observed when similar proportions of loci agreed with alternative topologies, i.e., a reciprocal monophyly between a Pengxian lineage and the remainder of B. pinchonii (0.379) or a paraphyly of the latter with respect to Pengxian (0.362). The UCE phylogenomics agreed with the relatively recent groupings in the allozyme dendrogram. Despite incomplete lineage sorting, the mitochondrial trees were similar to the UCE trees for deeper relationships of the genus. However, one significant branch-length level discordance was identified. The branch between the common ancestor of B. daochengensis and B. yenyuanensis and common ancestor of the genus was approximately three times shorter on the mitochondrial tree than on the UCE tree, suggesting that the split of the mitochondrial lineages was likely a few million years earlier than the split of species. This finding supports considering possible ancestral polymorphism when interpreting different divergence dates estimated from mitochondrial and genome-wide data.
Collapse
Affiliation(s)
- Pizhu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Yu L, Zhao S, Shi Y, Meng F, Xu C. Evolutionary history of the oriental fire-bellied toad ( Bombina orientalis) in Northeast China. Ecol Evol 2021; 11:4232-4242. [PMID: 33976806 PMCID: PMC8093726 DOI: 10.1002/ece3.7318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
The evolutionary history of a species is generally affected by the combination of geological events and climate fluctuations. By analyzing the population features, genetic structure and the effective population historical dynamics of existing species, the population evolutionary history can be reestablished. In recent years, geological evidence shows that the Yilan-Yitong fault zone located in Northeast Asia experienced strong and frequent geological changes in the late Quaternary period. Species population history has been shaped by the combination of the complex climatic conditions of the Quaternary and Pleistocene glacial interglacial cycles and palaeogeological events in Northeast Asia and it has become a research focus for evolutionary biology researchers. In this study, mitochondrial and microsatellite molecular markers were used to reveal the population features, genetic structure, and the effective population historical dynamics of the Oriental fire-bellied toad (Bombina orientalis). The results showed that the strong seismic activity of the Yilan-Yitong fault zone in the late Quaternary period was the main reason for the population differentiation of Oriental fire-bellied toad in northeast China. The Quaternary Pleistocene glacial interglacial cycles led to the significant bottleneck effect of the western population located in the Maoer mountain area. As a result, the western population has low genetic diversity. Recent gene flow between eastern and western populations and historical evidence of population expansion proved that the dispersal behavior of the western populations was the main cause of the low genetic diversity and mitochondrial and nuclear discordance. Human economic activity may be the mainly driving factor. These evidences showed that the comprehensive influence of geology, climate, human activities and other factors should be considered in the process of exploring the evolutionary history of species.
Collapse
Affiliation(s)
- Liqun Yu
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Shuai Zhao
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Yanshuang Shi
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Fanbing Meng
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Chunzhu Xu
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
10
|
Spatial Genetic Structure and Demographic History of the Wild Boar in the Qinling Mountains, China. Animals (Basel) 2021; 11:ani11020346. [PMID: 33572967 PMCID: PMC7912324 DOI: 10.3390/ani11020346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The wild boar is native to the temperate region of Eurasia, which is now one of the most widely distributed mammals worldwide. The recent expansion in the wild boar population has attracted a lot of attention, which may cause great damage to ecosystems. Elucidating the patterns of the population structure, genetic diversity, population origin, and colonization route of wild boar is very helpful in the conservation and management of wild populations. Phylogeographic analysis has proven to be a powerful tool. Here, 82 samples of wild boars in 16 sampling locations were collected in Qinling Mountains (QM). Genetic analysis was conducted based on the mitochondrial control region and nuclear genes. The level of genetic diversity of wild boars in QM was lower than the total population in East Asia, but higher than European population. No obvious phylogeographic pattern were found. The effective population size was under demographic equilibrium in the past. Abstract Species dispersal patterns and population genetic structure can be influenced by geographical features. Qinling Mountains (QM) provide an excellent area for phylogeographic study. The phylogeography of Asian-wide wild boars revealed the colonization route. However, the impact of the QM on genetic diversity, genetic structure and population origin is still poorly understood. In this study, genetic analysis of wild boar in the QM was conducted based on the mitochondrial control region (943 bp) and twelve microsatellite loci of 82 individuals in 16 sampling locations. Overall genetic haplotype diversity was 0.86, and the nucleotide diversity was 0.0079. A total of 17 new haplotypes were detected. The level of genetic diversity of wild boars in QM was lower than in East Asia, but higher than in Europe. Phylogenetic analysis showed the weak genetic divergence in QM. Mismatch analysis, neutrality tests, and Bayesian Skyline Plot (BSP) results revealed that the estimates of effective population size were under demographic equilibrium in the past. Spatial analysis of molecular variance indicated no obvious phylogeographic structure.
Collapse
|
11
|
Weng YM, Kavanaugh DH, Schoville SD. Drainage basins serve as multiple glacial refugia for alpine habitats in the Sierra Nevada Mountains, California. Mol Ecol 2020; 30:826-843. [PMID: 33270315 DOI: 10.1111/mec.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
The evolutionary histories of alpine species are often directly associated with responses to glaciation. Deep divergence among populations and complex patterns of genetic variation have been inferred as consequences of persistence within glacier boundaries (i.e., on nunataks), while shallow divergence and limited genetic variation are assumed to result from expansion from large refugia at the edge of ice shields (i.e., massifs de refuge). However, for some species, dependence on specific microhabitats could profoundly influence their spatial and demographic response to glaciation, and such a simple dichotomy may obscure the localization of actual refugia. In this study, we use the Nebria ingens complex (Coleoptera: Carabidae), a water-affiliated ground beetle lineage, to test how drainage basins are linked to their observed population structure. By analysing mitochondrial COI gene sequences and genome-wide single nucleotide polymorphisms, we find that the major drainage systems of the Sierra Nevada Mountains in California best explain the population structure of the N. ingens complex. In addition, we find that an intermediate morphotype within the N. ingens complex is the product of historical hybridization of N. riversi and N. ingens in the San Joaquin basin during glaciation. This study highlights the importance of considering ecological preferences in how species respond to climate fluctuations and provides an explanation for discordances that are often observed in comparative phylogeographical studies.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - David H Kavanaugh
- Department of Entomology, California Academy of Sciences, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Shahzad K, Liu M, Zhao Y, Zhang T, Liu J, Li Z. Evolutionary history of endangered and relict tree species Dipteronia sinensis in response to geological and climatic events in the Qinling Mountains and adjacent areas. Ecol Evol 2020; 10:14052-14066. [PMID: 33391701 PMCID: PMC7771168 DOI: 10.1002/ece3.6996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Geological and climatic events are considered to profoundly affect the evolution and lineage divergence of plant species. However, the evolutionary histories of tree species that have responded to past geological and climate oscillations in central China's mountainous areas remain mostly unknown. In this study, we assessed the evolutionary history of the endangered and relict tree species Dipteronia sinensis in the Qinling Mountains (QM) and adjacent areas in East Asia based on variations in the complete chloroplast genomes (cpDNA) and reduced-genomic scale single nucleotide polymorphisms (SNPs). Population structure and phylogenetic analysis based on the cpDNA variations suggested that D. sinensis could be divided into two intraspecific genetic lineages in the eastern and western sides of the QM (EQM and WQM, respectively) in East Asia. Molecular dating suggested that the intraspecific divergence of D. sinensis occurred approximately 39.2 million years ago during the later Paleogene. It was significantly correlated with the orogeny of the QM, where the formation of this significant geographic barrier in the region may have led to the divergence of independent lineages. Bayesian clustering and demographic analysis showed that intraspecific gene flow was restricted between the EQM and WQM lineages. Isolation-with-migration analysis indicated that the two genetic lineages experienced significant demographic expansions after the Pleistocene ice ages. However, the genetic admixture was determined in some populations between the two lineages by the large scale of SNP variations due to DNA incompatibility, the large significant population size, and rapid gene flow of nuclear DNA markers. Our results suggest that two different conservation and management units should be constructed for D. sinensis in the EQM and WQM areas. These findings provide novel insights into the unprecedented effects of tectonic changes and climatic oscillations on lineage divergence and plant population evolution in the QM and adjacent areas in East Asia.
Collapse
Affiliation(s)
- Khurram Shahzad
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Mi‐Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Yu‐He Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ting‐Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Jian‐Ni Liu
- Department of GeologyEarly Life InstituteState Key Laboratory of Continental DynamicsNorthwest UniversityXi'anChina
| | - Zhong‐Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| |
Collapse
|
13
|
Gao K, Li MD, Hua BZ. Two new species of Cerapanorpa (Mecoptera, Panorpidae) from the Qinling and Minshan mountains. Zookeys 2020; 971:17-30. [PMID: 33061771 PMCID: PMC7529829 DOI: 10.3897/zookeys.971.55819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Two new species of Cerapanorpa Gao, Ma & Hua, 2016 are described from the Qinling and Minshan mountains, respectively. Cerapanorpa qinlingensis sp. nov. can be readily distinguished from its congeners by the elongate hypovalves and the extremely developed basal process of gonostylus in male genitalia. Cerapanorpa minshana sp. nov. is characterized by its bifurcated parameres and a cluster of long black bristles on the inner apex of the gonocoxite. The number of species of Cerapanorpa is raised to 21. An updated key to species of Cerapanorpa is presented.
Collapse
Affiliation(s)
- Kai Gao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China Northwest A&F University Yangling China
| | - Meng-Di Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China Northwest A&F University Yangling China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China Northwest A&F University Yangling China
| |
Collapse
|
14
|
Yong Huang, Xiong J, Brown PB, Sun X. Identification and Characteristics of Batrachuperus karlschmidti miRNA Using Illumina Deep Sequencing. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Chen T, Chen J, Tang L, Chen X, Yan J, You P. Phylogeography and demographic history of Gyrodactylus konovalovi (Monogenoidea: Gyrodactylidae), an ectoparasite on the East Asia Amur minnow (Cyprinidae) in Central China. Ecol Evol 2020; 10:1454-1468. [PMID: 32076527 PMCID: PMC7029060 DOI: 10.1002/ece3.6000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
Gyrodactylus konovalovi is an ectoparasite on the Amur minnow (Rhynchocypris lagowskii) that is widely distributed in the cold fresh waters of East Asia. In the present study, the phylogeography and demographic history of G. konovalovi and the distribution of its host in the Qinling Mountains are examined. A total of 79 individual parasites was sequenced for a 528 bp region of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene, and 25 haplotypes were obtained. The substitution rate (dN/dS) was 0.068 and indicated purifying selection. Haplotype diversity (h) and nucleotide diversity (π) varied widely in the Qinling Mountains. Phylogenetic trees based on Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods and network analysis revealed that all haplotypes were consistently well-supported in three different lineages, indicating a significant geographic distribution pattern. There was a significant positive correlation between genetic differentiation (F st) and geographic distance. The results of mismatch distribution, neutrality test and Bayesian skyline plot analyses showed that whole populations underwent population contraction during the Pleistocene. Based on the molecular clock calibration, the most common ancestor was estimated to have emerged in the middle Pleistocene. Our study suggests for the first time that a clearly phylogeography of G. konovalovi was shaped by geological events and climate fluctuations, such as orogenesis, drainage capture changes, and vicariance, during the Pleistocene in the Qinling Mountains.
Collapse
Affiliation(s)
- Tao Chen
- College of Life SciencesShaanxi Normal UniversityXi’anChina
- College of Chemistry and BioengineeringGuilin University of TechnologyGuilinChina
| | - Juan Chen
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Ling Tang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Xiaoning Chen
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Jun Yan
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Ping You
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| |
Collapse
|
16
|
Xu X, Cheng F, Peng L, Sun Y, Hu X, Li S, Xian H, Jia K, Abbott RJ, Mao J. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling-Daba Mountains, a major glacial refugium in Central China. Ecol Evol 2019; 9:7528-7548. [PMID: 31346420 PMCID: PMC6635923 DOI: 10.1002/ece3.5284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling-Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling-Daba Mountains of Central China.
Collapse
Affiliation(s)
- Xing‐Xing Xu
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Fang‐Yun Cheng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Li‐Ping Peng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Yan‐Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - San‐Yuan Li
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Hong‐Li Xian
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Richard J. Abbott
- School of Biology, Mitchell BuildingUniversity of St AndrewsSt AndrewsFifeUK
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
17
|
Huang Y, Xiong J, Brown PB, Sun X. Discovery of MicroRNAs from Batrachuperus yenyuanensis Using Deep Sequencing and Prediction of Their Targets. BIOCHEMISTRY (MOSCOW) 2019; 84:380-389. [PMID: 31228929 DOI: 10.1134/s0006297919040059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs), a family of ∼22-nucleotide non-coding single-stranded RNA molecules, are considered as key post-transcriptional regulators of gene expression that regulate various biological processes in living organism. Many miRNAs have been identified in animals; however, few have been reported in Hynobiidae species. The present study is aimed to identify a full repertoire of miRNAs in Batrachuperus yenyuanensis (Yenyuan stream salamander), which would significantly increase our knowledge of miRNAs in amphibians. A small RNA library was constructed from B. yenyuanensis and sequenced using deep sequencing. As a result, 1,717,751 clean reads were obtained, representing 356 known and 80 novel miRNAs. Additionally, expression levels of eight randomly selected miRNAs in B. yenyuanensis were confirmed using the stem-loop quantitative real-time reverse transcription PCR. In addition, 13,972 targets were predicted for these identified miRNAs, although the physiological functions of many of these targets remain unknown. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the predicted targets are involved in a variety of physiological regulatory functions in B. yenyuanensis. These results provide useful information for further research on the miRNAs involved in the growth and development of B. yenyuanensis, as well as adaptation of this species to its high-altitude habitats.
Collapse
Affiliation(s)
- Y Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - J Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - P B Brown
- Purdue University, Department of Forestry and Natural Resources, West Lafayette, IN 47907, USA
| | - X Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
18
|
Pan T, Wang H, Orozcoterwengel P, Hu CC, Wu GY, Qian LF, Sun ZL, Shi WB, Yan P, Wu XB, Zhang BW. Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia. BMC Evol Biol 2019; 19:1. [PMID: 30606099 PMCID: PMC6318985 DOI: 10.1186/s12862-018-1333-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Climate oscillation may have a profound effect on species distributions, gene flow patterns and population demography. In response to environmental change, those species restricted to montane habitats experienced expansions and contractions along elevation gradients, which can drive differentiation among sky islands. RESULTS The Shangcheng stout salamander (Pachyhynobius shangchengensis) is a cool stream amphibian restricted to high-elevation areas in the Dabie Mountains, East China. In the present study, we used mtDNA genes (Cyt b and ND2) of 193 individuals and 12 nuclear microsatellite loci genotyped on 370 individuals, representing 6 populations (JTX, KHJ, MW, TTZ, BYM and KJY) across the taxon's distribution area, to investigate their genetic variation and evolutionary history of P. shangchengensis. Most populations showed unusually high levels of genetic diversity. Phylogenetic analyses revealed five monophyletic clades with divergence times ranging from 3.96 to 1.4 Mya. Accordingly, significant genetic differentiation was present between these populations. Bayesian skyline plot analyses provided that all populations underwent long-term population expansions since the last inter-glacial (0.13 Mya ~ 0.12 Mya). Msvar analyses found recent signals of population decline for two northern populations (JTX and KHJ) reflecting a strong bottleneck (approximately 15-fold decrease) during the mid-Holocene (about 6000 years ago). Ecological niche modelling has shown a discontinuity in suitable habitats for P. shangchengensis under different historical climatic conditions. CONCLUSIONS Our results suggest that the niche conservatism of P. shangchengensis and sky island effects may have led to long-term isolation between populations. In sky island refuges, the mid-latitude Dabie Mountains have provided a long-term stable environment for P. shangchengensis, which has led to the accumulation of genetic diversity and has promoted genetic divergence.
Collapse
Affiliation(s)
- Tao Pan
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- School of Life Sciences, Anhui Normal University, Wuhu, 241000 Anhui China
| | - Hui Wang
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
| | | | - Chao-Chao Hu
- Analytical and Testing Center, Nanjing Normal University, Nanjing, 210046 Jiangsu China
| | - Gui-You Wu
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
| | - Li-Fu Qian
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
| | - Zhong-Lou Sun
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
| | - Wen-Bo Shi
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
| | - Peng Yan
- School of Life Sciences, Anhui Normal University, Wuhu, 241000 Anhui China
| | - Xiao-Bing Wu
- School of Life Sciences, Anhui Normal University, Wuhu, 241000 Anhui China
| | - Bao-Wei Zhang
- Anhui Key Laboratory of Eco–engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Hu G, Hua Y, Hebert PDN, Hua B. Evolutionary history of the scorpionfly
Dicerapanorpa magna
(Mecoptera, Panorpidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Gui‐Lin Hu
- Key Laboratory of Plant Protection Resources and Pest Management Ministry of Education College of Plant Protection Northwest A&F University Yangling China
| | - Yuan Hua
- Key Laboratory of Plant Protection Resources and Pest Management Ministry of Education College of Plant Protection Northwest A&F University Yangling China
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics University of Guelph Guelph Ontario Canada
| | - Bao‐Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management Ministry of Education College of Plant Protection Northwest A&F University Yangling China
| |
Collapse
|