1
|
Widrig KE, Navalón G, Field DJ. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system. J Morphol 2024; 285:e21710. [PMID: 38760949 DOI: 10.1002/jmor.21710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Lithornithidae, an assemblage of volant Palaeogene fossil birds, provide our clearest insights into the early evolutionary history of Palaeognathae, the clade that today includes the flightless ratites and volant tinamous. The neotype specimen of Lithornis vulturinus, from the early Eocene (approximately 53 million years ago) of Europe, includes a partial neurocranium that has never been thoroughly investigated. Here, we describe these cranial remains including the nearly complete digital endocasts of the brain and bony labyrinth. The telencephalon of Lithornis is expanded and its optic lobes are ventrally shifted, as is typical for crown birds. The foramen magnum is positioned caudally, rather than flexed ventrally as in some crown birds, with the optic lobes, cerebellum, and foramen magnum shifted further ventrally. The overall brain shape is similar to that of tinamous, the only extant clade of flying palaeognaths, suggesting that several aspects of tinamou neuroanatomy may have been evolutionarily conserved since at least the early Cenozoic. The estimated ratio of the optic lobe's surface area relative to the total brain suggests a diurnal ecology. Lithornis may provide the clearest insights to date into the neuroanatomy of the ancestral crown bird, combining an ancestrally unflexed brain with a caudally oriented connection with the spinal cord, a moderately enlarged telencephalon, and ventrally shifted, enlarged optic lobes.
Collapse
Affiliation(s)
- Klara E Widrig
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
- Fossil Reptiles, Amphibians and Birds Section, The Natural History Museum, London, UK
| |
Collapse
|
2
|
Benoit J, Araujo R, Lund ES, Bolton A, Lafferty T, Macungo Z, Fernandez V. Early synapsids neurosensory diversity revealed by CT and synchrotron scanning. Anat Rec (Hoboken) 2024. [PMID: 38600433 DOI: 10.1002/ar.25445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Non-mammaliaform synapsids (NMS) represent the closest relatives of today's mammals among the early amniotes. Exploring their brain and nervous system is key to understanding how mammals evolved. Here, using CT and Synchrotron scanning, we document for the first time three extreme cases of neurosensory and behavioral adaptations that probe into the wide range of unexpected NMS paleoneurological diversity. First, we describe adaptations to low-frequency hearing and low-light conditions in the non-mammalian cynodont Cistecynodon parvus, supporting adaptations to an obligatory fossorial lifestyle. Second, we describe the uniquely complex and three-dimensional maxillary canal morphology of the biarmosuchian Pachydectes elsi, which suggests that it may have used its cranial bosses for display or low-energy combat. Finally, we introduce a paleopathology found in the skull of Moschognathus whaitsi. Since the specimen was not fully grown, this condition suggests the possibility that this species might have engaged in playful fighting as juveniles-a behavior that is both social and structured. Additionally, this paper discusses other evidence that could indicate that tapinocephalid dinocephalians were social animals, living and interacting closely with one another. Altogether, these examples evidence the wide range of diversity of neurological structures and complex behavior in NMS.
Collapse
Affiliation(s)
- J Benoit
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R Araujo
- Instituto de Plasmas e Fusão Nuclear, InstitutoSuperior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - E S Lund
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A Bolton
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - T Lafferty
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Z Macungo
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - V Fernandez
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
3
|
Bronzati M, Langer MC, Ezcurra MD, Stocker MR, Nesbitt SJ. Braincase and neuroanatomy of the lagerpetid Dromomeron gregorii (Archosauria, Pterosauromorpha) with comments on the early evolution of the braincase and associated soft tissues in Avemetatarsalia. Anat Rec (Hoboken) 2024; 307:1147-1174. [PMID: 37794742 DOI: 10.1002/ar.25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
The anatomy of the braincase and associated soft tissues of the lagerpetid Dromomeron gregorii (Archosauria: Avemetatarsalia) from the Late Triassic of the United States is here described. This corresponds to the first detailed description of cranial materials of Lagerpetidae, an enigmatic group of Late Triassic (c. 236-200 Million years ago) animals that are the closest known relatives of pterosaurs, the flying reptiles. The braincase of D. gregorii is characterized by the presence of an anteriorly elongated laterosphenoid and a postparietal, features observed in stem-archosaurs but that were still unknown in early members of the avian lineage of archosaurs. Using micro-computed tomography (CT-scan data), we present digital reconstructions of the brain and endosseous labyrinth of D. gregorii. The brain of D. gregorii exhibits a floccular lobe of the cerebellum that projects within the space of the semicircular canals. The semicircular canals are relatively large when compared to other archosauromorphs, with the anterior canal exhibiting a circular shape. These features of the sensory structures of D. gregorii are more similar to those of pterosaurs than to those of other early avemetatarsalians. In sum, the braincase anatomy of D. gregorii shows a combination of plesiomorphic and apomorphic features in the phylogenetic context of Archosauria and suggests that the still poorly understood early evolution of the braincase in avemetatarsalians is complex, with a scenario of independent acquisitions and losses of character states.
Collapse
Affiliation(s)
- Mario Bronzati
- Fachbereich Geowissenschaften der Eberhard Karls University Tübingen, Tübingen, Germany
| | - Max C Langer
- Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA
- Vertebrate Paleontology Collection, The University of Texas at Austin, Austin, Texas, USA
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA
- Vertebrate Paleontology Collection, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Yu C, Watanabe A, Qin Z, Logan King J, Witmer LM, Ma Q, Xu X. Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda). Commun Biol 2024; 7:168. [PMID: 38341492 PMCID: PMC10858883 DOI: 10.1038/s42003-024-05832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Many modifications to the skull and brain anatomy occurred along the lineage encompassing non-avialan theropod dinosaurs and modern birds. Anatomical changes to the endocranium include an enlarged endocranial cavity, relatively larger optic lobes that imply elevated visual acuity, and proportionately smaller olfactory bulbs that suggest reduced olfactory capacity. Here, we use micro-computed tomographic (μCT) imaging to reconstruct the endocranium and its neuroanatomical features from an exceptionally well-preserved skull of Sinovenator changii (Troodontidae, Theropoda). While its overall morphology resembles the typical endocranium of other troodontids, Sinovenator also exhibits unique endocranial features that are similar to other paravian taxa and non-maniraptoran theropods. Landmark-based geometric morphometric analysis on endocranial shape of non-avialan and avialan dinosaurs points to the overall brain morphology of Sinovenator most closely resembling that of Archaeopteryx, thus indicating acquisition of avialan-grade brain morphology in troodontids and wide existence of such architecture in Maniraptora.
Collapse
Affiliation(s)
- Congyu Yu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
| | - Akinobu Watanabe
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Zichuan Qin
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
| | - J Logan King
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, 45701, USA
| | - Qingyu Ma
- Chongqing Laboratory of Geological Heritage Protection and Research, No. 208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geology and Minerals Exploration, Chongqing, 401121, China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, 650091, China.
- Paleontological Museum of Liaoning, Shenyang Normal University, Liaoning Province, 253 North Huanghe Street, Shenyang, 110034, China.
| |
Collapse
|
5
|
Taylor PJ, Nengovhela A, Denys C, Scott GR, Ivy CM. Adaptation in brain structure and respiratory and olfactory structures across environmental gradients in African and North American muroid rodents. Integr Zool 2024; 19:165-181. [PMID: 38044327 DOI: 10.1111/1749-4877.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Morphometric studies of 3D micro CT-scanned images can provide insights into the evolution of the brain and sensory structures but such data are still scarce for the most diverse mammalian order of rodents. From reviewed and new data, we tested for convergence to extreme aridity and high elevation in the sensory and brain morphology of rodents, from morphometric data from micro-CT X-ray scans of 174 crania of 16 species of three distantly related African murid (soft-furred mice, Praomyini, laminate-toothed rats, Otomyini, and gerbils, Gerbillinae) clades and one North American cricetid (deer mice and white-footed mice, Peromyscus) clade. Recent studies demonstrated convergent evolution acting on the oval window area of the cochlea (enlarged in extremely arid-adapted species of Otomyini and Gerbillinae) and on endocranial volume (reduced in high elevation taxa of Otomyini and Peromyscus). However, contrary to our predictions, we did not find evidence of convergence in brain structure to aridity, or in the olfactory/respiratory system (turbinate bones) to high elevation. Brain structure differed, particularly in the petrosal lobules of the cerebellum and the olfactory bulbs, between Otomyini and Gerbillinae, with extreme arid-adapted species in each clade being highly divergent (not convergent) from other species in the same clade. We observed greater "packing" of the maxillary turbinate bones, which have important respiratory functions, in Peromyscus mice from high and low elevations compared to the high-elevation African Praomyini, but more complex patterns within Peromyscus, probably related to trade-offs in respiratory physiology and heat exchange in the nasal epithelium associated with high-elevation adaptation.
Collapse
Affiliation(s)
- Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Catherine M Ivy
- Guglielmo and Shoemaker Labs, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Schwab JA, Figueirido B, Martín-Serra A, van der Hoek J, Flink T, Kort A, Esteban Núñez JM, Jones KE. Evolutionary ecomorphology for the twenty-first century: examples from mammalian carnivores. Proc Biol Sci 2023; 290:20231400. [PMID: 38018109 PMCID: PMC10685142 DOI: 10.1098/rspb.2023.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Carnivores (cats, dogs and kin) are a diverse group of mammals that inhabit a remarkable range of ecological niches. While the relationship between ecology and morphology has long been of interest in carnivorans, the application of quantitative techniques has resulted in a recent explosion of work in the field. Therefore, they provide a case study of how quantitative techniques, such as geometric morphometrics (GMM), have impacted our ability to tease apart complex ecological signals from skeletal anatomy, and the implications for our understanding of the relationships between form, function and ecological specialization. This review provides a synthesis of current research on carnivoran ecomorphology, with the goal of illustrating the complex interaction between ecology and morphology in the skeleton. We explore the ecomorphological diversity across major carnivoran lineages and anatomical systems. We examine cranial elements (skull, sensory systems) and postcranial elements (limbs, vertebral column) to reveal mosaic patterns of adaptation related to feeding and hunting strategies, locomotion and habitat preference. We highlight the crucial role that new approaches have played in advancing our understanding of carnivoran ecomorphology, while addressing challenges that remain in the field, such as ecological classifications, form-function relationships and multi-element analysis, offering new avenues for future research.
Collapse
Affiliation(s)
- Julia A. Schwab
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Julien van der Hoek
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Therese Flink
- Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, 10405 Stockholm, Sweden
| | - Anne Kort
- Department of Earth and Atmospheric Sciences, Indiana University Bloomington, 1001 E 10th St, Bloomington, IN, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Ave, Ann Arbor, MI 48109, USA
| | | | - Katrina E. Jones
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
7
|
Bazzana-Adams KD, Evans DC, Reisz RR. Neurosensory anatomy and function in Dimetrodon, the first terrestrial apex predator. iScience 2023; 26:106473. [PMID: 37096050 PMCID: PMC10122045 DOI: 10.1016/j.isci.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
Dimetrodon is among the most recognizable fossil taxa, as well as the earliest terrestrial amniote apex predator. The neuroanatomy and auditory abilities of Dimetrodon has long been the subject of interest, but palaeoneurological analyses have been limited by the lack of three-dimensional endocast data. The first virtual endocasts reveal a strongly flexed brain with enlarged floccular fossae and a surprisingly well-ossified bony labyrinth clearly preserving the semicircular canals, along with an undifferentiated vestibule and putative perilymphatic duct. This first detailed palaeoneurological reconstruction reveals potential adaptations for a predatory lifestyle and suggests Dimetrodon was able to hear a wider range of frequencies than anticipated, potentially being sensitive to frequencies equal to or higher than many extant sauropsids, despite lacking an impedance matching ear. Ancestral state reconstructions support the long-standing view of Dimetrodon as representative of the ancestral state for therapsids, while underscoring the importance of validating reconstructive analyses with fossil data.
Collapse
Affiliation(s)
- Kayla D. Bazzana-Adams
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - David C. Evans
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Robert R. Reisz
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- International Center of Future Science, Dinosaur Evolution Research Center, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
At the root of the mammalian mind: The sensory organs, brain and behavior of pre-mammalian synapsids. PROGRESS IN BRAIN RESEARCH 2023; 275:25-72. [PMID: 36841570 DOI: 10.1016/bs.pbr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e., they had a small brain, displayed simple behavior, and their sensory organs were unrefined compared to those of modern mammals. Recent works have, however, revealed that neurological, sensory, and behavioral traits previously considered typically mammalian, such as whiskers, enhanced olfaction, nocturnality, parental care, and complex social interactions evolved before the origin of Mammaliaformes, among the early-diverging "mammal-like reptiles." In contrast, an enlarged brain did not evolve immediately after the origin of mammaliaforms. As such, in terms of paleoneurology, the last "mammal-like reptiles" were not significantly different from the earliest mammaliaforms. The abundant data and literature published in the last 10 years no longer supports the "three pulses" scenario of synapsid brain evolution proposed by Rowe and colleagues in 2011, but supports the new "outside-in" model of Rodrigues and colleagues proposed in 2018, instead. As Mesozoic reptiles were becoming the dominant taxa within terrestrial ecosystems, synapsids gradually adapted to smaller body sizes and nocturnality. This resulted in a sensory revolution in synapsids as olfaction, audition, and somatosensation compensated for the loss of visual cues. This altered sensory input is aligned with changes in the brain, the most significant of which was an increase in relative brain size.
Collapse
|
9
|
Barker CT, Naish D, Trend J, Michels LV, Witmer L, Ridgley R, Rankin K, Clarkin CE, Schneider P, Gostling NJ. Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae). J Anat 2023; 242:1124-1145. [PMID: 36781174 PMCID: PMC10184548 DOI: 10.1111/joa.13837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
The digital reconstruction of neurocranial endocasts has elucidated the gross brain structure and potential ecological attributes of many fossil taxa, including Irritator, a spinosaurine spinosaurid from the "mid" Cretaceous (Aptian) of Brazil. With unexceptional hearing capabilities, this taxon was inferred to integrate rapid and controlled pitch-down movements of the head that perhaps aided in the predation of small and agile prey such as fish. However, the neuroanatomy of baryonychine spinosaurids remains to be described, and potentially informs on the condition of early spinosaurids. Using micro-computed tomographic scanning (μCT), we reconstruct the braincase endocasts of Baryonyx walkeri and Ceratosuchops inferodios from the Wealden Supergroup (Lower Cretaceous) of England. We show that the gross endocranial morphology is similar to other non-maniraptoriform theropods, and corroborates previous observations of overall endocranial conservatism amongst more basal theropods. Several differences of unknown taxonomic utility are noted between the pair. Baryonychine neurosensory capabilities include low-frequency hearing and unexceptional olfaction, whilst the differing morphology of the floccular lobe tentatively suggests less developed gaze stabilisation mechanisms relative to spinosaurines. Given the morphological similarities observed with other basal tetanurans, baryonychines likely possessed comparable behavioural sophistication, suggesting that the transition from terrestrial hypercarnivorous ancestors to semi-aquatic "generalists" during the evolution of Spinosauridae did not require substantial modification of the brain and sensory systems.
Collapse
Affiliation(s)
- Chris Tijani Barker
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, UK
| | - Darren Naish
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Jacob Trend
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lysanne Veerle Michels
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lawrence Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Ryan Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Katy Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,High-Performance Vision Systems, Center for Vision, Automation and Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Neil J Gostling
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| |
Collapse
|
10
|
White CL, Bloch JI, Morse PE, Silcox MT. Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution. J Hum Evol 2023; 175:103303. [PMID: 36608392 DOI: 10.1016/j.jhevol.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Paleogene microsyopid plesiadapiforms are among the oldest euarchontans known from relatively complete crania. While cranial endocasts are known for larger-bodied Eocene microsyopine microsyopids, this study documents the first virtual endocast for the more diminutive uintasoricine microsyopids, derived from a specimen of Niptomomys cf. Niptomomys doreenae (USNM 530198) from the late Paleocene of Wyoming. Size estimates of smaller-bodied uintasoricines are similar to those inferred for the common ancestor of Primates, so the virtual endocast of Niptomomys may provide a useful model to study early primate brain evolution. Due to the broken and telescoped nature of the neurocranium of USNM 530198, a μCT scan of the specimen was used to create a 3D model of multiple bone fragments that were then independently isolated, repositioned, and merged to form a cranial reconstruction from which a virtual endocast was extracted. The virtual endocast of Niptomomys has visible caudal colliculi, suggesting less caudal expansion of the cerebrum compared to that of euprimates, but similar to that of several other plesiadapiforms. The part of the endocast representing the olfactory bulbs is larger relative to overall endocast volume in Niptomomys (8.61%) than that of other known plesiadapiforms (∼5%) or euprimates (<3.5%). The petrosal lobules (associated with visual stabilization) are relatively large for a Paleocene placental mammal (1.66%). The encephalization quotient of Niptomomys is relatively high (range = 0.35-0.85) compared to that of Microsyops (range = 0.32-0.52), with the upper estimates in the range of values calculated for early euprimates. However, this contrast likely relates in part to the small size of the taxon, and is not associated with evidence of neocortical expansion. These findings are consistent with a model of shifting emphasis in primate evolution toward functions of the cerebrum and away from olfaction with the origin of euprimates.
Collapse
Affiliation(s)
- Chelsea L White
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA
| | - Paul E Morse
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada.
| |
Collapse
|
11
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
12
|
Lang MM, Bertrand OC, San Martin Flores G, Law CJ, Abdul‐Sater J, Spakowski S, Silcox MT. Scaling Patterns of Cerebellar Petrosal Lobules in Euarchontoglires: Impacts of Ecology and Phylogeny. Anat Rec (Hoboken) 2022; 305:3472-3503. [DOI: 10.1002/ar.24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madlen M. Lang
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Ornella C. Bertrand
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Chris J. Law
- Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology American Museum of Natural History, 200 Central Park West New York NY
- Department of Biology University of Washington Seattle WA
- The University of Texas at Austin Austin TX
| | - Jade Abdul‐Sater
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Shayda Spakowski
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Mary T. Silcox
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| |
Collapse
|
13
|
Schade M, Stumpf S, Kriwet J, Kettler C, Pfaff C. Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria. Sci Rep 2022; 12:144. [PMID: 34996895 PMCID: PMC8741922 DOI: 10.1038/s41598-021-03599-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Nodosauridae is a group of thyreophoran dinosaurs characterized by a collar of prominent osteoderms. In comparison to its sister group, the often club-tailed ankylosaurids, a different lifestyle of nodosaurids could be assumed based on their neuroanatomy and weaponry, e.g., regarding applied defensive strategies. The holotype of the nodosaurid Struthiosaurus austriacus consists of a single partial braincase from the Late Cretaceous of Austria. Since neuroanatomy is considered to be associated with ecological tendencies, we created digital models of the braincase based on micro-CT data. The cranial endocast of S. austriacus generally resembles those of its relatives. A network of vascular canals surrounding the brain cavity further supports special thermoregulatory adaptations within Ankylosauria. The horizontal orientation of the lateral semicircular canal independently confirms previous appraisals of head posture for S. austriacus and, hence, strengthens the usage of the LSC as proxy for habitual head posture in fossil tetrapods. The short anterior and angular lateral semicircular canals, combined with the relatively shortest dinosaurian cochlear duct known so far and the lack of a floccular recess suggest a rather inert lifestyle without the necessity of sophisticated senses for equilibrium and hearing in S. austriacus. These observations agree with an animal that adapted to a comparatively inactive lifestyle with limited social interactions.
Collapse
Affiliation(s)
- Marco Schade
- Institute of Geography and Geology, Palaeontology and Historical Geology, University of Greifswald, 17489, Greifswald, Germany. .,Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, 17489, Greifswald, Germany. .,Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität, 80333, Munich, Germany.
| | - Sebastian Stumpf
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, 1090, Vienna, Austria
| | - Jürgen Kriwet
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, 1090, Vienna, Austria
| | - Christoph Kettler
- Department of Geology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, 1090, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
14
|
New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution. DIVERSITY 2021. [DOI: 10.3390/d13120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although an increasing number of studies are combining skeletal and neural morphology data in a phylogenetic context, most studies do not include extinct taxa due to the rarity of preserved endocasts. The early Eocene avifauna of the Fur Formation of Denmark presents an excellent opportunity for further study of extinct osteological and endocranial morphology as fossils are often exceptionally preserved in three dimensions. Here, we use X-ray computed tomography to present additional material of the previously described taxon Scandiavis mikkelseni and reassess its phylogenetic placement using a previously published dataset. The new specimen provides novel insights into the osteological morphology and brain anatomy of Scandiavis. The virtual endocast exhibits a morphology comparable to that of modern avian species. Endocranial evaluation shows that it was remarkably similar to that of certain extant Charadriiformes, yet also possessed a novel combination of traits. This may mean that traits previously proposed to be the result of shifts in ecology later in the evolutionary history of Charadriiformes may instead show a more complex distribution in stem Charadriiformes and/or Gruiformes depending on the interrelationships of these important clades. Evaluation of skeletal and endocranial character state changes within a previously published phylogeny confirms both S. mikkelseni and a putative extinct charadriiform, Nahmavis grandei, as charadriiform. Results bolster the likelihood that both taxa are critical fossils for divergence dating and highlight a biogeographic pattern similar to that of Gruiformes.
Collapse
|
15
|
MacPhee R, Del Pino SH, Kramarz A, Forasiepi AM, Bond M, Sulser RB. Cranial Morphology and Phylogenetic Relationships of Trigonostylops wortmani, an Eocene South American Native Ungulate. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.449.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R.D.E. MacPhee
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| | | | - Alejandro Kramarz
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, CONICET, Buenos Aires, Argentina
| | | | - Mariano Bond
- Departamento Científico de Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - R. Benjamin Sulser
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| |
Collapse
|
16
|
Bertrand OC, Püschel HP, Schwab JA, Silcox MT, Brusatte SL. The impact of locomotion on the brain evolution of squirrels and close relatives. Commun Biol 2021; 4:460. [PMID: 33846528 PMCID: PMC8042109 DOI: 10.1038/s42003-021-01887-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene-Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK.
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Julia A Schwab
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| |
Collapse
|
17
|
Endocranial Cast Anatomy of the Extinct Hipposiderid Bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera). J MAMM EVOL 2021. [DOI: 10.1007/s10914-020-09522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ballell A, King JL, Neenan JM, Rayfield EJ, Benton MJ. The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving. We also estimate its hearing frequency and range based on endosseous labyrinth morphology. Our study provides new information on the pattern of braincase and endocranial evolution in Sauropodomorpha.
Collapse
Affiliation(s)
- Antonio Ballell
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Logan King
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - James M Neenan
- Oxford University Museum of Natural History, Parks Road, Oxford, UK
| | | | | |
Collapse
|
19
|
Spiekman SNF, Neenan JM, Fraser NC, Fernandez V, Rieppel O, Nosotti S, Scheyer TM. The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography. PeerJ 2020; 8:e10299. [PMID: 33240633 PMCID: PMC7682440 DOI: 10.7717/peerj.10299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic.
Collapse
Affiliation(s)
- Stephan N F Spiekman
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| | | | | | - Vincent Fernandez
- European Synchrotron Radiation Facility, Grenoble, France.,The Natural History Museum, London, UK
| | | | | | - Torsten M Scheyer
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| |
Collapse
|
20
|
Müller RT, Ferreira JD, Pretto FA, Bronzati M, Kerber L. The endocranial anatomy of Buriolestes schultzi (Dinosauria: Saurischia) and the early evolution of brain tissues in sauropodomorph dinosaurs. J Anat 2020; 238:809-827. [PMID: 33137855 DOI: 10.1111/joa.13350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022] Open
Abstract
Our knowledge on the anatomy of the first dinosaurs (Late Triassic, 235-205 Ma) has drastically increased in the last years, mainly due to several new findings of exceptionally well-preserved specimens. Nevertheless, some structures such as the neurocranium and its associated structures (brain, labyrinth, cranial nerves, and vasculature) remain poorly known, especially due to the lack of specimens preserving a complete and articulated neurocranium. This study helps to fill this gap by investigating the endocranial cavity of one of the earliest sauropodomorphs, Buriolestes schultzi, from the Upper Triassic (Carnian-c. 233 Ma) of Brazil. The endocranial anatomy of this animal sheds light on the ancestral condition of the brain of sauropodomorphs, revealing an elongated olfactory tract combined to a relatively small pituitary gland and well-developed flocculus of the cerebellum. These traits change drastically across the evolutionary history of sauropodomorphs, reaching the opposite morphology in Jurassic times. Furthermore, we present here the first calculations of the Reptile Encephalization Quotient (REQ) for a Triassic dinosaur. The REQ of B. schultzi is lower than that of Jurassic theropods, but higher than that of later sauropodomorphs. The combination of cerebral, dental, and postcranial data suggest that B. schultzi was an active small predator, able to track moving prey.
Collapse
Affiliation(s)
- Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
| | - José D Ferreira
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Flávio A Pretto
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mario Bronzati
- Laboratório de Evolução e Biologia Integrativa, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| |
Collapse
|
21
|
King JL, Sipla JS, Georgi JA, Balanoff AM, Neenan JM. The endocranium and trophic ecology of Velociraptor mongoliensis. J Anat 2020; 237:861-869. [PMID: 32648601 PMCID: PMC7542195 DOI: 10.1111/joa.13253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Neuroanatomical reconstructions of extinct animals have long been recognized as powerful proxies for palaeoecology, yet our understanding of the endocranial anatomy of dromaeosaur theropod dinosaurs is still incomplete. Here, we used X‐ray computed microtomography (µCT) to reconstruct and describe the endocranial anatomy, including the endosseous labyrinth of the inner ear, of the small‐bodied dromaeosaur, Velociraptor mongoliensis. The anatomy of the cranial endocast and ear were compared with non‐avian theropods, modern birds, and other extant archosaurs to establish trends in agility, balance, and hearing thresholds in order to reconstruct the trophic ecology of the taxon. Our results indicate that V. mongoliensis could detect a wide and high range of sound frequencies (2,368–3,965 Hz), was agile, and could likely track prey items with ease. When viewed in conjunction with fossils that suggest scavenging‐like behaviours in V. mongoliensis, a complex trophic ecology that mirrors modern predators becomes apparent. These data suggest that V. mongoliensis was an active predator that would likely scavenge depending on the age and health of the individual or during prolonged climatic events such as droughts.
Collapse
Affiliation(s)
- J Logan King
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Justin S Sipla
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Justin A Georgi
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Amy M Balanoff
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - James M Neenan
- Oxford University Museum of Natural History, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Knoll F, Kawabe S. Avian palaeoneurology: Reflections on the eve of its 200th anniversary. J Anat 2020; 236:965-979. [PMID: 31999834 PMCID: PMC7219626 DOI: 10.1111/joa.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
In birds, the brain (especially the telencephalon) is remarkably developed, both in relative volume and complexity. Unlike in most early-branching sauropsids, the adults of birds and other archosaurs have a well-ossified neurocranium. In contrast to the situation in most of their reptilian relatives but similar to what can be seen in mammals, the brains of birds fit closely to the endocranial cavity so that their major external features are reflected in the endocasts. This makes birds a highly suitable group for palaeoneurological investigations. The first observation about the brain in a long-extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off. Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend. Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and neurosciences.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID‐Fundación Conjunto Paleontológico de Teruel‐DinópolisTeruelSpain
- Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales‐CSICMadridSpain
| | - Soichiro Kawabe
- Institute of Dinosaur ResearchFukui Prefectural UniversityFukuiJapan
- Fukui Prefectural Dinosaur MuseumFukuiJapan
| |
Collapse
|
23
|
Knoll F, Lautenschlager S, Valentin X, Díez Díaz V, Pereda Suberbiola X, Garcia G. First palaeoneurological study of a sauropod dinosaur from France and its phylogenetic significance. PeerJ 2019; 7:e7991. [PMID: 31763068 PMCID: PMC6871212 DOI: 10.7717/peerj.7991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Despite continuous improvements, our knowledge of the palaeoneurology of sauropod dinosaurs is still deficient. This holds true even for Titanosauria, which is a particularly speciose clade of sauropods with representatives known from numerous Cretaceous sites in many countries on all continents. The data currently available regarding the palaeoneurology of titanosaurs is strongly biased towards Gondwanan forms (Argentina above all, but also India, Malawi and Australia). In contrast, the palaeoneurology of Laurasian titanosaurs is known only from a few taxa from Spain and Uzbekistan, despite the discovery in other countries of Laurasia of a number of neurocranial remains that would lend themselves well to investigations of this kind. To fill in this gap in our knowledge, we subjected a titanosaurian braincase from the uppermost Upper Cretaceous of southern France to X-ray computed tomographic scanning, allowing the generation of 3D renderings of the endocranial cavity enclosing the brain, cranial nerves and blood vessels, as well as the labyrinth of the inner ear. These reconstructions are used to clarify the phylogenetic position of the specimen from the Fox-Amphoux-Métisson site. A combination of characters, including the presence of two hypoglossal rami on the endocast, the average degree of development of the dorsal-head/caudal-middle-cerebral vein system and the relatively short and subequal lengths of the ipsilateral semicircular canals of the labyrinth, are particularly revealing in this respect. They suggest that, compared with the few other Laurasian titanosaurs for which in-depth palaeoneurological data are available, the French taxon is more derived than the distinctly more ancient, possibly non-lithostrotian titanosaur from the Uzbek site of Dzharakuduk but more basal than derived saltasaurids, such as the coeval or slightly more recent forms from the Spanish locality of Lo Hueco.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID-Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Xavier Valentin
- Laboratoire de Paléontologie, Evolution, Paléoécosystèmes et Paléoprimatologie, Université de Poitiers, Poitiers, France
| | - Verónica Díez Díaz
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany.,Humboldt Universität zu Berlin, Berlin, Germany
| | - Xabier Pereda Suberbiola
- Departamento de Estratigrafía y Paleontología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Géraldine Garcia
- Laboratoire de Paléontologie, Evolution, Paléoécosystèmes et Paléoprimatologie, Université de Poitiers, Poitiers, France
| |
Collapse
|
24
|
Pacheco C, Müller RT, Langer M, Pretto FA, Kerber L, Dias da Silva S. Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs. PeerJ 2019; 7:e7963. [PMID: 31720108 PMCID: PMC6844243 DOI: 10.7717/peerj.7963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/03/2022] Open
Abstract
Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems. Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils. Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly. Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual. Here, we describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multitaxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains. Given its superb state of preservation and completeness, the new specimen sheds light into poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues. The specimen also reinforces the monophyletic status of the group, and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods.
Collapse
Affiliation(s)
- Cristian Pacheco
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rodrigo T. Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, RS, Brazil
| | - Max Langer
- Laboratório de Paleontologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio A. Pretto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, RS, Brazil
| | - Leonardo Kerber
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, RS, Brazil
| | - Sérgio Dias da Silva
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, RS, Brazil
| |
Collapse
|
25
|
Bertrand OC, Shelley SL, Wible JR, Williamson TE, Holbrook LT, Chester SGB, Butler IB, Brusatte SL. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J Anat 2019; 236:21-49. [PMID: 31667836 DOI: 10.1111/joa.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The end-Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non-avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high-resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini, which belong to a cluster of 'archaic' placental mammals called 'arctocyonid condylarths' that thrived during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long-mysterious 'arctocyonids', and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12-0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | - Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Ian B Butler
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
26
|
Bronzati M, Müller RT, Langer MC. Skull remains of the dinosaur Saturnalia tupiniquim (Late Triassic, Brazil): With comments on the early evolution of sauropodomorph feeding behaviour. PLoS One 2019; 14:e0221387. [PMID: 31490962 PMCID: PMC6730896 DOI: 10.1371/journal.pone.0221387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 11/28/2022] Open
Abstract
Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian–c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary.
Collapse
Affiliation(s)
- Mario Bronzati
- Laboratório de Paleontologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (MB); (MCL)
| | - Rodrigo T. Müller
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Max C. Langer
- Laboratório de Paleontologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (MB); (MCL)
| |
Collapse
|
27
|
D’Elía G, Fabre PH, Lessa EP. Rodent systematics in an age of discovery: recent advances and prospects. J Mammal 2019. [DOI: 10.1093/jmammal/gyy179] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pierre-Henri Fabre
- Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-UM2-IRD), Université Montpellier, Montpellier Cedex 5, France
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Sobral G, Müller J. The braincase of Mesosuchus browni (Reptilia, Archosauromorpha) with information on the inner ear and description of a pneumatic sinus. PeerJ 2019; 7:e6798. [PMID: 31198620 PMCID: PMC6535042 DOI: 10.7717/peerj.6798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/17/2019] [Indexed: 12/21/2022] Open
Abstract
Rhynchosauria is a group of archosauromorph reptiles abundant in terrestrial ecosystems of the Middle Triassic. Mesosuchus is one of the earliest and basalmost rhynchosaurs, playing an important role not only for the understanding of the evolution of the group as a whole, but also of archosauromorphs in general. The braincase of Mesosuchus has been previously described, albeit not in detail, and the middle and inner ears were missing. Here, we provide new information based on micro-computed tomography scanning of the best-preserved specimen of Mesosuchus, SAM-PK-6536. Contrary to what has been stated previously, the braincase of Mesosuchus is dorso-ventrally tall. The trigeminal foramen lies in a deep recess on the prootic whose flat ventral rim could indicate the articulation surface to the laterosphenoid, although no such element was found. The middle ear of Mesosuchus shows a small and deeply recessed fenestra ovalis, with the right stapes preserved in situ. It has a rather stout, imperforated and posteriorly directed shaft with a small footplate. These features suggest that the ear of Mesosuchus was well-suited for the detection of low-frequency sounds. The semicircular canals are slender and elongate and the floccular fossa is well-developed. This is indicative of a refined mechanism for gaze stabilization, which is usually related to non-sprawling postures. The most striking feature of the Mesosuchus braincase is, however, the presence of a pneumatic sinus in the basal tubera. The sinus is identified as originating from the pharyngotympanic system, implying ossified Eustachian tubes. Braincase pneumatization has not yet been a recognized feature of stem-archosaurs, but the potential presence of pneumatic foramina in an array of taxa, recognized here as such for the first time, suggests braincase sinuses could be present in many other archosauromorphs.
Collapse
Affiliation(s)
- Gabriela Sobral
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Johannes Müller
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
29
|
Pusch LC, Kammerer CF, Fröbisch J. Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters. J Anat 2019; 234:592-621. [PMID: 30772942 DOI: 10.1111/joa.12958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
The cranial anatomy of the early non-mammalian cynodont Galesaurus planiceps from the South African Karoo Basin is redescribed on the basis of a computed tomographic reconstruction of the skull. Previously, little was known about internal skull morphology and the nervous and sensory system of this taxon. The endocranial anatomy of various cynodonts has been intensively studied in recent years to understand the origin of mammalian characters in the nasal capsule, brain and ear. However, these studies have focused on only a few taxa, the earliest of which is another Early Triassic cynodont, Thrinaxodon liorhinus. Galesaurus is phylogenetically stemward of Thrinaxodon and thus provides a useful test of whether the mammal-like features observed in Thrinaxodon were present even more basally in cynodont evolution. The cranial anatomy of G. planiceps is characterized by an intriguing mosaic of primitive and derived features within cynodonts. In contrast to the very similar internal nasal and braincase morphology of Galesaurus and Thrinaxodon, parts of the skull that seem to be fairly conservative in non-prozostrodont cynodonts, the morphology of the maxillary canal differs markedly between these taxa. Unusually, the maxillary canal of Galesaurus has relatively few ramifications, more similar to those of probainognathian cynodonts than that of Thrinaxodon. However, its caudal section is very short, a primitive feature shared with gorgonopsians and therocephalians. The otic labyrinth of Galesaurus is generally similar to that of Thrinaxodon, but differs in some notable features (e.g. proportional size of the anterior semicircular canal). An extremely large, protruding paraflocculus of the brain and a distinct medioventrally located notch on the anterior surface of the tabular, which forms the dorsal border of the large parafloccular lobe, are unique to Galesaurus among therapsids with reconstructed endocasts. These features may represent autapomorphies of Galesaurus, but additional sampling is needed at the base of Cynodontia to test this.
Collapse
Affiliation(s)
- Luisa C Pusch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian F Kammerer
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jörg Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Martinez Q, Lebrun R, Achmadi AS, Esselstyn JA, Evans AR, Heaney LR, Miguez RP, Rowe KC, Fabre PH. Convergent evolution of an extreme dietary specialisation, the olfactory system of worm-eating rodents. Sci Rep 2018; 8:17806. [PMID: 30546026 PMCID: PMC6293001 DOI: 10.1038/s41598-018-35827-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
Turbinal bones are key components of the mammalian rostrum that contribute to three critical functions: (1) homeothermy, (2) water conservation and (3) olfaction. With over 700 extant species, murine rodents (Murinae) are the most species-rich mammalian subfamily, with most of that diversity residing in the Indo-Australian Archipelago. Their evolutionary history includes several cases of putative, but untested ecomorphological convergence, especially with traits related to diet. Among the most spectacular rodent ecomorphs are the vermivores which independently evolved in several island systems. We used 3D CT-scans (N = 87) of murine turbinal bones to quantify olfactory capacities as well as heat or water conservation adaptations. We obtained similar results from an existing 2D complexity method and two new 3D methodologies that quantify bone complexity. Using comparative phylogenetic methods, we identified a significant convergent signal in the rostral morphology within the highly specialised vermivores. Vermivorous species have significantly larger and more complex olfactory turbinals than do carnivores and omnivores. Increased olfactory capacities may be a major adaptive feature facilitating rats' capacity to prey on elusive earthworms. The narrow snout that characterises vermivores exhibits significantly reduced respiratory turbinals, which may reduce their heat and water conservation capacities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France.
| | - Renaud Lebrun
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of Sciences (LIPI), Jl.Raya Jakarta-Bogor Km.46, Cibinong, 16911, Indonesia
| | - Jacob A Esselstyn
- Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Alistair R Evans
- School of Biological Sciences, 18 Innovation Walk, Monash University, Victoria, 3800, Australia
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
| | - Lawrence R Heaney
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, 60605, United States
| | - Roberto Portela Miguez
- Natural History Museum of London, Department of Life Sciences, Mammal Section, London, United Kingdom
| | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| |
Collapse
|
31
|
Voeten DFAE, Reich T, Araújo R, Scheyer TM. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia. PLoS One 2018; 13:e0188509. [PMID: 29298295 PMCID: PMC5751976 DOI: 10.1371/journal.pone.0188509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian 'foramina eustachii' arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group's explosive invasion of shallow marine habitats in the late Early Triassic.
Collapse
Affiliation(s)
- Dennis F. A. E. Voeten
- European Synchrotron Radiation Facility, Grenoble, France
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech Republic
| | - Tobias Reich
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| | - Ricardo Araújo
- Institute for Plasma Research and Nuclear Fusion, Technical University of Lisbon, Lisbon, Portugal
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
- Institute of Evolutionary Sciences, University of Montpellier 2, Montpellier, France
| | - Torsten M. Scheyer
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| |
Collapse
|
32
|
Endocast of the Late Triassic (Carnian) dinosaur Saturnalia tupiniquim: implications for the evolution of brain tissue in Sauropodomorpha. Sci Rep 2017; 7:11931. [PMID: 28931837 PMCID: PMC5607302 DOI: 10.1038/s41598-017-11737-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
The evolutionary history of dinosaurs might date back to the first stages of the Triassic (c. 250–240 Ma), but the oldest unequivocal records of the group come from Late Triassic (Carnian – c. 230 Ma) rocks of South America. Here, we present the first braincase endocast of a Carnian dinosaur, the sauropodomorph Saturnalia tupiniquim, and provide new data regarding the evolution of the floccular and parafloccular lobe of the cerebellum (FFL), which has been extensively discussed in the field of palaeoneurology. Previous studies proposed that the development of a permanent quadrupedal stance was one of the factors leading to the volume reduction of the FFL of sauropods. However, based on the new data for S. tupiniquim we identified a first moment of FFL volume reduction in non-sauropodan Sauropodomorpha, preceding the acquisition of a fully quadrupedal stance. Analysing variations in FFL volume alongside other morphological changes in the group, we suggest that this reduction is potentially related to the adoption of a more restricted herbivore diet. In this context, the FFL of sauropods might represent a vestigial trait, retained in a reduced version from the bipedal and predatory early sauropodomorphs.
Collapse
|
33
|
Araújo R, Fernandez V, Polcyn MJ, Fröbisch J, Martins RMS. Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy. PeerJ 2017; 5:e3119. [PMID: 28413721 PMCID: PMC5390774 DOI: 10.7717/peerj.3119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
Synapsida, the clade including therapsids and thus also mammals, is one of the two major branches of amniotes. Organismal design, with modularity as a concept, offers insights into the evolution of therapsids, a group that experienced profound anatomical transformations throughout the past 270 Ma, eventually leading to the evolution of the mammalian bauplan. However, the anatomy of some therapsid groups remains obscure. Gorgonopsian braincase anatomy is poorly known and many anatomical aspects of the brain, cranial nerves, vasculature, and osseous labyrinth, remain unclear. We analyzed two gorgonopsian specimens, GPIT/RE/7124 and GPIT/RE/7119, using propagation phase contrast synchrotron micro-computed tomography. The lack of fusion between many basicranial and occipital bones in GPIT/RE/7124, which is an immature specimen, allowed us to reconstruct its anatomy and ontogenetic sequence, in comparison with the mature GPIT/RE/7119, in great detail. We explored the braincase and rendered various skull cavities. Notably, we found that there is a separate ossification between what was previously referred to as the “parasphenoid” and the basioccipital. We reinterpreted this element as a posterior ossification of the basisphenoid: the basipostsphenoid. Moreover, we show that the previously called “parasphenoid” is in fact the co-ossification of the dermal parasphenoid and the endochondral basipresphenoid. In line with previous descriptions, the anatomy of the osseous labyrinth is rendered in detail, revealing a unique discoid morphology of the horizontal semicircular canal, rather than toroidal, probably due to architectural constraints of the ossification of the opisthotic and supraoccipital. In addition, the orientation of the horizontal semicircular canal suggests that gorgonopsians had an anteriorly tilted alert head posture. The morphology of the brain endocast is in accordance with the more reptilian endocast shape of other non-mammaliaform neotherapsids.
Collapse
Affiliation(s)
- Ricardo Araújo
- Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Lisboa, Portugal.,Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany.,Huffington Department of Earth Sciences, Southern Methodist Univesity, Dallas, TX, United States of America.,GEAL-Museu da Lourinhã, Lourinhã, Portugal.,Institut des Sciences de l'Evolution, Université de Montpellier 2, Montpellier, France
| | | | - Michael J Polcyn
- Huffington Department of Earth Sciences, Southern Methodist Univesity, Dallas, TX, United States of America
| | - Jörg Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rui M S Martins
- Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Lisboa, Portugal.,CENIMAT/I3N, Universidade Nova de Lisboa, Monte de Caparica, Portugal.,GEAL-Museu da Lourinhã, Lourinhã, Portugal
| |
Collapse
|