1
|
Mayr F, Zimmerleiter R, Farias PMA, Bednorz M, Salinas Y, Galembek A, Cardozo ODF, Wielend D, Oliveira D, Milani R, Brito‐Silva TM, Brandstetter M, Padrón‐Hernández E, Burgholzer P, Stingl A, Scharber MC, Sariciftci NS. Sensitive and high laser damage threshold substrates for surface-enhanced Raman scattering based on gold and silver nanoparticles. ANALYTICAL SCIENCE ADVANCES 2023; 4:335-346. [PMID: 38715649 PMCID: PMC10989562 DOI: 10.1002/ansa.202300033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 11/17/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths. The fabrication is based on a simple dropcast deposition of silver or gold nanomaterials on an aluminium foil support, making the design suitable for mass production. The fabricated SERS substrates can withstand very high average Raman laser power of up to 400 mW in the NIR wavelength range while maintaining a linear signal response of the analyte. This enables a combined high signal enhancement potential provided by (i) the field enhancement via the localized surface plasmon resonance introduced by the noble metal nanomaterials and (ii) additional enhancement proportional to an increase of the applicable Raman laser power without causing the thermal decomposition of the analyte. The application of the SERS substrates for the trace detection of melamine and rhodamine 6G is demonstrated, which shows limits of detection smaller than 0.1 ppm and analytical enhancement factors on the order of 104 as compared to bare aluminium foil.
Collapse
Affiliation(s)
- Felix Mayr
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University LinzLinzAustria
| | | | - Patricia M. A. Farias
- Departamento de Biofísica e RadiobiologiaFederal University of Pernambuco, Cidade UniversitariaRecifeBrazil
| | - Mateusz Bednorz
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University LinzLinzAustria
| | - Yolanda Salinas
- Institute of Polymer Chemistry (ICP)Johannes Kepler University LinzLinzAustria
| | - André Galembek
- Departamento de Química FundamentalFederal University of PernambucoRecifeBrazil
| | | | - Dominik Wielend
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University LinzLinzAustria
| | - Dyego Oliveira
- Departamento de FísicaFederal University of PernambucoRecifeBrazil
| | - Raquel Milani
- Departamento de FísicaFederal University of PernambucoRecifeBrazil
| | | | | | | | - Peter Burgholzer
- RECENDT – Research Center for Non‐Destructive Testing GmbHLinzAustria
| | | | - Markus C. Scharber
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University LinzLinzAustria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University LinzLinzAustria
| |
Collapse
|
2
|
Biehler E, Quach Q, Abdel-Fattah TM. Gold Nanoparticles AuNP Decorated on Fused Graphene-like Materials for Application in a Hydrogen Generation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4779. [PMID: 37445099 DOI: 10.3390/ma16134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The search for a sustainable, alternative fuel source to replace fossil fuels has led to an increased interest in hydrogen fuel. This combustible gas is not only clean-burning but can readily be produced via the hydrolysis of sodium borohydride. The main drawback of this reaction is that the reaction occurs relatively slowly and requires a catalyst to improve efficiency. This study explored a novel composite material made by combining gold nanoparticles and fused graphene-like materials (AuFGLM) as a catalyst for generating hydrogen via sodium borohydride. The novel fused graphene-like material (FGLM) was made with a sustainable dextrose solution and by using a pressure-processing method. Imaging techniques showed that FGLM appears to be an effective support template for nanoparticles. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize and determine the size, shape, and structure of nanoparticles and composites. The TEM study characterized the fused carbon backbone as it began to take on a rounder shape. The TEM images also revealed that the average diameter of the gold nanoparticle was roughly 23 nm. The FTIR study confirmed O-H, C-C, and C=O as functional groups in the materials. The EDS analysis showed that the composite contained approximately 6.3% gold by weight. The crystal structures of FGLM and AuFGLM were identified via P-XRD analysis. Various reaction conditions were used to test the catalytic ability of AuFGLM, including various solution pHs, temperatures, and doses of NaBH4. It was observed that optimal reaction conditions included high temperature, an acidic solution pH, and a higher dose of NaBH4. The activation energy of the reaction was determined to be 45.5 kJ mol-1, and it was found that the catalyst could be used multiple times in a row with an increased volume of hydrogen produced in ensuing trials. The activation energy of this novel catalyst is competitive compared to similar catalysts and its ability to produce hydrogen over multiple uses makes the material an exciting choice for catalyzing the hydrolysis of NaBH4 for use as a hydrogen fuel source.
Collapse
Affiliation(s)
- Erik Biehler
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Qui Quach
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Tarek M Abdel-Fattah
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| |
Collapse
|
3
|
Fully Integrated Ultra-thin Intraoperative Micro-imager for Cancer Detection Using Upconverting Nanoparticles. Mol Imaging Biol 2023; 25:168-179. [PMID: 35312938 PMCID: PMC9970948 DOI: 10.1007/s11307-022-01710-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Intraoperative detection and removal of microscopic residual disease (MRD) remain critical to the outcome of cancer surgeries. Today's minimally invasive surgical procedures require miniaturization and surgical integration of highly sensitive imagers to seamlessly integrate into the modern clinical workflow. However, current intraoperative imagers remain cumbersome and still heavily dependent on large lenses and rigid filters, precluding further miniaturization and integration into surgical tools. PROCEDURES We have successfully engineered a chip-scale intraoperative micro-imager array-without optical filters or lenses-integrated with lanthanide-based alloyed upconverting nanoparticles (aUCNPs) to achieve tissue imaging using a single micro-chip. This imaging platform is able to leverage the unique optical properties of aUCNPs (long luminescent lifetime, high-efficiency upconversion, no photobleaching) by utilizing a time-resolved imaging method to acquire images using a 36-by-80-pixel, 2.3 mm [Formula: see text] 4.8 mm silicon-based electronic imager micro-chip, that is, less than 100-µm thin. Each pixel incorporates a novel architecture enabling automated background measurement and cancellation. We have validated the performance, spatial resolution, and the background cancellation scheme of the imaging platform, using resolution test targets and mouse prostate tumor sample intratumorally injected with aUCNPs. To demonstrate the ability to image MRD, or tumor margins, we evaluated the imaging platform in visualizing a single-cell thin section of the injected prostate tumor sample. RESULTS Tested on USAF resolution targets, the imager is able to achieve a resolution of 71 µm. We have also demonstrated successful background cancellation, achieving a signal-to-background ratio of 8 when performing ex vivo imaging on aUCNP-injected prostate tumor sample, improved from originally 0.4. The performance of the imaging platform on single-cell layer sections was also evaluated and the sensor achieved a signal-to-background ratio of 4.3 in resolving cell clusters with sizes as low as 200 cells. CONCLUSION The imaging system proposed here is a scalable chip-scale ultra-thin alternative for bulky conventional intraoperative imagers. Its novel pixel architecture and background correction scheme enable visualization of microscopic-scale residual disease while remaining completely free of lenses and filters, achieving an ultra-miniaturized form factor-critical for intraoperative settings.
Collapse
|
4
|
Shafi M, Duan P, Liu W, Zhang W, Zhang C, Hu X, Zha Z, Liu R, Liu C, Jiang S, Man B, Liu M. SERS Sensing Using Graphene-Covered Silver Nanoparticles and Metamaterials for the Detection of Thiram in Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16183-16193. [PMID: 36520051 DOI: 10.1021/acs.langmuir.2c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multilayer hyperbolic metamaterial (HMM)-based SERS substrates have received special consideration because they accommodate various propagation modes such as surface plasmonic polaritons (SPP). However, the SPP modes are difficult to generate in HMM due to their weak electric field enhancement. In this article, we designed novel SERS substrates consisting of graphene-covered AgNPs and HMM. The graphene-covered AgNPs work as an external coupling structure for hyperbolic metamaterials due to this structure exhibiting significant plasmonic effects as well as unique optical features. The localized surface plasmonic resonance (LSPR) of the graphene-covered AgNPs excited the SPP and thus formed a strong hot spot zone in the nanogap area of the graphene. The Raman experiment was performed using rhodamine 6G (R6G) and crystal violet (CV), which showed high stability and a maximum enhancement factor of 2.12 × 108. The COMSOL simulation further clarified that enhanced SERS performance was due to the presence of monolayer graphene and provided an atomically flat surface for organic molecules in a more controllable manner. Interestingly, the proposed SERS structure carries out quantitative detection of thiram in soil and can satisfy the basic environmental need for pesticide residue in the soil.
Collapse
Affiliation(s)
- Muhammad Shafi
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Pengyi Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Wenying Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Wenjie Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Can Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Xiaoxuan Hu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Zhipeng Zha
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Runcheng Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Cong Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Shouzhen Jiang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Mei Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| |
Collapse
|
5
|
Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers (Basel) 2022; 15:polym15010079. [PMID: 36616432 PMCID: PMC9824777 DOI: 10.3390/polym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel biosensors based on carboxymethyl cellulose extract from date palm fronds containing Ag nanoparticles as an electrochemical working electrode for fast hydroxymethylfurfural (HMF) sensing in date molasses were prepared. The morphological, structural, and crystallinity characteristics of the prepared Ag@CMC were described via SEM, DLS, TEM, and XRD. In addition, Raman spectroscopy and UV-VIS spectroscopy were performed, and thermal stability was studied. The investigated techniques indicated the successful incorporation of AgNPs into the CMC polymer. The sensing behavior of the prepared AgNPs@CMC electrode was studied in terms of cyclic voltammetry and linear scan voltammetry at different HMF concentrations. The results indicated high performance of the designed AgNPs@CMC, which was confirmed by the linear behavior of the relationship between the cathodic current and HMF content. Besides, real commercial samples were investigated using the novel AgNPs@CMC electrode.
Collapse
|
6
|
Fu M, Mota MPDSP, Xiao X, Jacassi A, Güsken NA, Chen Y, Xiao H, Li Y, Riaz A, Maier SA, Oulton RF. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide. NATURE NANOTECHNOLOGY 2022; 17:1251-1257. [PMID: 36302960 DOI: 10.1038/s41565-022-01232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/07/2022] [Indexed: 05/26/2023]
Abstract
The Raman scattering of light by molecular vibrations is a powerful technique to fingerprint molecules through their internal bonds and symmetries. Since Raman scattering is weak1, methods to enhance, direct and harness it are highly desirable, and this has been achieved using optical cavities2, waveguides3-6 and surface-enhanced Raman scattering (SERS)7-9. Although SERS offers dramatic enhancements2,6,10,11 by localizing light within vanishingly small hot-spots in metallic nanostructures, these tiny interaction volumes are only sensitive to a few molecules, yielding weak signals12. Here we show that SERS from 4-aminothiophenol molecules bonded to a plasmonic gap waveguide is directed into a single mode with >99% efficiency. Although sacrificing a confinement dimension, we find a SERS enhancement of ~103 times across a broad spectral range enabled by the waveguide's larger sensing volume and non-resonant waveguide mode. Remarkably, this waveguide SERS is bright enough to image Raman transport across the waveguides, highlighting the role of nanofocusing13-15 and the Purcell effect16. By analogy to the β-factor from laser physics10,17-20, the near-unity Raman β-factor we observe exposes the SERS technique to alternative routes for controlling Raman scattering. The ability of waveguide SERS to direct Raman scattering is relevant to Raman sensors based on integrated photonics7-9 with applications in gas sensing and biosensing.
Collapse
Affiliation(s)
- Ming Fu
- Blackett Laboratory, Imperial College London, London, UK
| | | | - Xiaofei Xiao
- Blackett Laboratory, Imperial College London, London, UK
| | - Andrea Jacassi
- Blackett Laboratory, Imperial College London, London, UK
| | - Nicholas A Güsken
- Blackett Laboratory, Imperial College London, London, UK
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Yuxin Chen
- Blackett Laboratory, Imperial College London, London, UK
| | - Huaifeng Xiao
- Blackett Laboratory, Imperial College London, London, UK
| | - Yi Li
- Blackett Laboratory, Imperial College London, London, UK
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Ahad Riaz
- Blackett Laboratory, Imperial College London, London, UK
| | - Stefan A Maier
- Blackett Laboratory, Imperial College London, London, UK
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
7
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Kumar Trivedi R, Chakraborty B, Churchill DG. Theoretical SERS study of the strength and suitability of Cu12 nanostar for SERS: Complete theoretical studies, coinage metal SM12 comparisons, benzothiazole (BTH) adsorbent. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Electroless Deposits of ZnO and Hybrid ZnO/Ag Nanoparticles on Mg-Ca0.3 Alloy Surface: Multiscale Characterization. COATINGS 2022. [DOI: 10.3390/coatings12081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ZnO and hybrid of ZnO/Ag structures in the nanometer size were electroless deposited on the Mg-Ca0.3 alloy surface, achieved from aqueous solutions (10−3 M at 21 °C) of ZnO (suspension), Zn(NO3)2 and AgNO3. The surface characterization of the deposits was carried out by Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-Ray Photoelectron Spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Visible and Raman spectroscopy. The nanoparticles (NPs) area size distribution analysis revealed that the average of ZnO-NPs was ~85 nm. Likewise, the Ag-NPs of electroless deposits had an average area size of ~100 nm and nucleated in the vicinity of ZnO-NPs as Ag+ ions have been attracted by the negatively charged O2− atoms of the Zn-O dipole. The ZnO-NPs had the wurtzite structure, as indicated by Raman spectroscopy analysis and XRD complementary analysis. The UV-Visible spectroscopy analysis gave a peak at ~320 nm associated with the decrease in the imaginary part (k) of the refractive index of Ag-NPs. On the Mg-Ca0.3 surface, MgO, Mg(OH)2 and MgCO3 are present due to the Mg-matrix. XRD spectra of Ag-NPs indicated the presence of planes arranged with the FCC hexagonal structure. The reported hybrid ZnO/Ag electroless deposits of NPs are of interest for temporary implant devices, providing antibacterial properties to Mg-Ca0.3 surface, a widely used biodegradable material.
Collapse
|
9
|
Wang C, Wang C, Li J, Tu Z, Gu B, Wang S. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosens Bioelectron 2022; 214:114525. [DOI: 10.1016/j.bios.2022.114525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
|
10
|
Huang HJ, Chang HW, Lee CY, Shiao MH, Chiu YL, Lee PY, Lin YS. Effect of synthesis time on plasmonic properties of Ag dendritic nanoforests. IUCRJ 2022; 9:355-363. [PMID: 35546804 PMCID: PMC9067114 DOI: 10.1107/s2052252522002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The effects of synthesis time on the plasmonic properties of Ag dendritic nanoforests on Si substrate (Ag-DNF/Si) samples synthesized through the fluoride-assisted galvanic replacement reaction were investigated. The Ag-DNF/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction and surface-enhanced Raman spectroscopy (SERS). The prolonged reaction time led to the growth of an Ag-DNF layer and etched Si hole array. SEM images and variations in the fractal dimension index indicated that complex-structure, feather-like leaves became coral-like branches between 30 and 60 min of synthesis. The morphological variation during the growth of the Ag DNFs resulted in different optical responses to light illumination, especially those of light harvest and energy transformation. The sample achieved the most desirable light-to-heat conversion efficiency and SERS response with a 30 min growth time. A longer synthesis time or thicker Ag-DNF layer on the Si substrate did not have superior plasmonic properties.
Collapse
Affiliation(s)
- Hung Ji Huang
- Department of Electra-Optical Engineering, National Formosa University, Yunlin 632301, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miaoli 360302, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan
| | - Yen-Ling Chiu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Pee-Yew Lee
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- PhD Program in Materials and Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
11
|
Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022; 27:2121-2136. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as one of the most promising platforms for various biosensing applications. These sensing systems encompass the advantages of specificity, ultra-high sensitivity, stability, low cost, repeatability, and easy-to-use methods. Moreover, their ability to offer a molecular fingerprint and identify the target analyte at low levels make SERS a promising technique for detecting circulating cancer biomarkers with greater sensitivity and reliability. Among the various circulating biomolecules, oncomiRs are emerging as prominent biomarkers for the early screening of breast cancers (BCs). In this review, we provide a comprehensive understanding of different SERS-based biosensors and their application to identify BC-specific oncomiRs. We also discuss different SERS-based sensing strategies, nano-analytical frameworks, and challenges to be addressed for effective clinical translation.
Collapse
Affiliation(s)
- Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
12
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
13
|
Chau YFC, Chang HE, Huang PS, Wu PC, Lim CM, Chiang LM, Wang TJ, Chao CTC, Kao TS, Shih MH, Chiang HP. Enhanced photoluminescence and shortened lifetime of DCJTB by photoinduced metal deposition on a ferroelectric lithography substrate. Sci Rep 2022; 12:6173. [PMID: 35418622 PMCID: PMC9007977 DOI: 10.1038/s41598-022-10303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
The photodeposition of metallic nanostructures onto ferroelectric surfaces could enable new applications based on the assembly of molecules and patterning local surface reactivity by enhancing surface field intensity. DCJTB (4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) is an excellent fluorescent dye and dopant material with a high quantum efficiency used for OLED displays on the market. However, how to raise the photoluminescence (PL) and reduce the lifetime of DCJTB in a substrate remain extraordinary challenges for its application. Here, we demonstrate a tunable ferroelectric lithography plasmon-enhanced substrate to generate photo-reduced silver nanoparticles (AgNPs) and achieve enhanced PL with a shortened lifetime depending on the substrate's annealing time. The enhanced PL with shortened lifetimes can attribute to the localized electromagnetic (EM) wave produced by the nanotextured AgNPs layers' surface and gap plasmon resonances. The simulation is based on the three-dimensional finite element method to explain the mechanism of experimental results. Since the absorption increases, the remarkable enhanced PL of DCJTB can attain in the fabricated periodically proton exchanged (PPE) lithium niobate (LiNbO3) substrate. Furthermore, the proposed fabrication method demonstrates to help tune the surface EM wave distribution in the substrate, which can simultaneously achieve the significantly shortened lifetime and high PL intensity of DCJTB in the substrate. Compared with the un-annealed substrate, the PL intensity of DCJTB in the assembly metallic nanostructures is enhanced 13.70 times, and the PL's lifetime is reduced by 12.50%, respectively. Thus, the fabricated substrate can be a promising candidate, verifying chemically patterned ferroelectrics' satisfaction as a PL-active substrate.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Hao-En Chang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202, Taiwan, ROC
| | - Po-Sheng Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Chee Ming Lim
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Li-Ming Chiang
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC
| | - Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202, Taiwan, ROC
| | - Tsung Sheng Kao
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan, ROC
| | - Min-Hsiung Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202, Taiwan, ROC.
| |
Collapse
|
14
|
Khabarov K, Nouraldeen M, Tikhonov S, Lizunova A, Efimov A, Ivanov V. Modification of Aerosol Gold Nanoparticles by Nanosecond Pulsed-Periodic Laser Radiation. NANOMATERIALS 2021; 11:nano11102701. [PMID: 34685142 PMCID: PMC8538219 DOI: 10.3390/nano11102701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
This study investigates the processes of interaction of nanosecond pulsed-periodic laser radiation with the flow of aerosol agglomerates of gold nanoparticles synthesized in a spark discharge. Nanoparticles in a gas flow are spatially separated nano-objects whose interaction with each other and with the walls of an experimental cell was insignificant. Therefore, the energy absorbed by nanoparticles was used only for their own heating with further shape and size modification and on heat transfer to the surrounding gas. In the research, we used laser radiation with wavelengths of 527 and 1053 nm at pulse energies up to 900 µJ and pulse repetition rates up to 500 Hz. The dynamics of changes in the nanoparticles size during their sintering process depending on the laser pulses energy is characterized by an S-shaped shrinkage curve. Complete sintering of the initial agglomerates with their transformation into spherical nanoparticles is achieved by a series of impacting laser pulses. The result of nanoparticles’ laser modification is largely determined by the pulse energy and the efficiency of the nanoparticles’ radiation absorption.
Collapse
Affiliation(s)
- Kirill Khabarov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
- Correspondence: (K.K.); (V.I.)
| | - Messan Nouraldeen
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
| | - Sergei Tikhonov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
| | - Anna Lizunova
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
| | - Alexey Efimov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
| | - Victor Ivanov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (M.N.); (S.T.); (A.L.); (A.E.)
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (K.K.); (V.I.)
| |
Collapse
|
15
|
Shikha S, Dureja S, Sapra R, Babu J, Haridas V, Pattanayek SK. Interaction of borohydride stabilized silver nanoparticles with sulfur-containing organophosphates. RSC Adv 2021; 11:32286-32294. [PMID: 35495484 PMCID: PMC9041980 DOI: 10.1039/d1ra06911j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the interactions between nanoparticles and organophosphates is the key to developing cost-effective colorimetric pesticide detection. We have studied the interaction between three different organophosphates containing the P[double bond, length as m-dash]S group and borohydride stabilized silver nanoparticles. Three different organophosphates, namely phorate, chlorpyrifos, and malathion, have been used. The colorimetric changes are corroborated with UV-visible absorption studies along with the change in particle size and zeta potential. This effect persists in the presence of NaCl solution also. The chlorpyrifos and malathion do not show significant interactions with uncapped nanoparticles over time, while phorate undergoes degradation due to the scission of the S-CH2 linkage. A reaction mechanism, wherein a silver and sulfur (Ag→S) complex is formed, which is in agreement with Raman spectroscopic studies is proposed. The orientations of phorate near Ag nanoparticles are discussed from the adsorption energy calculation using density functional theory.
Collapse
Affiliation(s)
- Shalini Shikha
- Department of Chemical Engineering, IIT Delhi Hauz Khas New Delhi 110016 India
| | - Samit Dureja
- Department of Chemical Engineering, IIT Delhi Hauz Khas New Delhi 110016 India
| | - Rachit Sapra
- Department of Chemistry, IIT Delhi Hauz Khas New Delhi 110016 India
| | - Jisha Babu
- Department of Chemistry, IIT Delhi Hauz Khas New Delhi 110016 India
| | - V Haridas
- Department of Chemistry, IIT Delhi Hauz Khas New Delhi 110016 India
| | - Sudip K Pattanayek
- Department of Chemical Engineering, IIT Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
16
|
Huang HJ, Shiao MH, Lin YW, Lin BJ, Su J, Lin YS, Chang HW. Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. NANOMATERIALS 2021; 11:nano11071736. [PMID: 34209414 PMCID: PMC8307875 DOI: 10.3390/nano11071736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The effects of Au cores in Ag shells in enhancing surface-enhanced Raman scattering (SERS) were evaluated with samples of various Au/Ag ratios. High-density Ag shell/Au core dendritic nanoforests (Au@Ag-DNFs) on silicon (Au@Ag-DNFs/Si) were synthesized using the fluoride-assisted Galvanic replacement reaction method. The synthesized Au@Ag-DNFs/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction, and Raman spectroscopy. The ultraviolet-visible extinction spectrum exhibited increased extinction induced by the addition of Ag when creating the metal DNFs layer. The pure Ag DNFs exhibited high optical extinction of visible light, but low SERS response compared with Au@Ag DNFs. The Au core (with high refractive index real part) in Au@Ag DNFs maintained a long-leaf structure that focused the illumination light, resulting in the apparent SERS enhancement of the Ag coverage.
Collapse
Affiliation(s)
- Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 500207, Taiwan;
| | - Bei-Ju Lin
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
| | - James Su
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 360001, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.-S.L.); (H.-W.C.); Tel.: +886-37-382199 (Y.-S.L.); +886-37-382216 (H.-W.C.)
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Correspondence: (Y.-S.L.); (H.-W.C.); Tel.: +886-37-382199 (Y.-S.L.); +886-37-382216 (H.-W.C.)
| |
Collapse
|
17
|
Xie Y. Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate. Aust J Chem 2021. [DOI: 10.1071/ch21142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles deposited on a titania nanopore array (Ag/TiO2 NPA) has been designed as a surface-enhanced Raman scattering (SERS) substrate for sensitive and recycling application of organic molecule detection. A TiO2 NPA was fabricated by a surface oxidization reaction of a titanium sheet by a double anodization process. A Ag/TiO2 NPA was then formed by depositing silver nanoparticles onto the TiO2 NPA by a cycling chemical reduction deposition process. The Ag/TiO2 NPA has a uniform mono-layer dispersion of Ag nanoparticles with a size of 30–50 nm on TiO2 nanopores with a diameter of 100–110 nm. The Ag/TiO2 NPA SERS substrate could facilitate interfacial adsorption of Rhodamine 6G (R6G), which achieves a sensitive detection limit of 10−8 M R6G through SERS spectrum measurement. The Ag/TiO2 NPA SERS substrate achieves an analytical enhancement factor value of 2.6 × 105. The Ag/TiO2 NRA could promote the UV light-excited photocatalytic degradation reaction of R6G adsorbed on its surface which gives rise to a refreshed Ag/TiO2 NRA under UV irradiation for 60 min and accordingly behave as a self-cleaning and recycling SERS substrate. The Ag/TiO2 NPA exhibits a much higher R6G degradation reaction rate constant (0.05764 min−1) than the TiO2 NPA (0.02600 min−1), indicating its superior photocatalytic activity and self-cleaning activity. The refreshed Ag/TiO2 NPA was able to be recycled for the Raman detection of R6G, maintaining a high stability, reproducibility, and cyclability. The highly ordered Ag/TiO2 NPA with well controlled Ag nanoparticle dispersion and TiO2 nanopore shape could act as a suitable SERS substrate for recycling and self-cleaning application for stable and sensitive molecule detection.
Collapse
|
18
|
Ashkavand Z, Sadeghi E, Parvizi R, Zare M. Developed Low-Temperature Anionic 2H-MoS 2/Au Sensing Layer Coated Optical Fiber Gas Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34283-34296. [PMID: 32614567 DOI: 10.1021/acsami.0c05108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carboxyl-functionalized molybdenum disulfide (COOH-MoS2) nanosheets were prepared through a facile low-temperature hydrothermal method. The phase transformation of metallic-1T to 2H-semiconductor COOH-MoS2 nanosheets was conducted through introducing Au thin film on the unclad optical fiber as a sensing layer in a low temperature. The developed structure successfully refined the loss of the semiconducting properties and poor adhesion of COOH-MoS2 on the unclad polymer optical fiber, which provided limited semiconductor potential as the sensing layers on the optical fiber surfaces. The sensing performance of the as-prepared structure was tested for quantitative detection of three different volatile organic carbons (VOCs) of ethanol, propanol, and methanol gases as well as cross-sensitivity to relative humidity. The operating principle was based on intensity variation of the evanescent wave in the sensing region. The response of the proposed sensing system shows maximum response and better linearity (R2 = 0.999) to methanol at room temperature. Finally, the comparative experimental cross-sensitivity to relative humidity and methanol was also studied to evaluate the potential of sensing range.
Collapse
Affiliation(s)
- Z Ashkavand
- Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
| | - E Sadeghi
- Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
| | - R Parvizi
- Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
| | - M Zare
- Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
| |
Collapse
|
19
|
Dey P, Blakey I, Stone N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem Sci 2020; 11:8671-8685. [PMID: 34123125 PMCID: PMC8163366 DOI: 10.1039/d0sc01926g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous developments in optical biomedical imaging research utilizing gold nanostructures as contrast agents have advanced beyond basic research towards demonstrating potential as diagnostic tools; some of which are translating into clinical applications. Recent advances in optics, lasers and detection instrumentation along with the extensive, yet developing, knowledge-base in tailoring the optical properties of gold nanostructures has significantly improved the prospect of near-infrared (NIR) optical detection technologies. Of particular interest are optical coherence tomography (OCT), photoacoustic imaging (PAI), multispectral optoacoustic tomography (MSOT), Raman spectroscopy (RS) and surface enhanced spatially offset Raman spectroscopy (SESORS), due to their respective advancements. Here we discuss recent technological developments, as well as provide a prediction of their potential to impact on clinical diagnostics. A brief summary of each techniques' capability to distinguish abnormal (disease sites) from normal tissues, using endogenous signals alone is presented. We then elaborate on the use of exogenous gold nanostructures as contrast agents providing enhanced performance in the above-mentioned techniques. Finally, we consider the potential of these approaches to further catalyse advances in pre-clinical and clinical optical diagnostic technologies. Optical biomedical imaging research utilising gold nanostructures as contrast agents has advanced beyond basic science, demonstrating potential in various optical diagnostic tools; some of which are currently translating into clinical applications.![]()
Collapse
Affiliation(s)
- Priyanka Dey
- School of Physics and Astronomy, University of Exeter Exeter EX4 4QL UK
| | - Idriss Blakey
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland St. Lucia 4072 Australia.,Centre for Advanced Imaging, University of Queensland St. Lucia 4072 Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland St. Lucia 4072 Australia
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter Exeter EX4 4QL UK
| |
Collapse
|
20
|
Bao H, Fu H, Zhou L, Cai W, Zhang H. Rapid and ultrasensitive surface-enhanced Raman spectroscopy detection of mercury ions with gold film supported organometallic nanobelts. NANOTECHNOLOGY 2020; 31:155501. [PMID: 31887726 DOI: 10.1088/1361-6528/ab6630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid, ultrasensitive and reliable detection of mercury ions (Hg2+) by surface enhanced Raman spectroscopy (SERS) is of importance, but is restricted by the extremely low Raman cross section of the Hg2+. Here, we report a facile methodology that can realize such detection based on the organometallic Cu(CH4N2S)Cl · 0.5H2O nanobelts and SERS. In the assay, Hg2+ react with the nanobelts coated on a SERS active gold nanoparticle (NP) film to form ultrafine HgS NPs in situ. Subsequently, solid HgS is SERS determined to mirror the presence of Hg2+. Importantly, such detection is rapid and ultrasensitive. Within 10 min, limit of detection (LoD) of ppt level can be realized. The high detection efficiency is attributed to the superhydrophilicity, rich micropores and ultrathin nature of the organometallic nanobelts besides the strong SERS effect of Au NP film. In addition, this detection is highly resistant to various metal ions (Cu2+, Fe3+, Bi3+, Cr3+, Na+, Ni2+, Cd2+, etc) and is highly reliable in actual water (lake and tap water). Finally, influences of some substrate parameters and detection conditions on the test results are revealed. The optimal thickness of the gold NP film is about 80 nm, and the optimal wavelength of excitation light is about 633 nm. A small amount of Cu(CH4N2S)Cl · 0.5H2O nanobelts or a large volume of Hg2+ contaminated solution contributes to low LoDs. We believe that this work provides a rapid and sensitive detection for Hg2+.
Collapse
Affiliation(s)
- Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Barveen NR, Wang TJ, Chang YH. Retracted Article: Synergistic action of star-shaped Au/Ag nanoparticles decorated on AgFeO 2 for ultrasensitive SERS detection of a chemical warfare agent on real samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1342-1352. [PMID: 35178542 DOI: 10.1039/c9ay02347j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is a great challenge to design and fabricate a cost-effective surface-enhanced Raman spectroscopy (SERS) substrate with excellent reproducibility and sensitivity for reliable environmental analysis. In this work, we have synthesized silver ferrite (AgFeO2) interlinked with star-shaped gold/silver (Au/Ag) bimetallic (BM) nanoparticles (NPs) by a simple physical method for the effective detection of an acetylcholinesterase (AchE) inhibitor, paraoxon ethyl (PE). The successful construction of AgFeO2@Au/Ag NPs was confirmed by UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The enhancement of the SERS signal is achieved by the synergistic effect of the charge transfer mechanism and electromagnetic mechanism. The Raman peak centered at 1357 cm-1 was selected as an ideal peak for the quantitative analysis of PE. The AgFeO2@Au/Ag NPs can detect PE down to 1 × 10-8 M with a high analytical enhancement factor of 3.53 × 106 and excellent uniformity, as determined randomly from 14 spots (relative standard deviation, RSD, <15%). The recovery values of PE in tap water and tomato juice were from 93.16% to 99.16%. All these results suggest that our proposed SERS substrate has promising potential for the detection of PE. The proposed simple strategy for PE detection by SERS using AgFeO2@Au/Ag NPs paves the way for future reliable environmental analysis and real sample monitoring.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Yu-Hsu Chang
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
22
|
Chou Chau YF, Chou Chao CT, Huang HJ, Kooh MRR, Kumara NTRN, Lim CM, Chiang HP. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. NANOMATERIALS 2020; 10:nano10030493. [PMID: 32182902 PMCID: PMC7153243 DOI: 10.3390/nano10030493] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
Plasmonic effect using a cross-hair can convey strongly localized surface plasmon modes among the separated composite nanostructures. Compared to its counterpart without the cross-hair, this characteristic has the remarkable merit of enhancing absorptance at resonance and can make the structure carry out a dual-band plasmonic perfect absorber (PPA). In this paper, we propose and design a novel dual-band PPA with a gathering of four metal-shell nanorods using a cross-hair operating at visible and near-infrared regions. Two absorptance peaks at 1050 nm and 750 nm with maximal absorptance of 99.59% and 99.89% for modes 1 and 2, respectively, are detected. High sensitivity of 1200 nm refractive unit (1/RIU), figure of merit of 26.67 and Q factor of 23.33 are acquired, which are very remarkable compared with the other PPAs. In addition, the absorptance in mode 1 is about nine times compared to its counterpart without the cross-hair. The proposed structure gives a novel inspiration for the design of a tunable dual-band PPA, which can be exploited for plasmonic sensor and other nanophotonic devices.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei; (M.R.R.K.); (N.T.R.N.K.); (C.M.L.)
- Correspondence: (Y.-F.C.C.); (H.-P.C.); Tel.: +673-7150039 (Y.-F.C.C.); +886-2-24622192 (ext. 6702) (H.-P.C.)
| | - Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300, Taiwan;
| | - Muhammad Raziq Rahimi Kooh
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei; (M.R.R.K.); (N.T.R.N.K.); (C.M.L.)
| | - N. T. R. N. Kumara
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei; (M.R.R.K.); (N.T.R.N.K.); (C.M.L.)
| | - Chee Ming Lim
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei; (M.R.R.K.); (N.T.R.N.K.); (C.M.L.)
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (Y.-F.C.C.); (H.-P.C.); Tel.: +673-7150039 (Y.-F.C.C.); +886-2-24622192 (ext. 6702) (H.-P.C.)
| |
Collapse
|
23
|
Fabrication and Characterization of a Metallic-Dielectric Nanorod Array by Nanosphere Lithography for Plasmonic Sensing Application. NANOMATERIALS 2019; 9:nano9121691. [PMID: 31779222 PMCID: PMC6956078 DOI: 10.3390/nano9121691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a periodic metallic–dielectric nanorod array which consists of Si nanorods coated with 30 nm Ag thin film set in a hexagonal configuration is fabricated and characterized. The fabrication procedure is performed by using nanosphere lithography with reactive ion etching, followed by Ag thin-film deposition. The mechanism of the surface and gap plasmon modes supported by the fabricated structure is numerically demonstrated by the three-dimensional finite element method. The measured and simulated absorptance spectra are observed to have a same trend and a qualitative fit. Our fabricated plasmonic sensor shows an average sensitivity of 340.0 nm/RIU when applied to a refractive index sensor ranging from 1.0 to 1.6. The proposed substrates provide a practical plasmonic nanorod-based sensing platform, and the fabrication methods used are technically effective and low-cost.
Collapse
|
24
|
Mariani S, Paghi A, La Mattina AA, Debrassi A, Dähne L, Barillaro G. Decoration of Porous Silicon with Gold Nanoparticles via Layer-by-Layer Nanoassembly for Interferometric and Hybrid Photonic/Plasmonic (Bio)sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43731-43740. [PMID: 31644268 DOI: 10.1021/acsami.9b15737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gold nanoparticle layers (AuNPLs) enable the coupling of morphological, optical, and electrical properties of gold nanoparticles (AuNPs) with tailored and specific surface topography, making them exploitable in many bioapplications (e.g., biosensing, drug delivery, and photothermal therapy). Herein, we report the formation of AuNPLs on porous silicon (PSi) interferometers and distributed Bragg reflectors (DBRs) for (bio)sensing applications via layer-by-layer (LbL) nanoassembling of a positively charged polyelectrolyte, namely, poly(allylamine hydrochloride) (PAH), and negatively charged citrate-capped AuNPs. Decoration of PSi interferometers with AuNPLs enhances the Fabry-Pérot fringe contrast due to increased surface reflectivity, resulting in an augmented sensitivity for both bulk and surface refractive index sensing, namely, about 4.5-fold using NaCl aqueous solutions to infiltrate the pores and 2.6-fold for unspecific bovine serum albumin (BSA) adsorption on the pore surface, respectively. Sensitivity enhancing, about 2.5-fold, is also confirmed for affinity and selective biosensing of streptavidin using a biotinylated polymer, namely, negatively charged poly(methacrylic acid) (b-PMAA). Further, decoration of PSi DBR with AuNPLs envisages building up a hybrid photonic/plasmonic optical sensing platform. Both photonic (DBR stop-band) and plasmonic (localized surface plasmon resonance, LSPR) peaks of the hybrid structure are sensitive to changes of bulk (using glucose aqueous solutions) and surface (due to BSA unspecific adsorption) refractive index. To the best of our knowledge, this is the first report about the formation of AuNPLs via LbL nanoassembly on PSi for (i) the enhancing of the interferometric performance in (bio)sensing applications and (ii) the building up of hybrid photonic/plasmonic platforms for sensing and perspective biosensing applications.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Antonino A La Mattina
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Aline Debrassi
- Surflay Nanotec GmbH , Max-Planck-Straße 3 , 12489 Berlin , Germany
| | - Lars Dähne
- Surflay Nanotec GmbH , Max-Planck-Straße 3 , 12489 Berlin , Germany
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| |
Collapse
|
25
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
26
|
Savaloni H, Goli-Haghighi S, Babaei R. Application of Mn-Cu Helical Star-Shaped (Pine-Tree-Like) Sculpted Thin Films with Different Symmetries Using Surface-Enhanced Raman Spectroscopy (SERS). APPLIED SPECTROSCOPY 2019; 73:879-892. [PMID: 30990064 DOI: 10.1177/0003702819841913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the surface engineering method is used to produce Mn helical star-shaped (pine-tree-like) nanosculptured thin films with three-, four-, and fivefold symmetries on Cu substrates using an oblique angle deposition technique together with rotation of the sample holder at certain angles. Nano structure and morphologies of the produced samples were obtained by means of atomic force microscope and field emission scanning electron microscope. Raman spectroscopy of the Mn/Cu samples impregnated by 4,4'-bipyridine (C10H8N2) solution with different concentrations, zidovudine (C10H13N5O4), and L-histidine (C6H9N3O2) was performed using 532 nm laser wavelength. A high degree of enhancement is achieved on Raman spectroscopy of all of these specimens. Comparison of the surface-enhanced Raman spectroscopy (SERS) results for 4,4' bipyridine (bipy) obtained in this work with the published literature using Ag and Au substrates in different shapes showed a significant enhancement improvement by using Mn sculptured structures. Reduction of the bipy concentration changed the enhancement factor. Enhancement factors of 107 and 105 were obtained for threefold symmetry sample using 2.885 × 10-2 and 10-3 mol L-1 bipy concentrations, respectively. Surface-enhanced Raman spectroscopy results of this work show that Mn nanostructures designed and engineered in this work can not only replace Ag and Au materials, but also provide a much higher enhancement factor.
Collapse
Affiliation(s)
- Hadi Savaloni
- 1 School of Physics, College of Science, University of Tehran, Tehran, Iran
| | | | - Reza Babaei
- 2 Plasma Physics Research Center, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Wang TJ, Chang HW, Chen JS, Chiang HP. Nanotip-assisted photoreduction of silver nanostructures on chemically patterned ferroelectric crystals for surface enhanced Raman scattering. Sci Rep 2019; 9:10962. [PMID: 31358870 PMCID: PMC6662766 DOI: 10.1038/s41598-019-47523-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 11/08/2022] Open
Abstract
Nanotips made of metal and semiconductor have been widely utilized in versatile applications to strengthen the electric field through lightning rod effect and localized surface plasmon resonance (LSPR) effect. Here, we present the utilization of ferroelectric nanotips to assist photoreduction of silver nanostructures for surface enhanced Raman scattering (SERS). Ferroelectric nanotips with spontaneous polarization posses the unique feature of producing the permanent electrostatic field without requiring external excitation, which differs from the present nanotips requiring electrical and optical excitation. The enhanced electrostatic field promotes the formation of silver nanoparticles by reducing the effect of Stern layer and accelerating the movement of photoelectrons and silver ions to the template surface. Experimental results show that sharp ferroelectric nanotips facilitate the formation of large-diameter nanoparticles with strong LSPR action. Compared to the conventional ferroelectric templates, the SERS substrates using nanotip-equipped ferroelectric templates produce 5.51 times larger Raman intensity, which can be further increased by >10.76 times by increasing the reaction time. The proposed SERS substrate owns the limit of detection <10-8 M and the enhancement factor of 2.3 × 109. The presented ferroelectric nanotips with permanent electrostatic field would open promising applications in the versatile areas, such as nanomaterial fabrication and optoelectronic devices.
Collapse
Affiliation(s)
- Tzyy-Jiann Wang
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Hsuan-Wei Chang
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Ji-Sheng Chen
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Hai-Pang Chiang
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
28
|
Yu Y, Ng C, König TAF, Fery A. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8629-8645. [PMID: 30883131 DOI: 10.1021/acs.langmuir.8b04279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electromagnetic radiation of a certain frequency can excite the collective oscillation of the free electrons in metallic nanostructures using localized surface plasmon resonances (LSPRs), and this phenomenon can be used for a variety of optical and electronic functionalities. However, nanostructure design over a large area using controlled LSPR features is challenging and requires high accuracy. In this article, we offer an overview of the efforts made by our group to implement a wrinkle-assisted colloidal particle assembly method to approach this challenge from a different angle. First, we introduce the controlled wrinkling process and discuss the underlying theoretical framework. We then set out how the wrinkled surfaces are utilized to guide the self-assembly of colloidal nanoparticles of various surface chemistry, size, and shape. Subsequently, template-assisted colloidal self-assembly mechanisms and a general guide for particle assembly beyond plasmonics will be presented. In addition, we also discuss the collective plasmonic behavior in depth, including strong plasmonic coupling due to nanoscale gap size as well as magnetic mode excitation and demonstrate the potential applications of wrinkle-assisted colloidal particle assembly method in the field of mechanoresponsive metasurfaces and surface-enhanced spectroscopy. Lastly, a general perspective in the field of template-assisted colloidal assembly with regard to potential applications in plasmonic photocatalysis, solar cells, optoelectronics, and sensing devices is provided.
Collapse
Affiliation(s)
- Ye Yu
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Charlene Ng
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Technische Universität Dresden , Department of Physical Chemistry of Polymer Materials , 01062 Dresden , Germany
| |
Collapse
|
29
|
Chau YFC, Chou Chao CT, Huang HJ, Lim RC, Chiang HP. Tunable plasmonic effects arising from metal-dielectric nanorods. APPLIED OPTICS 2019; 58:2530-2539. [PMID: 31045053 DOI: 10.1364/ao.58.002530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
We have investigated the plasmonic effects in a two-dimensional periodic array of metallodielectric nanorods with and without the rotational angle, in which the integration of the localized surface plasmon resonance (SPR) and hollow plasmon resonance (HPR) properties is performed. Four patterns of nanostructures are investigated. We make use of the three-dimensional finite element method to obtain the simulation results, which demonstrate that the localized SPR and HPR in metallodielectric nanorods enhance the near-field intensity and increase the depth of the transmittance dip, providing an additional degree of freedom in the control of the light wave at the nanoscale. Numerical results show that the depth of the transmittance dip and sensitivity of case 1 and case 2 can be elevated to a value of 83.21% and 6.7 times, respectively, when the rotational angle of metal-dielectric nanorods varies from 0° to 90°. The sensitivity of case 3 and case 4 can be raised to the magnitude of 700-1091 nm/RIU (where RIU is the refractive index unit), and the characteristics enable the extensive applications for nanophotonic devices with high performance in a predictable manner.
Collapse
|
30
|
Škrabić M, Kosović M, Gotić M, Mikac L, Ivanda M, Gamulin O. Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E421. [PMID: 30871049 PMCID: PMC6473976 DOI: 10.3390/nano9030421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) with near-infrared (NIR) excitation offers a safe way for the detection and study of fragile biomolecules. In this work, we present the possibility of using silver-coated porous silicon photonic crystals as SERS substrates for near-infrared (1064 nm) excitation. Due to the deep penetration of NIR light inside silicon, the fabrication of photonic crystals was necessary to quench the band gap photoluminescence of silicon crystal, which acts as mechanical support for the porous layer. Optimal parameters of the immersion plating process that gave maximum enhancement were found and the activity of SERS substrates was tested using rhodamine 6G and crystal violet dye molecules, yielding significant SERS enhancement for off-resonant conditions. To our knowledge, this is the first time that the 1064 nm NIR laser excitation is used for obtaining the SERS effect on porous silicon as a substrate.
Collapse
Affiliation(s)
- Marko Škrabić
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, Šalata 3b, 10000 Zagreb, Croatia.
- Research Unit New Functional Materials, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marin Kosović
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Marijan Gotić
- Research Unit New Functional Materials, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička cesta 54, 10000 Zagreb, Croatia.
- Laboratory for Molecular Physics, Division of Materials Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Lara Mikac
- Research Unit New Functional Materials, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička cesta 54, 10000 Zagreb, Croatia.
- Laboratory for Molecular Physics, Division of Materials Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Mile Ivanda
- Research Unit New Functional Materials, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička cesta 54, 10000 Zagreb, Croatia.
- Laboratory for Molecular Physics, Division of Materials Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ozren Gamulin
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, Šalata 3b, 10000 Zagreb, Croatia.
- Research Unit New Functional Materials, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
31
|
Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 2019; 20:ijms20040865. [PMID: 30781560 PMCID: PMC6412188 DOI: 10.3390/ijms20040865] [Citation(s) in RCA: 571] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review with a summary of current applications of AgNPs in nanoscience and nanomedicine and discuss their future perspectives in these areas.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
32
|
Kolosovas-Machuca ES, Cuadrado A, Ojeda-Galván HJ, Ortiz-Dosal LC, Hernández-Arteaga AC, Rodríguez-Aranda MDC, Navarro-Contreras HR, Alda J, González FJ. Detection of Histamine Dihydrochloride at Low Concentrations Using Raman Spectroscopy Enhanced by Gold Nanostars Colloids. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E211. [PMID: 30736293 PMCID: PMC6410180 DOI: 10.3390/nano9020211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/06/2023]
Abstract
In this paper, we report a fast and easy method to detect histamine dihydrochloride using gold nanostars in colloidal aqueous solution as a highly active SERS platform with potential applications in biomedicine and food science. This colloid was characterized with SEM and UV⁻Vis spectroscopy. Also, numerical calculations were performed to estimate the plasmonic resonance and electric field amplification of the gold nanoparticles to compare the difference between nanospheres and nanostars. Finally, aqueous solutions of histamine dihydrochloride were prepared in a wide range of concentrations and the colloid was added to carry out SERS. We found SERS amplified the Raman signal of histamine by an enhancement factor of 1 . 0 × 10 7 , demonstrating the capability of the method to detect low concentrations of this amine molecule.
Collapse
Affiliation(s)
- Eleazar Samuel Kolosovas-Machuca
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| | - Alexander Cuadrado
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalon, 118, 28037 Madrid, Spain.
| | - Hiram Joazet Ojeda-Galván
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
- Instituto de Física Luis Terrazas, Benemerita Universidad Autónoma de Puebla, Av. San Claudio, 18, 72570 Puebla, Mexico.
| | - Luis Carlos Ortiz-Dosal
- Doctorado Institucional en Ingeniería y Ciencias de Materiales, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| | - Aida Catalina Hernández-Arteaga
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| | - Maria Del Carmen Rodríguez-Aranda
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| | - Javier Alda
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalon, 118, 28037 Madrid, Spain.
| | - Francisco Javier González
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico.
| |
Collapse
|
33
|
Córdova-Castro RM, Krasavin AV, Nasir ME, Zayats AV, Dickson W. Nanocone-based plasmonic metamaterials. NANOTECHNOLOGY 2019; 30:055301. [PMID: 30521490 DOI: 10.1088/1361-6528/aaea39] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metamaterials and metasurfaces provide unprecedented opportunities for designing light-matter interactions. Optical properties of hyperbolic metamaterials with meta-atoms based on plasmonic nanorods, important in nonlinear optics, sensing and spontaneous emission control, can be tuned by varying geometrical sizes and arrangement of the meta-atoms. At the same time the role of the shape of the meta-atoms forming the array has not been studied. We present the fabrication and optical characterization of metamaterials based on arrays of plasmonic nanocones closely packed at the subwavelength scale. The plasmonic mode structure of the individual nanocones and pronounced coupling effects between them provide multiple degrees of freedom to engineer both the field enhancement and the optical properties of the resulting metamaterials. The metamaterials are fabricated using a scalable manufacturing procedure, allowing mass-production at the centimeter scale. The ultra-sharp cone apex ([Formula: see text]2 nm) and the associated field enhancement provide an extremely high density of electromagnetic hot-spots (∼1010 cm-2). These properties of nanocone-based metamaterials are important for the development of gradient-index metamaterials and in numerous applications in fluorescence enhancement, surface enhanced Raman spectroscopy as well as hot-carrier plasmonics and photocatalysis.
Collapse
Affiliation(s)
- R Margoth Córdova-Castro
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Saleviter S, Omar NAS. Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. OPTICS EXPRESS 2018; 26:34880-34893. [PMID: 30650905 DOI: 10.1364/oe.26.034880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
In this research, surface plasmon resonance (SPR) spectroscopy was used for sensing copper ion by combining the SPR with nanocrystalline cellulose modified by hexadecyltrimethylammonium bromide and graphene oxide composite (CTA-NCC/GO) thin film. The binding of Cu2+ on CTA-NCC/GO thin film was monitored by using SPR spectroscopy. By using the obtained SPR curve, detection range, binding affinity, sensitivity, full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have been calculated. The results showed that the sensor detection range was 0.01 until 0.5 ppm, and that it reached a saturation value. Moreover, the resonance angle shift followed the Langmuir isotherm model with a binding affinity constant of 4.075 × 103 M-1. A high sensitivity of 3.271° ppm-1 also was obtained for low Cu2+ concentration ranged from 0.01 to 0.1 ppm. For the FWHM, the lowest value calculated was at 0.08 and 0.1 ppm, which is 3.35°. The DA of the SPR signal consecutively highest at 0.08 and 0.1 ppm. Besides that, the SNR of the SPR signal increases with the Cu2+ concentrations. The CTA-NCC/GO thin film morphological properties were also studied by using atomic force microscopy. The rms roughness values, which were obtained before and after in contact with Cu2+, were 3.51 nm and 2.46 nm, respectively.
Collapse
|
35
|
Ye S, Wheeler MC, McLaughlan JR, Tamang A, Diggle CP, Cespedes O, Markham AF, Coletta PL, Evans SD. Developing Hollow-Channel Gold Nanoflowers as Trimodal Intracellular Nanoprobes. Int J Mol Sci 2018; 19:ijms19082327. [PMID: 30096801 PMCID: PMC6121537 DOI: 10.3390/ijms19082327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022] Open
Abstract
Gold nanoparticles-enabled intracellular surface-enhanced Raman spectroscopy (SERS) provides a sensitive and promising technique for single cell analysis. Compared with spherical gold nanoparticles, gold nanoflowers, i.e., flower-shaped gold nanostructures, can produce a stronger SERS signal. Current exploration of gold nanoflowers for intracellular SERS has been considerably limited by the difficulties in preparation, as well as background signal and cytotoxicity arising from the surfactant capping layer. Recently, we have developed a facile and surfactant-free method for fabricating hollow-channel gold nanoflowers (HAuNFs) with great single-particle SERS activity. In this paper, we investigate the cellular uptake and cytotoxicity of our HAuNFs using a RAW 264.7 macrophage cell line, and have observed effective cellular internalization and low cytotoxicity. We have further engineered our HAuNFs into SERS-active tags, and demonstrated the functionality of the obtained tags as trimodal nanoprobes for dark-field and fluorescence microscopy imaging, together with intracellular SERS.
Collapse
Affiliation(s)
- Sunjie Ye
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK.
| | - May C Wheeler
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - James R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| | - Abiral Tamang
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Christine P Diggle
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK.
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Alex F Markham
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK.
| | - P Louise Coletta
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
36
|
Chau YF, Chou Chao CT, Lim CM, Huang HJ, Chiang HP. Depolying Tunable Metal-Shell/Dielectric Core Nanorod Arrays as the Virtually Perfect Absorber in the Near-Infrared Regime. ACS OMEGA 2018; 3:7508-7516. [PMID: 31458906 PMCID: PMC6644437 DOI: 10.1021/acsomega.8b00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 05/03/2023]
Abstract
In this paper, the coupled Ag-shell/dielectric-core nanorod for sensor application is investigated and the different dielectric core plasmonic metamaterial is adopted in our design. The operational principle is based on the concept of combining the lattice resonance, localized surface plasmon resonance (SPR), and cavity plasmon resonance modes within the nanostructure. The underlying mechanisms are investigated numerically by using the three-dimensional finite element method and the numerical results of coupled solid Ag nanorods are included for comparison. The characteristic absorptance/reflectance peaks/dips have been demonstrated to be induced by different plasmonic modes that could lead to different responses required for plasmonic sensors. A nearly perfect absorptance and an approximate zero reflectance with a sharp band linewidth are obtained from the proposed system, when operated as an SPR sensor with the sensitivity and figure of merit of 757.58 nm/RIU (RIU is the refractive index unit) and 50.51 (RIU-1), respectively. Our work provides a promising method for the future developments of more advanced metamaterial absorber for chemical sensing, thermal radiation tailoring, field enhanced spectroscopy, and general filtering applications.
Collapse
Affiliation(s)
- Yuan-Fong
Chou Chau
- Centre
for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Negara Brunei Darussalam
| | | | - Chee Ming Lim
- Centre
for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Negara Brunei Darussalam
| | - Hung Ji Huang
- Instrument
Technology Research Center, National Applied
Research Laboratories, Hsinchu, Taiwan
| | - Hai-Pang Chiang
- Institute
of Optoelectronic Sciences, National Taiwan
Ocean University, No.
2 Pei-Ning Road, 202 Keelung, Taiwan
- Institute
of Physics, Academia Sinica, Taipei 11529, Taiwan
- E-mail:
| |
Collapse
|
37
|
Chau YFC, Wang CK, Shen L, Lim CM, Chiang HP, Chao CTC, Huang HJ, Lin CT, Kumara NTRN, Voo NY. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci Rep 2017; 7:16817. [PMID: 29196641 PMCID: PMC5711893 DOI: 10.1038/s41598-017-17024-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
A plasmonic nanostructure (PNS) which integrates metallic and dielectric media within a single structure has been shown to exhibit specific plasmonic properties which are considered useful in refractive index (RI) sensor applications. In this paper, the simultaneous realization of sensitivity and tunability of the optical properties of PNSs consisting of alternative Ag and dielectric of nanosphere/nanorod array have been proposed and compared by using three-dimensional finite element method. The proposed system can support plasmonic hybrid modes and the localized surface plasmonic resonances and cavity plasmonic resonances within the individual PNS can be excited by the incident light. The proposed PNSs can be operated as RI sensor with a sensitivity of 500 nm/RIU (RIU = refractive index unit) ranging from UV to the near-infrared. In addition, a narrow bandwidth and nearly zero transmittance along with a high absorptance can be achieved by a denser PNSs configuration in the unit cell of PNS arrays. We have demonstrated the number of modes sustained in the PNS system, as well as, the near-field distribution can be tailored by the dielectric media in PNSs.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| | - Chan-Kuang Wang
- Department of Electronic Engineering, Chien Hsin University of Science and Technology, No. 229, Jianxing Rd., Zhongli City, Taoyuan County, 32097, Taiwan (R.O.C.)
| | - Linfang Shen
- Institute of Space Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Chee Ming Lim
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Hai-Pang Chiang
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, No. 2 Pei-Ning Rd., 202, Keelung, Taiwan. .,Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | | | - Hung Ji Huang
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Chun-Ting Lin
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - N T R N Kumara
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Nyuk Yoong Voo
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| |
Collapse
|