1
|
Babenko I, Kröger N, Friedrich BM. Mechanism of branching morphogenesis inspired by diatom silica formation. Proc Natl Acad Sci U S A 2024; 121:e2309518121. [PMID: 38422023 PMCID: PMC10927588 DOI: 10.1073/pnas.2309518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024] Open
Abstract
The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.
Collapse
Affiliation(s)
- Iaroslav Babenko
- CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
| | - Nils Kröger
- CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Benjamin M Friedrich
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
2
|
Poulsen N, Kröger N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. JOURNAL OF PHYCOLOGY 2023; 59:809-817. [PMID: 37424141 DOI: 10.1111/jpy.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
In 2004, Thalassiosira pseudonana was the first eukaryotic marine alga to have its genome sequenced. Since then, this species has quickly emerged as a valuable model species for investigating the molecular underpinnings of essentially all aspects of diatom life, particularly bio-morphogenesis of the cell wall. An important prerequisite for the model status of T. pseudonana is the ongoing development of increasingly precise tools to study the function of gene networks and their encoded proteins in vivo. Here, we briefly review the current toolbox for genetic manipulation, highlight specific examples of its application in studying diatom metabolism, and provide a peek into the role of diatoms in the emerging field of silica biotechnology.
Collapse
Affiliation(s)
- Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Ratcliffe S, Meyer EM, Walker CE, Knight M, McNair HM, Matson PG, Iglesias-Rodriguez D, Brzezinski M, Langer G, Sadekov A, Greaves M, Brownlee C, Curnow P, Taylor AR, Wheeler GL. Characterization of the molecular mechanisms of silicon uptake in coccolithophores. Environ Microbiol 2023; 25:315-330. [PMID: 36397254 PMCID: PMC10098502 DOI: 10.1111/1462-2920.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+ -coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find that CbSITL from Coccolithus braarudii is transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement of C. braarudii and other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.
Collapse
Affiliation(s)
| | - Erin M Meyer
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Charlotte E Walker
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Knight
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Heather M McNair
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Paul G Matson
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Debora Iglesias-Rodriguez
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Mark Brzezinski
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Aleksey Sadekov
- ARC Centre of Excellence for Coral Reef Studies, Ocean Graduate School, University of Western Australia, Crawley, Western Australia, Australia
| | - Mervyn Greaves
- The Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
4
|
Brownlee C, Helliwell KE, Meeda Y, McLachlan D, Murphy EA, Wheeler GL. Regulation and integration of membrane transport in marine diatoms. Semin Cell Dev Biol 2023; 134:79-89. [PMID: 35305902 DOI: 10.1016/j.semcdb.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Diatoms represent one of the most successful groups of marine phytoplankton and are major contributors to ocean biogeochemical cycling. They have colonized marine, freshwater and ice environments and inhabit all regions of the World's oceans, from poles to tropics. Their success is underpinned by a remarkable ability to regulate their growth and metabolism during nutrient limitation and to respond rapidly when nutrients are available. This requires precise regulation of membrane transport and nutrient acquisition mechanisms, integration of nutrient sensing mechanisms and coordination of different transport pathways. This review outlines transport mechanisms involved in acquisition of key nutrients (N, C, P, Si, Fe) by marine diatoms, illustrating their complexity, sophistication and multiple levels of control.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK
| | - Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Yasmin Meeda
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Deirdre McLachlan
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleanor A Murphy
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
5
|
Abstract
Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein-protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid-liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.
Collapse
|
6
|
Schwarz P, Steinem C. The role of the transmembrane domain of silicanin-1: Reconstitution of the full-length protein in artificial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183921. [PMID: 35367203 DOI: 10.1016/j.bbamem.2022.183921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Biosilica formation in diatoms is a membrane-confined process that occurs in so-called silica deposition vesicles (SDVs). As SDVs have as yet not been successfully isolated, the impact of the SDV membrane on silica morphogenesis is not well understood. However, recently the first SDV transmembrane protein, silicanin-1 (Sin1) has been identified that appears to be involved in biosilica formation. In this study, we recombinantly expressed and isolated full-length Sin1 from E. coli and investigated its reconstitution behavior in artificial membranes. A reconstitution efficiency in vesicles of up to 80% was achieved by a co-micellization method. By using a chymotrypsin digest, the orientation of Sin1 in unilamellar vesicles was analyzed indicating a positioning of the large N-terminal domain to the outside of the vesicles. These proteoliposomes were capable of precipitating silica in the presence of long-chain polyamines. Supported lipid bilayers were produced by proteoliposome spreading on lipid monolayers to form continuous lipid bilayers with Sin1 confined to the membrane. Successful Sin1 reconstitution into these planar membranes was shown by means of immunostaining with purified primary anti-Sin1 and secondary fluorescent antibodies. The established planar model membrane system, amenable for surface sensitive and microscopy techniques, will pave the way to investigate SDV-membrane interactions with other SDV associated biomolecules and its role in silica biogenesis.
Collapse
Affiliation(s)
- Philipp Schwarz
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany; Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Maniscalco MA, Brzezinski MA, Lampe RH, Cohen NR, McNair HM, Ellis KA, Brown M, Till CP, Twining BS, Bruland KW, Marchetti A, Thamatrakoln K. Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME COMMUNICATIONS 2022; 2:57. [PMID: 37938259 PMCID: PMC9723790 DOI: 10.1038/s43705-022-00136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 06/17/2023]
Abstract
In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.
Collapse
Affiliation(s)
- Michael A Maniscalco
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Mark A Brzezinski
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Heather M McNair
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| | - Kelsey A Ellis
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Claire P Till
- Chemistry Department, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | | | - Kenneth W Bruland
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
8
|
Skeffington AW, Gentzel M, Ohara A, Milentyev A, Heintze C, Böttcher L, Görlich S, Shevchenko A, Poulsen N, Kröger N. Shedding light on silica biomineralization by comparative analysis of the silica-associated proteomes from three diatom species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1700-1716. [PMID: 35403318 DOI: 10.1111/tpj.15765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name 'soluble silicome proteins' (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall.
Collapse
Affiliation(s)
- Alastair W Skeffington
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Marc Gentzel
- Center for Cellular and Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Andre Ohara
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Alexander Milentyev
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Christoph Heintze
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Lorenz Böttcher
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Stefan Görlich
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Nils Kröger
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
9
|
Bilcke G, Osuna-Cruz CM, Santana Silva M, Poulsen N, D'hondt S, Bulankova P, Vyverman W, De Veylder L, Vandepoele K. Diurnal transcript profiling of the diatom Seminavis robusta reveals adaptations to a benthic lifestyle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:315-336. [PMID: 33901335 DOI: 10.1111/tpj.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Coastal regions contribute an estimated 20% of annual gross primary production in the oceans, despite occupying only 0.03% of their surface area. Diatoms frequently dominate coastal sediments, where they experience large variations in light regime resulting from the interplay of diurnal and tidal cycles. Here, we report on an extensive diurnal transcript profiling experiment of the motile benthic diatom Seminavis robusta. Nearly 90% (23 328) of expressed protein-coding genes and 66.9% (1124) of expressed long intergenic non-coding RNAs showed significant expression oscillations and are predominantly phasing at night with a periodicity of 24 h. Phylostratigraphic analysis found that rhythmic genes are enriched in highly conserved genes, while diatom-specific genes are predominantly associated with midnight expression. Integration of genetic and physiological cell cycle markers with silica depletion data revealed potential new silica cell wall-associated gene families specific to diatoms. Additionally, we observed 1752 genes with a remarkable semidiurnal (12-h) periodicity, while the expansion of putative circadian transcription factors may reflect adaptations to cope with highly unpredictable external conditions. Taken together, our results provide new insights into the adaptations of diatoms to the benthic environment and serve as a valuable resource for the study of diurnal regulation in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| | - Marta Santana Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, Dresden, 01307, Germany
| | - Sofie D'hondt
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
10
|
Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Butler T, Kapoore RV, Vaidyanathan S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol 2020; 38:606-622. [PMID: 31980300 DOI: 10.1016/j.tibtech.2019.12.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
A switch from a petroleum-based to a biobased economy requires the capacity to produce both high-value low-volume and low-value high-volume products. Recent evidence supports the development of microalgae-based microbial cell factories with the objective of establishing environmentally sustainable manufacturing solutions. Diatoms display rich diversity and potential in this regard. We focus on Phaeodactylum tricornutum, a pennate diatom that is commonly found in marine ecosystems, and discuss recent trends in developing the diatom chassis for the production of a suite of natural and genetically engineered products. Both upstream and downstream developments are reviewed for the commercial development of P. tricornutum as a cell factory for a spectrum of marketable products.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK; Present address: Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
12
|
Görlich S, Pawolski D, Zlotnikov I, Kröger N. Control of biosilica morphology and mechanical performance by the conserved diatom gene Silicanin-1. Commun Biol 2019; 2:245. [PMID: 31286062 PMCID: PMC6599040 DOI: 10.1038/s42003-019-0436-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
The species-specifically patterned biosilica cell walls of diatoms are paradigms for biological mineral morphogenesis and the evolution of lightweight materials with exceptional mechanical performance. Biosilica formation is a membrane-mediated process that occurs in intracellular compartments, termed silica deposition vesicles (SDVs). Silicanin-1 (Sin1) is a highly conserved protein of the SDV membrane, but its role in biosilica formation has remained elusive. Here we generate Sin1 knockout mutants of the diatom Thalassiosira pseudonana. Although the mutants grow normally, they exhibit reduced biosilica content and morphological aberrations, which drastically compromise the strength and stiffness of their cell walls. These results identify Sin1 as essential for the biogenesis of mechanically robust diatom cell walls, thus providing an explanation for the conservation of this gene throughout the diatom realm. This insight paves the way for genetic engineering of silica architectures with desired structures and mechanical performance.
Collapse
Affiliation(s)
- Stefan Görlich
- B CUBE Center of Molecular Bioengineering, CMCB, TU Dresden, Am Tatzberg 41, 01307 Dresden, Germany
| | - Damian Pawolski
- B CUBE Center of Molecular Bioengineering, CMCB, TU Dresden, Am Tatzberg 41, 01307 Dresden, Germany
| | - Igor Zlotnikov
- B CUBE Center of Molecular Bioengineering, CMCB, TU Dresden, Am Tatzberg 41, 01307 Dresden, Germany
| | - Nils Kröger
- B CUBE Center of Molecular Bioengineering, CMCB, TU Dresden, Am Tatzberg 41, 01307 Dresden, Germany
| |
Collapse
|
13
|
Pilot-scale production of antibacterial substances by the marine diatom Phaeodactylum tricornutum Bohlin. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|