1
|
Yang L, Zhao M, Liu M, Zhang W, Zhi S, Qu L, Xiong J, Wang L, Qin C, Nie G. Effects of Genistein on Lipid Metabolism, Antioxidant Activity, and Immunity of Common Carp ( Cyprinus carpio L.) Fed with High-Carbohydrate and High-Fat Diets. AQUACULTURE NUTRITION 2023; 2023:9555855. [PMID: 37034827 PMCID: PMC10081910 DOI: 10.1155/2023/9555855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 06/03/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of genistein on growth, lipid metabolism, antioxidant capacity, and immunity of common carp fed with high-carbohydrate or high-fat diets. Five diets were used to feed fish: control diet (5% fat; CO), high-fat diet (11% fat; HF), high-carbohydrate diet (45% carbohydrate; HC), and HF or HC diet with 500 mg/kg genistein (FG or CG). Results showed that final body weight (FW) and specific growth rate (SGR) were significantly reduced, but the supplementation with genistein resulted in higher values of FW and SGR than the HF or HC group. Both high carbohydrate and high fat belong to high-energy diets, which may promote lipid deposition. Genistein obviously decreased liver triglyceride (TG) content and alleviated hepatic fat vacuolation in the HF and HC groups. The expression of lipid metabolism genes (cpt-1 and atgl) was markedly higher in the FG group than in the HF group. The lipid synthesis-related genes (fas, acc, and pparγ) were elevated in high-energy diets but recovered to the control level or reduced after genistein treatments. With respect to fatty acid transporter genes, fatp increased in the FG group, and cd36 increased in the CG group. Furthermore, the antioxidant and immune indexes, such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) activities, were decreased, while malonate aldehyde (MDA) content, activities of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were enhanced in the HF and HC groups. The antioxidant and immunity values could be ameliorated by treatment with genistein. Moreover, the transcript levels of antioxidant-related genes (cat, gr, and nrf2) in the liver and anti-inflammatory factors (tgf-β and il-10) and lyz in the head kidney tissue were promoted, although the expression levels of proinflammatory factors (tnf-α and il-6) declined in the genistein supplementation group, which confirmed the antioxidant and immune-enhancing effects of genistein. Therefore, 500 mg/kg genistein could ameliorate the negative effects of high-energy diets on immunity.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mengjuan Zhao
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mingyu Liu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Wenlei Zhang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Shaoyang Zhi
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Leya Qu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Jinrui Xiong
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Luming Wang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| |
Collapse
|
2
|
Li JM, Zhang Z, Kong A, Lai W, Xu W, Cao X, Zhao M, Li J, Shentu J, Guo X, Mai K, Ai Q. Dietary l-carnitine regulates liver lipid metabolism via simultaneously activating fatty acid β-oxidation and suppressing endoplasmic reticulum stress in large yellow croaker fed with high-fat diets. Br J Nutr 2023; 129:29-40. [PMID: 35473947 DOI: 10.1017/s0007114522000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) β-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial β-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal β-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating β-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA β-oxidation capability and suppressing the ER stress pathway in fish.
Collapse
Affiliation(s)
- Jia-Min Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Adong Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Manxi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Jinbao Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Jikang Shentu
- Ningbo Academy of Ocean and Fishery, Ningbo, Zhejiang315012, People's Republic of China
| | - Xiaohua Guo
- Shandong Meijia Group Co. LTD, 1 Haibin Road, Rizhao, Shandong266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| |
Collapse
|
3
|
Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. BRAZ J BIOL 2023; 82:e267633. [PMID: 36629544 DOI: 10.1590/1519-6984.267633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.
Collapse
Affiliation(s)
- I S Al-Dhuayan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
4
|
An NMR-Based Metabolomics Assessment of the Effect of Combinations of Natural Feed Items on Juvenile Red Drum, Sciaenops ocellatus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study evaluated the effects of seven diets composed of natural feed components (chopped fish, shrimp, and squid) alone or in combination on the liver metabolite profile of juvenile red drum (Sciaenops ocellatus) cultured in a 24-tank recirculating aquaculture system over the course of 12 weeks using Nuclear Magnetic Resonance (NMR)-based metabolomics. Experimental diets included fish (F), shrimp (SH), squid (SQ), fish and shrimp (FSH), fish and squid (FSQ), shrimp and squid (SHSQ), fish, shrimp, and squid (FSHSQ). A commercial fishmeal-based pelleted diet was used as a control. Fish were fed isocalorically. Red drum liver samples were collected at five different time points: T0, before the start of the trial (n = 12), and subsequently every 3 weeks over the course of 12 weeks (T3, T6, T9, T12), with n = 9 fish/diet/time point. Polar liver extracts were analyzed by NMR-based metabolomics. Multivariate statistical analyses (PCA, PLS-DA) revealed that red drum fed the F diet had a distinct liver metabolite profile from fish fed the other diets, with those fed SH, SQ and the combination diets displaying greater similarities in their metabolome. Results show that 19 metabolites changed significantly among the different dietary treatments, including amino acids and amino acid derivatives, quaternary amines and methylamines, carbohydrates and phospholipids. Specifically, γ-butyrobetaine, N-formimino-L-glutamate (FIGLU), sarcosine and beta-alanine were among the most discriminating metabolites. Significant correlations were found between metabolites and six growth performance parameters (final body weight, total length, condition factor, liver weight, hepatosomatic index, and eviscerated weight). Metabolites identified in this study constitute potential candidates for supplementation in fish feeds for aquaculture and optimization of existing formulations. Additionally, we identified a quaternary amine, γ-butyrobetaine as a potential biomarker of shrimp consumption in red drum. These results warrant further investigation and biomarker validation and have the potential for broader applicability outside of the aquaculture field in future investigations in wild red drum populations and potentially other carnivorous marine fishes.
Collapse
|
5
|
Pradhan C, Soharwardi U, Dileep N, Peter N, Fernandez R, Das S, Kurian A, Elumalai P. Suitable ratio of dietary L-carnitine and α-ketoglutarate improves growth and health performance in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1933-1950. [PMID: 34628555 DOI: 10.1007/s10695-021-01020-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
L-carnitine (LC) and α-Ketoglutarate (AKG) are important growth promoters used in aquafeed. The study aimed to evaluate the incorporation of LC and AKG at different ratios in the diet of tilapia (initial weight 1.38 ± 0.03 g) in order to facilitate lipid utilization and protein synthesis. Fish were fed six isonitrogenous (~ 30 g/100 g CP) and isolipidic (~ 6 g/100 g CL) diets containing graded LC/AKG ratios of 0 (Control), 0.11, 0.42, 1.00, 2.33 and 9.00 in six treatments for 60 days. Fish fed with LC/AKG ratios 2.33 and 9.00 showed significantly (P < 0.05) higher percentage weight gain, specific growth rate and protein efficiency ratio. Feed conversion ratio in fish-fed diets with LC/AKG ratio 9.00 improved significantly (p < 0.05) than other treatments. The whole-body protein content of tilapia and digestive enzyme activity were significantly higher with higher weight gain. The body lipid content was significantly lower in the LC/AKG ratio 9.00. The liver antioxidant parameters and activity of the immune components were significantly higher in the LC/AKG ratio 9 group. The lower serum triglyceride and cholesterol level was also recorded in LC/AKG ratio 9 group. The histology of the intestine and liver showed increased villi area and decreased lipid droplets, respectively, in tilapia fed with higher LC/AKG ratios. It was concluded from the above results that the higher LC and lower AKG (LC/AKG ratio 9.00) combination attributed maximum lipid utilization and higher protein efficiency and thus better growth performance in tilapia. This was also reflected in activity of digestive enzymes, antioxidant enzymes and immune status in tilapia.
Collapse
Affiliation(s)
- Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506.
| | - Uzma Soharwardi
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Namitha Dileep
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Nikhila Peter
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Rachel Fernandez
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Sweta Das
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Amitha Kurian
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| | - Preetham Elumalai
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India, 682506
| |
Collapse
|
6
|
Li N, Zhao H. Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front Med (Lausanne) 2021; 8:689042. [PMID: 34434943 PMCID: PMC8381051 DOI: 10.3389/fmed.2021.689042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Carnitine is an amino acid-derived substance that coordinates a wide range of biological processes. Such functions include transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar acyl traffic, and protection against oxidative stress. Recent studies have found that carnitine plays an important role in several diseases, including non-alcoholic fatty liver disease (NAFLD). However, its effect is still controversial, and its mechanism is not clear. Herein, this review provides current knowledge on the biological functions of carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its widespread use.
Collapse
Affiliation(s)
- Na Li
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Practice, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Mohammad S, Al Zoubi S, Collotta D, Krieg N, Wissuwa B, Ferreira Alves G, Purvis GSD, Norata GD, Baragetti A, Catapano AL, Solito E, Zechendorf E, Schürholz T, Correa-Vargas W, Brandenburg K, Coldewey SM, Collino M, Yaqoob MM, Martin L, Thiemermann C. A Synthetic Peptide Designed to Neutralize Lipopolysaccharides Attenuates Metaflammation and Diet-Induced Metabolic Derangements in Mice. Front Immunol 2021; 12:701275. [PMID: 34349763 PMCID: PMC8328475 DOI: 10.3389/fimmu.2021.701275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic endotoxemia has been suggested to play a role in the pathophysiology of metaflammation, insulin-resistance and ultimately type-2 diabetes mellitus (T2DM). The role of endogenous antimicrobial peptides (AMPs), such as the cathelicidin LL-37, in T2DM is unknown. We report here for the first time that patients with T2DM compared to healthy volunteers have elevated plasma levels of LL-37. In a reverse-translational approach, we have investigated the effects of the AMP, peptide 19-2.5, in a murine model of high-fat diet (HFD)-induced insulin-resistance, steatohepatitis and T2DM. HFD-fed mice for 12 weeks caused obesity, an impairment in glycemic regulations, hypercholesterolemia, microalbuminuria and steatohepatitis, all of which were attenuated by Peptide 19-2.5. The liver steatosis caused by feeding mice a HFD resulted in the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-ĸB) (phosphorylation of inhibitor of kappa beta kinase (IKK)α/β, IκBα, translocation of p65 to the nucleus), expression of NF-ĸB-dependent protein inducible nitric oxide synthase (iNOS) and activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, all of which were reduced by Peptide 19-2.5. Feeding mice, a HFD also resulted in an enhanced expression of the lipid scavenger receptor cluster of differentiation 36 (CD36) secondary to activation of extracellular signal-regulated kinases (ERK)1/2, both of which were abolished by Peptide 19-2.5. Taken together, these results demonstrate that the AMP, Peptide 19-2.5 reduces insulin-resistance, steatohepatitis and proteinuria. These effects are, at least in part, due to prevention of the expression of CD36 and may provide further evidence for a role of metabolic endotoxemia in the pathogenesis of metaflammation and ultimately T2DM. The observed increase in the levels of the endogenous AMP LL-37 in patients with T2DM may serve to limit the severity of the disease.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sura Al Zoubi
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Basic Medical Sciences, School of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Gareth S D Purvis
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Sir William Dunn School Pathology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Milan, Italy.,Società Italiana per lo Studio della Aterosclerosi (S.I.S.A.) Centre for the Study of Atherosclerosis, Bassini Hospital, Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Milan, Italy.,Società Italiana per lo Studio della Aterosclerosi (S.I.S.A.) Centre for the Study of Atherosclerosis, Bassini Hospital, Milan, Italy
| | - Egle Solito
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universitá degli Studi di Napoli "Federico II", Napoli, Italy
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schürholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Muhammad M Yaqoob
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lukas Martin
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
9
|
Intact in vivo visualization of telencephalic microvasculature in medaka using optical coherence tomography. Sci Rep 2020; 10:19831. [PMID: 33199719 PMCID: PMC7669881 DOI: 10.1038/s41598-020-76468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
To date, various human disease models in small fish-such as medaka (Oryzias lapties)-have been developed for medical and pharmacological studies. Although genetic and environmental homogeneities exist, disease progressions can show large individual differences in animal models. In this study, we established an intact in vivo angiographic approach and explored vascular networks in the telencephalon of wild-type adult medaka using the spectral-domain optical coherence tomography. Our approach, which required neither surgical operations nor labeling agents, allowed to visualize blood vessels in medaka telencephala as small as about 8 µm, that is, almost the size of the blood cells of medaka. Besides, we could show the three-dimensional microvascular distribution in the medaka telencephalon. Therefore, the intact in vivo imaging via optical coherence tomography can be used to perform follow-up studies on cerebrovascular alterations in metabolic syndrome and their associations with neurodegenerative disease models in medaka.
Collapse
|
10
|
Mahjoubin-Tehran M, De Vincentis A, Mikhailidis DP, Atkin SL, Mantzoros CS, Jamialahmadi T, Sahebkar A. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on effective therapeutics based on the gold standard method for diagnosis. Mol Metab 2020; 50:101049. [PMID: 32673798 PMCID: PMC8324680 DOI: 10.1016/j.molmet.2020.101049] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
Objective The prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis (NAFLD/NASH) is increasing. NAFLD/NASH may progress to cirrhosis and hepatocellular carcinoma. However, most patients with NAFLD/NASH will die from a vascular cause. There are no approved pharmacological treatments for NASH/NAFLD. Many clinical trials have been, or are being, undertaken; however, the challenge is the assessment of the clinical endpoint. The main objective of this narrative review was to evaluate the efficacy of drugs used in clinical trials for the treatment of NAFLD/NASH that included a liver biopsy as the gold standard. Methods A literature search was conducted using 3 databases (PubMed, Scopus, and Google Scholar) to identify the clinical trials that included liver biopsy assessment before and after treatment. Results Interventional clinical trials (n = 33) involving 18 different agents, alone and in combination, were identified. Pioglitazone is the only agent that has shown consistent benefit and efficacy in clinical trials. Pentoxifylline, rosiglitazone, and ursodeoxycholic acid had both positive and negative results from clinical trials. There is also evidence for vitamin E and metformin. Other drugs, including bicyclol, cysteamine bitartrate, l-carnitine, liraglutide, obeticholic acid, oligofructose, selonsertib, silymarin, and statins, each had a single clinical study. Conclusions In summary, the available molecules demonstrated a significant improvement in NASH and/or liver fibrosis in a minority of patients; thus, other drugs should be identified, possibly those acting on alternative pathophysiological pathways, and tested for their safety and efficacy. There are no currently approved pharmacological treatments for NASH/NAFLD. Confirmation of effective therapies for NAFLD/NASH is challenging due to the limitations of non-biopsy methods. We reviewed the efficacy of drugs used in NAFLD/NASH trials that included a liver biopsy as the gold standard.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antonio De Vincentis
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | | | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Yu Z, Wang S, Hou H, Ma L, Zhu Y. Lipidomic Profiling Reveals the Effect of Egg Components on Nonalcoholic Steatosis in HepG2 Cells and Its Involved Mechanisms. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Shiyao Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Huaming Hou
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Ling Ma
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Yingchun Zhu
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| |
Collapse
|
12
|
Jung YW, Kim M, Kim BK, Park JY, Kim DY, Ahn SH, Han KH, Kim SU. Influence of Besifovir Dipivoxil Maleate Combined with L-Carnitine on Hepatic Steatosis in Patients with Chronic Hepatitis B. J Korean Med Sci 2020; 35:e104. [PMID: 32356416 PMCID: PMC7200179 DOI: 10.3346/jkms.2020.35.e104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Besifovir dipivoxil maleate (BSV) with L-carnitine is the first-line antiviral agent for chronic hepatitis B (CHB) infection. We investigated whether BSV combined with L-carnitine improves hepatic steatosis (HS). METHODS Treatment-naïve patients with CHB who were initiated on antiviral therapy (AVT) were enrolled. The magnitude of HS was assessed using hepatic steatosis index (HSI), and HS improvement was defined as a ≥ 10% reduction in the HSI score from the baseline. RESULTS The mean age of the study patients was 56 years with a male predominance (n = 178, 64.7%). The mean body mass index (BMI), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and platelet count were 23.5 kg/m², 49.6 IU/L, 49.0 IU/L, and 191.3 × 10⁹/L, respectively. The mean HSI and fibrosis (FIB)-4 index were 32.6 and 0.5, respectively. After 6 months of AVT, platelet count (mean, 191.3→167.0 × 10⁹/L), fasting glucose (mean, 113.1→105.9 mg/dL), AST (mean, 49.6→28.0 IU/L), ALT (mean, 49.0→33.9 IU/L), and total cholesterol (mean, 170.0→162.1 mg/dL) levels significantly decreased (all P < 0.05). In the BSV group, AST (mean, 95.2→30.2 IU/L) and ALT (mean, 81.1→31.1 IU/L) levels significantly reduced (all P < 0.05), whereas HSI and FIB-4 index were maintained (all P > 0.05). In the univariate analysis, age, BMI, diabetes, cirrhosis, fasting glucose level, and ALT were significantly associated with HS improvement (all P < 0.05). CONCLUSION BSV with L-carnitine did not show any improvement of HS in patients with CHB. Further prospective randomized controlled studies are needed to validate the potential beneficial effects of BSV with L-carnitine in CHB infection.
Collapse
Affiliation(s)
- Yeon Woo Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moonhyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Kwang Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea.
| |
Collapse
|
13
|
Sayed AEDH, Saleh SMM, Mitani H. Comparative histology of wild-type and p53-deficient medaka (Oryzias latipes): nephrotoxic effect of ultraviolet A radiation. Photochem Photobiol Sci 2020; 19:261-273. [PMID: 31994581 DOI: 10.1039/c9pp00236g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet radiation is an ecological factor that directly affects terrestrial organisms through suppression of immunity or damage to internal organs. The present study assessed the effects of ultraviolet A (UVA) radiation on the kidneys of both wild-type (WT) and p53-deficient medaka (Oryzias latipes) and evaluated which strain was more resistant to the effects of UVA. Fish were divided into four groups: control group 1 (Cwt and Cp53), kept for 3 days without UVA exposure; group 2 (1wt and 1p53), fish exposed daily to UVA for 1 h day-1 for 3 days; group 3 (2wt and 2p53), fish exposed daily to UVA for 2 h day-1 for 3 days; and group 4 (3wt and 3p53), fish exposed daily to UVA for 3 h day-1 for 3 days. Samples of tissues were obtained 24 h after UVA exposure. The most obvious histopathological changes induced by UVA radiation in kidney tissues of both strains of medaka (WT and p53-deficient) were high levels of vacuolation of tubular cells followed by necrosis. The tubular segments lost their normal shape which appeared like a network structure and their cells with clear cytoplasm. Necrosis of lymphoid tissues and spots of brown pigmentation (possibly melanomacrophages) were sporadically seen in interstitial lymphoid tissues, while shrinkage of glomeruli, diminution of periodic acid-Schiff staining, and increased amount of collagenous fibers were observed. Our results confirmed the harmful effects of UVA radiation on kidney tissues of both WT and p53-deficient medaka. However, WT medaka was affected more than p53-deficient medaka.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | | | | |
Collapse
|
14
|
Salic K, Gart E, Seidel F, Verschuren L, Caspers M, van Duyvenvoorde W, Wong KE, Keijer J, Bobeldijk-Pastorova I, Wielinga PY, Kleemann R. Combined Treatment with L-Carnitine and Nicotinamide Riboside Improves Hepatic Metabolism and Attenuates Obesity and Liver Steatosis. Int J Mol Sci 2019; 20:E4359. [PMID: 31491949 PMCID: PMC6770226 DOI: 10.3390/ijms20184359] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for β-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.
Collapse
Affiliation(s)
- Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands.
| | - Florine Seidel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands.
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands.
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands.
| | - Ivana Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Peter Y Wielinga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
15
|
Fujisawa K, Takami T, Nagatomo T, Fukui Y, Hoshida H, Saeki I, Matsumoto T, Hidaka I, Yamamoto N, Sakaida I. Usefulness of adult medaka fish as a model for the evaluation of alcoholic fatty liver. Alcohol 2019; 77:147-154. [PMID: 30660600 DOI: 10.1016/j.alcohol.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
Alcohol has long been acknowledged to be one of the main causes of hepatic disorders. In recent years, with the advancements in antiviral therapies, the relative proportion that alcoholic liver disease contributes among liver diseases has increased, necessitating the establishment of a useful model for the elucidation of the mechanism of its development. In this study, we developed a model of alcoholic liver disease using medaka, a small-sized fish known for its usefulness as a model organism. After rearing medaka in water containing ethanol for 2 months, fat deposition was observed in their livers. In addition, on the basis of the metabolomic analysis of the liver to evaluate metabolic changes resulting from ethanol administration, the increases in ethanol metabolites and changes in lipid metabolism were assessed. As minimally invasive evaluation methods, transparent medaka enabled the macroscopic evaluation of the progression of alcoholic fatty liver, while ultrasonography enabled the quantification of the fatty deposition of the liver. Furthermore, intestinal microbiota, the composition of which is important for the development of alcoholic liver disease, was evaluated. Microbiota changes similar to those of humans with alcoholic liver disease were observed. This study demonstrates that the development of liver disease and its amelioration through drugs can be easily evaluated using the present model or modifications thereof. Thus, this study is expected to be useful in the elucidation of liver disease development.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Takahiro Nagatomo
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yumi Fukui
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi, 755-8611, Japan
| | - Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Hidaka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
16
|
Fujisawa K, Takami T, Fukui Y, Nagatomo T, Saeki I, Matsumoto T, Hidaka I, Yamamoto N, Okamoto T, Furutani-Seiki M, Sakaida I. Assessment of high-fat-diet-induced fatty liver in medaka. Biol Open 2018; 7:bio.031534. [PMID: 30127096 PMCID: PMC6262850 DOI: 10.1242/bio.031534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty liver, which has been continuously becoming more common in a number of patients, is the most common liver disease. For detailed analysis, a useful model for fatty liver is needed and fish are considered as a potential candidate. We assessed through direct observation of the liver, which is the most conventional method for non-invasive analysis of progression in fatty liver. By using transparent medaka (Oryzias latipes), we were able to observe changes in fat deposition in the liver. An analysis of the progression of fatty liver using ultrasound showed a significant increase in echo intensity, which indicates that this is a useful examination method. In addition, we clarified a metabolite profile in the medaka liver fed a high-fat diet (HFD), which had not previously been shown in detail. This medaka model, allowing non-invasive and repetitive assessment, is a useful model for the analysis of diseases that cause fatty liver in which changes in detailed metabolites are identified. Summary: Our medaka model allows for non-invasive and repetitive assessment and is useful in the analysis of fatty liver in which changes in detailed metabolites are identified.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube Yamaguchi 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yumi Fukui
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Takahiro Nagatomo
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Isao Hidaka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Takeshi Okamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Makoto Furutani-Seiki
- Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube Yamaguchi 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
17
|
Huang L, Cheng Y, Huang K, Zhou Y, Ma Y, Zhang M. Ameliorative effect of Sedum sarmentosum Bunge extract on Tilapia fatty liver via the PPAR and P53 signaling pathway. Sci Rep 2018; 8:8456. [PMID: 29855491 PMCID: PMC5981579 DOI: 10.1038/s41598-018-26084-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is a growing problem in fish aquaculture and there is an urgent need to identify causes and possible remedies. In the present study, the effects of treating fatty liver disease in the Nile tilapia (Oreochromis niloticus Linnaeus, 1758) with an extract derived from a herb, Sedum sarmentosum Bunge (SSB), was investigated. We found that the SSB extract could restore the changes to feed coefficient, immune capacity, and pathological index caused by fatty liver disease, and also prevent apoptosis in hepatocytes. An RNA-seq analysis showed that treatment with SSB extract altered expression of genes in the lipid metabolic process, metabolic process, and oxidation-reduction process. Our results suggest that disorders of the PPAR and p53 signaling pathways may be involved in steatohepatitis development and in the therapeutic mechanism of the SSB extract treatment; these observations shed new light on possible treatment of steatohepatitis.
Collapse
Affiliation(s)
- Lida Huang
- College of Animal Science and Technology of Guangxi University, Nanning, China.,Zhanjiang Haiyuan Biological Technology Co. Ltd, Zhanjiang, China
| | - Yuan Cheng
- College of Animal Science and Technology of Guangxi University, Nanning, China.,Guangxi Academy of Fishery Sciences, Nanning, China
| | - Kai Huang
- College of Animal Science and Technology of Guangxi University, Nanning, China.
| | - Yu Zhou
- Guangxi Academy of Fishery Sciences, Nanning, China.
| | - Yanqun Ma
- College of Animal Science and Technology of Guangxi University, Nanning, China
| | - Mengci Zhang
- College of Animal Science and Technology of Guangxi University, Nanning, China
| |
Collapse
|