1
|
Farkas K, Pesthy O, Janacsek K, Németh D. Interpersonal Distance Theory of Autism and Its Implication for Cognitive Assessment, Therapy, and Daily Life. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:126-136. [PMID: 37401721 DOI: 10.1177/17456916231180593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The interpersonal distance (IPD) theory provides a novel approach to studying autism spectrum disorder (ASD). In this article, we present recent findings on the neurobiological underpinnings of IPD regulation that are distinct in individuals with ASD. We also discuss the potential influence of environmental factors on IPD. We suggest that different IPD regulation may have implications for cognitive performance in experimental and diagnostic settings, may influence the effectiveness of training and therapy, and may play a role in the typical forms of social communication and leisure activities chosen by autistic individuals. We argue that reconsidering the results of ASD research through the lens of IPD would lead to a different interpretation of previous findings. Finally, we propose a methodological approach to study this phenomenon systematically.
Collapse
Affiliation(s)
- Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Pesthy
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University
- Institute of Psychology, ELTE Eötvös Loránd University
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich
| | - Dezső Németh
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre de Recherche en Neurosciences de Lyon (CRNL) U1028 UMR5292, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Bron, France
| |
Collapse
|
2
|
Ging-Jehli NR, Arnold LE, Van Zandt T. Cognitive-attentional mechanisms of cooperation-with implications for attention-deficit hyperactivity disorder and cognitive neuroscience. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1545-1567. [PMID: 37783876 DOI: 10.3758/s13415-023-01129-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
People's cooperativeness depends on many factors, such as their motives, cognition, experiences, and the situation they are in. To date, it is unclear how these factors interact and shape the decision to cooperate. We present a computational account of cooperation that not only provides insights for the design of effective incentive structures but also redefines neglected social-cognitive characteristics associated with attention-deficit hyperactivity disorder (ADHD). Leveraging game theory, we demonstrate that the source and magnitude of conflict between different motives affected the speed and frequency of cooperation. Integrating eye-tracking to measure motivation-based information processing during decision-making shows that participants' visual fixations on the gains of cooperation rather than its costs and risks predicted their cooperativeness on a trial-by-trial basis. Using Bayesian hierarchical modeling, we find that a situation's prosociality and participants' past experience each bias the decision-making process distinctively. ADHD characteristics explain individual differences in responsiveness across contexts, highlighting the clinical importance of experimentally studying reactivity in social interactions. We demonstrate how the use of eye-tracking and computational modeling can be used to experimentally investigate social-cognitive characteristics in clinical populations. We also discuss possible underlying neural mechanisms to be investigated in future studies.
Collapse
Affiliation(s)
- Nadja R Ging-Jehli
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Cognitive, Linguistic, & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, The Ohio State University, Nisonger Center UCEDD, Columbus, OH, USA
| | - Trish Van Zandt
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Saez I, Gu X. Invasive Computational Psychiatry. Biol Psychiatry 2023; 93:661-670. [PMID: 36641365 PMCID: PMC10038930 DOI: 10.1016/j.biopsych.2022.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 01/16/2023]
Abstract
Computational psychiatry, a relatively new yet prolific field that aims to understand psychiatric disorders with formal theories about the brain, has seen tremendous growth in the past decade. Despite initial excitement, actual progress made by computational psychiatry seems stagnant. Meanwhile, understanding of the human brain has benefited tremendously from recent progress in intracranial neuroscience. Specifically, invasive techniques such as stereotactic electroencephalography, electrocorticography, and deep brain stimulation have provided a unique opportunity to precisely measure and causally modulate neurophysiological activity in the living human brain. In this review, we summarize progress and drawbacks in both computational psychiatry and invasive electrophysiology and propose that their combination presents a highly promising new direction-invasive computational psychiatry. The value of this approach is at least twofold. First, it advances our mechanistic understanding of the neural computations of mental states by providing a spatiotemporally precise depiction of neural activity that is traditionally unattainable using noninvasive techniques with human subjects. Second, it offers a direct and immediate way to modulate brain states through stimulation of algorithmically defined neural regions and circuits (i.e., algorithmic targeting), thus providing both causal and therapeutic insights. We then present depression as a use case where the combination of computational and invasive approaches has already shown initial success. We conclude by outlining future directions as a road map for this exciting new field as well as presenting cautions about issues such as ethical concerns and generalizability of findings.
Collapse
Affiliation(s)
- Ignacio Saez
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Xiaosi Gu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
4
|
van der Plas E, Mason D, Happé F. Decision-making in autism: A narrative review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023:13623613221148010. [PMID: 36794463 DOI: 10.1177/13623613221148010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
LAY SUMMARY Many autistic people report difficulties with real-life decision-making. However, when doing decision-making tests in laboratory experiments, autistic people often perform as well or better than non-autistic people. We review previously published studies on autistic people's decision-making, across different types of tests, to understand what type of decision-making is more challenging. To do this, we searched four databases of research papers. We found 104 studies that tested, in total, 2712 autistic and 3189 comparison participants on different decision-making tasks. We found that there were four categories of decision-making tests that were used in these experiments: perceptual (e.g. deciding which image has the most dots); reward learning (e.g. learning which deck of cards gives the best reward); metacognition (e.g. knowing how well you perform or what you want); and value-based (e.g. making a decision based on a choice between two outcomes that differ in value to you). Overall, these studies suggest that autistic and comparison participants tend to perform similarly well at perceptual and reward-learning decisions. However, autistic participants tended to decide differently from comparison participants on metacognition and value-based paradigms. This suggests that autistic people might differ from typically developing controls in how they evaluate their own performance and in how they make decisions based on weighing up the subjective value of two different options. We suggest these reflect more general differences in metacognition, thinking about thinking, in autism.
Collapse
|
5
|
Rogge N. How the anchor moves: Measuring and comparing the anchoring bias in autistic and neurotypical individuals. JOURNAL OF BEHAVIORAL DECISION MAKING 2023. [DOI: 10.1002/bdm.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nicky Rogge
- Faculty of Economics and Business Ku Leuven Brussels Belgium
| |
Collapse
|
6
|
Banker SM, Gu X, Schiller D, Foss-Feig JH. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci 2021; 44:793-807. [PMID: 34521563 DOI: 10.1016/j.tins.2021.08.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by hallmark impairments in social functioning. Nevertheless, nonsocial cognition, including hippocampus-dependent spatial reasoning and episodic memory, is also commonly impaired in ASD. ASD symptoms typically emerge between 12 and 24 months of age, a time window associated with critical developmental events in the hippocampus. Despite this temporal overlap and evidence of hippocampal structural abnormalities in ASD individuals, relatively few human studies have focused on hippocampal function in ASD. Herein, we review the existing evidence for the involvement of the hippocampus in ASD and highlight the hippocampus as a promising area of interest for future research in ASD.
Collapse
Affiliation(s)
- Sarah M Banker
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xiaosi Gu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniela Schiller
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Abnormal negative feedback processing in individuals with autistic traits in the Iowa gambling task: Evidence from behavior and event-related potentials. Int J Psychophysiol 2021; 165:36-46. [PMID: 33647381 DOI: 10.1016/j.ijpsycho.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
Value-based decision making plays an important role in social interaction. Previous studies have reported that individuals with autism spectrum disorder (ASD) exhibit deficits in terms of decision making. However, it is still unknown clearly whether individuals with high autistic traits within nonclinical populations employ abnormal neural substrates in value-based decision-making. To explore this issue, we investigated value-based decision making and its neural substrates in individuals with high and low autistic traits within a typically developing population who completed the revised Iowa gambling task (IGT) based on measurements of event-related potentials (ERPs). The IGT net scores were significantly lower in the group with high autistic traits than the group with low autistic traits in the fifth and sixth blocks. The ERP results showed that the feedback-related negativity (FRN) amplitude in individuals with high autistic traits allowed slight discrimination between positive and negative feedback in the low-risk option. The event-related spectral perturbations (ERSPs) and inter-trial coherence (ITC) of the theta-band frequency were also lower in the group with high autistic traits than the group with low autistic traits in the loss low-risk option. The results obtained in this study indicate that individuals with high autistic traits exhibit an unusual negative feedback process and relevant neural substrate. The FRN amplitude and theta-band oscillation may comprise a neural index of abnormal decision-making processes in individuals with high autistic traits. This study of a small sample may be considered an important step toward a more comprehensive understanding of the autism "spectrum" within a nonclinical population based on cognitive neuroscience.
Collapse
|
8
|
Hawco C, Yoganathan L, Voineskos AN, Lyon R, Tan T, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lai MC, Szatmari P, Ameis SH. Greater Individual Variability in Functional Brain Activity during Working Memory Performance in young people with Autism and Executive Function Impairment. Neuroimage Clin 2020; 27:102260. [PMID: 32388347 PMCID: PMC7218076 DOI: 10.1016/j.nicl.2020.102260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) often present with executive functioning (EF) deficits, including spatial working memory (SWM) impairment, which impedes real-world functioning. The present study examined task-related brain activity, connectivity and individual variability in fMRI-measured neural response during an SWM task in older youth and young adults with autism and clinically significant EF impairment. METHODS Neuroimaging was analyzed in 29 individuals with ASD without intellectual disability who had clinically significant EF impairment on the Behavior Rating Inventory of Executive Function, and 20 typically developing controls (participant age range=16-34). An SWM N-Back task was performed during fMRI. SWM activity (2-Back vs. 0-Back) and task-related dorsolateral prefrontal cortex (DLPFC) connectivity was examined within and between groups. Variability of neural response during SWM was also examined. RESULTS During SWM performance both groups activated the expected networks, and no group differences in network activation or task-related DLPFC-connectivity were found. However, greater individual variability in the pattern of SWM activity was found in the ASD versus the typically developing control group. CONCLUSIONS While there were no group differences in SWM task-evoked activity or connectivity, fronto-parietal network engagement was found to be more variable/idiosyncratic in ASD. Our results suggest that the fronto-parietal network may be shifted or sub-optimally engaged during SWM performance in participants with ASD with clinically significant EF impairment, with implications for developing targeted interventions for this subgroup.
Collapse
Affiliation(s)
- Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Laagishan Yoganathan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachael Lyon
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada
| | - Thomas Tan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
9
|
Krichmar JL, Hwu T, Zou X, Hylton T. Advantage of prediction and mental imagery for goal‐directed behaviour in agents and robots. COGNITIVE COMPUTATION AND SYSTEMS 2019. [DOI: 10.1049/ccs.2018.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jeffrey L. Krichmar
- Department of Cognitive SciencesUniversity of CaliforniaIrvineUSA
- Department of Computer ScienceUniversity of CaliforniaIrvineUSA
| | - Tiffany Hwu
- Department of Cognitive SciencesUniversity of CaliforniaIrvineUSA
| | - Xinyun Zou
- Department of Computer ScienceUniversity of CaliforniaIrvineUSA
| | - Todd Hylton
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan DiegoUSA
| |
Collapse
|