1
|
Fiorito V, Tolosano E. Unearthing FLVCR1a: tracing the path to a vital cellular transporter. Cell Mol Life Sci 2024; 81:166. [PMID: 38581583 PMCID: PMC10998817 DOI: 10.1007/s00018-024-05205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.
Collapse
Affiliation(s)
- Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
2
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
3
|
de Souza DW, Ceglarek VM, Siqueira BS, Volinski CZ, Nenevê JZ, Arruda JPDA, Vettorazzi JF, Grassiolli S. Phenylhydrazine-induced anemia reduces subcutaneous white and brown adipose tissues in hypothalamic obese rats. Exp Physiol 2022; 107:575-588. [PMID: 35396880 DOI: 10.1113/ep089883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FUNDINGS What is the central question of this study? This study aims to assess whether an anemic state could modify adiposity and metabolic parameters in hypothalamic obese rats. What is the main finding and its importance? Our results indicate that hypothalamic obese rats do not display iron deficiency. However, the pharmacological induction of anemia in hypothalamic-obese rats resulted in reduced adiposity, characterized by a decrease in subcutaneous white and brown adipose tissue depots. These findings suggest that iron imbalance in obesity may elevate lipolysis. ABSTRACT Iron imbalance is frequent in obesity. Herein, we evaluated the impact of anemia induced by phenylhydrazine on adiposity and metabolic state of hypothalamic obese rats. Hypothalamic obesity was induced by high doses of glutamate monosodium (MSG; 4g/Kg) administered to neonatal male rats (n = 20). Controls (CTL; non-obese rats) received saline equimolar (n = 20). Rats were weaned at 21 days of life. At 70 days, half of the rats received three intraperitoneal doses of phenylhydrazine (PHZ; 40mg/Kg/dose) or saline solution. Body weight and food intake were accompanied for four weeks after PHZ administration. At 92 days, rats were euthanized, blood was collected for microcapillary hematocrit (Hct) analysis and plasma quantification of glucose, triglycerides, total cholesterol, and iron levels. The liver, the spleen, and the white (WAT) and brown (BAT) adipose tissues were excised, weighed, and used for histology. MSG-treated rats developed obesity, hypertriglyceridemia, and insulin resistance, compared to CTL rats, without changes in iron levels and Hct. PHZ administration reduced iron plasma levels and promoted similar tissue injuries in the spleen and liver from MSG and CTL rats. However, in MSG-treated rats, PHZ decreased fasting glucose levels and Hct, as well as diminished the subcutaneous WAT and BAT mass. Although MSG-obesity does not affect iron plasma levels and Hct by itself, PHZ-induced anemia associated with obesity induces a marked drop in subcutaneous WAT and BAT mass, suggesting that iron imbalance may lead to increased lipolytic responses in obese rats, compared to lean rats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Domwesley Wendreo de Souza
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Vanessa Marieli Ceglarek
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS, Brasil
| | - Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Caroline Zanella Volinski
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Juliane Zanon Nenevê
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - João Paulo de Amorin Arruda
- Programa de Pós-Graduação em Odontologia, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | | | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| |
Collapse
|
4
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Lo T, Haridas RS, Rudge EJM, Chase RP, Heshmati K, Lucey EM, Weigl AM, Iyoha-Bello OJ, Ituah CO, Benjamin EJ, McNutt SW, Sathe L, Farnam L, Raby BA, Tavakkoli A, Croteau-Chonka DC, Sheu EG. Early Changes in Immune Cell Count, Metabolism, and Function Following Sleeve Gastrectomy: A Prospective Human Study. J Clin Endocrinol Metab 2022; 107:e619-e630. [PMID: 34514501 PMCID: PMC8764221 DOI: 10.1210/clinem/dgab673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To characterize longitudinal changes in blood biomarkers, leukocyte composition, and gene expression following laparoscopic sleeve gastrectomy (LSG). BACKGROUND LSG is an effective treatment for obesity, leading to sustainable weight loss and improvements in obesity-related comorbidities and inflammatory profiles. However, the effects of LSG on immune function and metabolism remain uncertain. METHODS Prospective data were collected from 23 enrolled human subjects from a single institution. Parameters of weight, comorbidities, and trends in blood biomarkers and leukocyte subsets were observed from preoperative baseline to 1 year postsurgery in 3-month follow-up intervals. RNA sequencing was performed on pairs of whole blood samples from the first 6 subjects of the study (baseline and 3 months postsurgery) to identify genome-wide gene expression changes associated with undergoing LSG. RESULTS LSG led to a significant decrease in mean total body weight loss (18.1%) at 3 months and among diabetic subjects a reduction in hemoglobin A1c. Improvements in clinical inflammatory and hormonal biomarkers were demonstrated as early as 3 months after LSG. A reduction in neutrophil-lymphocyte ratio was observed, driven by a reduction in absolute neutrophil counts. Gene set enrichment analyses of differential whole blood gene expression demonstrated that after 3 months LSG induced transcriptomic changes not only in inflammatory cytokine pathways but also in several key metabolic pathways related to energy metabolism. CONCLUSIONS LSG induces significant changes in the composition and metabolism of immune cells as early as 3 months postoperatively. Further evaluation is required of bariatric surgery's effects on immunometabolism and the consequences for host defense and metabolic disease.
Collapse
Affiliation(s)
- Tammy Lo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Renuka S Haridas
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor J M Rudge
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert P Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth M Lucey
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alison M Weigl
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Chelsea O Ituah
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Emily J Benjamin
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Seth W McNutt
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leena Sathe
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leanna Farnam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
7
|
Lo T, Rudge EJM, Chase RP, Subramaniam R, Heshmati K, Lucey EM, Weigl AM, Iyoha-Bello OJ, Ituah CO, Benjamin EJ, McNutt SW, Sathe L, Farnam L, Raby BA, Tavakkoli A, Croteau-Chonka DC, Sheu EG. Early changes in immune cell metabolism and function are a hallmark of sleeve gastrectomy: a prospective human study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.31.20161687. [PMID: 33173925 PMCID: PMC7654921 DOI: 10.1101/2020.07.31.20161687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To characterize longitudinal changes in blood biomarkers, leukocyte composition, and gene expression following laparoscopic sleeve gastrectomy (LSG). BACKGROUND LSG is an effective treatment for obesity, leading to sustainable weight loss and improvements in obesity-related co-morbidities and inflammatory profiles. However, the effects of LSG on immune function and metabolism remain uncertain. METHODS Prospective data was collected from 23 enrolled human subjects from a single institution. Parameters of weight, co-morbidities, and trends in blood biomarkers and leukocyte subsets were observed from pre-operative baseline to one year in three-month follow-up intervals. RNA-sequencing was performed on pairs of whole blood samples from the first six subjects of the study (baseline and three months post-surgery) to identify genome-wide gene expression changes associated with undergoing LSG. RESULTS LSG led to a significant decrease in mean total body weight loss (18.1%) at three months and among diabetic subjects a reduction in HbA1c. Improvements in clinical inflammatory and hormonal biomarkers were demonstrated as early as three months after LSG. A reduction in neutrophil-lymphocyte ratio was observed, driven by a reduction in absolute neutrophil counts. Gene set enrichment analyses of differential whole blood gene expression demonstrated that after three months, LSG induced transcriptomic changes not only in inflammatory cytokine pathways but also in several key metabolic pathways related to energy metabolism. CONCLUSIONS LSG induces significant changes in the composition and metabolism of immune cells as early as three months post-operatively. Further evaluation is required of bariatric surgery's effects on immunometabolism and consequences for host defense and metabolic disease.
Collapse
Affiliation(s)
- Tammy Lo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor J. M. Rudge
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert P. Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth M. Lucey
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alison M. Weigl
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Chelsea O. Ituah
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Emily J. Benjamin
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Seth W. McNutt
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leena Sathe
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leanna Farnam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Damien C. Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric G. Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Iron Metabolism in Obesity and Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21155529. [PMID: 32752277 PMCID: PMC7432525 DOI: 10.3390/ijms21155529] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is an excessive adipose tissue accumulation that may have detrimental effects on health. Particularly, childhood obesity has become one of the main public health problems in the 21st century, since its prevalence has widely increased in recent years. Childhood obesity is intimately related to the development of several comorbidities such as nonalcoholic fatty liver disease, dyslipidemia, type 2 diabetes mellitus, non-congenital cardiovascular disease, chronic inflammation and anemia, among others. Within this tangled interplay between these comorbidities and associated pathological conditions, obesity has been closely linked to important perturbations in iron metabolism. Iron is the second most abundant metal on Earth, but its bioavailability is hampered by its ability to form highly insoluble oxides, with iron deficiency being the most common nutritional disorder. Although every living organism requires iron, it may also cause toxic oxygen damage by generating oxygen free radicals through the Fenton reaction. Thus, iron homeostasis and metabolism must be tightly regulated in humans at every level (i.e., absorption, storage, transport, recycling). Dysregulation of any step involved in iron metabolism may lead to iron deficiencies and, eventually, to the anemic state related to obesity. In this review article, we summarize the existent evidence on the role of the most recently described components of iron metabolism and their alterations in obesity.
Collapse
|
9
|
Pengyu Z, Yan Y, Xiying F, Maoguang Y, Mo L, Yan C, Hong S, Lijuan W, Xiujuan Z, Hanqing C. The Differential Expression of Long Noncoding RNAs in Type 2 Diabetes Mellitus and Latent Autoimmune Diabetes in Adults. Int J Endocrinol 2020; 2020:9235329. [PMID: 32148491 PMCID: PMC7049833 DOI: 10.1155/2020/9235329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) were previously found to be closely related to the pathogenesis of diabetes. OBJECTIVES To reveal the differentially expressed lncRNAs and messenger RNAs (mRNAs) involved in type 2 diabetes mellitus (T2DM) and latent autoimmune diabetes in adults (LADA) and predict the lncRNA target genes to derive their expression profiles for the diagnosis of T2DM and LADA and their differential diagnosis. METHODS Twelve venous blood samples were collected from T2DM patients, LADA patients, and nondiseased subjects to obtain total RNAs. After removing rRNA from total RNAs to establish the desired library for sequencing, quality control and quantification analyses were carried out. The fragments per kilobase of exon model per million reads mapped (FPKM) of lncRNAs were calculated to construct the gene expression profiles of lncRNAs and mRNAs. Fold changes (fold change: 2.0) and p values (p values (. RESULTS Compared to nondiseased controls, 68,763 versus 28,523 lncRNAs and 133 versus 1035 mRNAs were significantly upregulated and significantly downregulated, respectively, in T2DM patients. For LADA patients, 68,748 versus 28,538 lncRNAs and 219 versus 805 mRNAs were significantly upregulated and significantly downregulated, respectively, relative to nondiseased controls. Compared to T2DM patients, 74,207 versus 23,079 lncRNAs and 349 versus 137 mRNAs were significantly upregulated and significantly downregulated, respectively, in LADA patients. Based on the correlation analysis, seven lncRNA-mRNA pairs (BTG2, A2M, HECTD4, MBTPS1, DBH, FLVCR1, and NCBP2) were significantly coexpressed, and two lncRNAs (ENST00000608916 and ENST00000436373) were newly discovered. CONCLUSION Significant differences in lncRNA expression were discovered among the three groups. Furthermore, after predicting lncRNA expression profiles, GO/KEGG pathway analysis could deduce the target gene function.
Collapse
Affiliation(s)
- Zhang Pengyu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fu Xiying
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Maoguang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Mo
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cheng Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shen Hong
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wang Lijuan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhang Xiujuan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cai Hanqing
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Tang KY, Huang SY, Cheng TM, Bai CH, Chang JS. Haptoglobin phenotype influences the effectiveness of diet-induced weight loss in middle-age abdominally obese women with metabolic abnormalities. Clin Nutr 2019; 39:225-233. [PMID: 30737047 DOI: 10.1016/j.clnu.2019.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Haptoglobin (Hp) is associated with risks of obesity and cardiometabolic dysfunction; however, the role of the Hp phenotype in diet-induced weight loss remains to be elucidated. This study investigated whether the Hp phenotype contributes to inter-individual variations in body weight reduction as well as changes in the metabolic profile. METHODS Secondary data analysis from a randomized controlled trial. In total, 151 abdominally obese Taiwanese women with ≥2 metabolic components were randomized to each of four dietary programs [calorie restriction (CR), calorie restriction plus fish oil supplementation (CRF), calorie restricted meal replacement (CRMR), and calorie restricted meal replacement with fish oil supplementation (CRMRF)] for 12 weeks. Abdominal obesity was defined as a waist circumference (WC) ≥ 80 cm in women. Hp phenotyping was performed by plasma gel electrophoresis. RESULTS The prevalence of the Hp 1-1, 2-1, and 2-2 phenotypes were 12.58%, 41.06% and 46.35%, respectively. The mean age was 50.59 ± 12.22 years, and mean reduction in the percent body weight was 4.7% ± 3.8%. The Hp 1-1 phenotype exhibited significant decreases in the WC, body fat mass, plasma insulin levels, free hemoglobin and homeostatic model assessment of insulin resistance (HOMA-IR) compared to the Hp 2-1 or Hp 2-2 phenotypes after adjusting for the baseline age, WC, metabolic syndrome (MetS), and dietary programs (all adjusted p < 0.05). A greater improvement in the prevalence of central obesity and, to a lesser extent, MetS was also found in women with the Hp 1-1 phenotype. CONCLUSIONS Obese women with the Hp 1-1 phenotype might obtain greater benefits in terms of reducing abdominal fat and improving insulin sensitivity in response to hypocaloric diet-induced weight reduction. The findings from this study support potential gene-diet interactions affecting weight loss. This trial was registered at ClinicalTrials.gov as NCT01768169. CLINICAL TRIAL REGISTRY This trial was registered at ClinicalTrials.gov as NCT01768169.
Collapse
Affiliation(s)
- Kelvin Yohanes Tang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, Taiwan.
| |
Collapse
|