1
|
Liu X, de Bakker V, Heggenhougen MV, Mårli MT, Frøynes AH, Salehian Z, Porcellato D, Morales Angeles D, Veening JW, Kjos M. Genome-wide CRISPRi screens for high-throughput fitness quantification and identification of determinants for dalbavancin susceptibility in Staphylococcus aureus. mSystems 2024; 9:e0128923. [PMID: 38837392 PMCID: PMC11265419 DOI: 10.1128/msystems.01289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen, Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | | | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Anette Heidal Frøynes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| |
Collapse
|
2
|
Hu XL, Gan HQ, Qin ZY, Liu Q, Li M, Chen D, Sessler JL, Tian H, He XP. Phenotyping of Methicillin-Resistant Staphylococcus aureus Using a Ratiometric Sensor Array. J Am Chem Soc 2023; 145:8917-8926. [PMID: 37040584 DOI: 10.1021/jacs.2c12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Chemical tools capable of classifying multidrug-resistant bacteria (superbugs) can facilitate early-stage disease diagnosis and help guide precision therapy. Here, we report a sensor array that permits the facile phenotyping of methicillin-resistant Staphylococcus aureus (MRSA), a clinically common superbug. The array consists of a panel of eight separate ratiometric fluorescent probes that provide characteristic vibration-induced emission (VIE) profiles. These probes bear a pair of quaternary ammonium salts in different substitution positions around a known VIEgen core. The differences in the substituents result in varying interactions with the negatively charged cell walls of bacteria. This, in turn, dictates the molecular conformation of the probes and affects their blue-to-red fluorescence intensity ratios (ratiometric changes). Within the sensor array, the differences in the ratiometric changes for the probes result in "fingerprints" for MRSA of different genotypes. This allows them to be identified using principal component analysis (PCA) without the need for cell lysis and nucleic acid isolation. The results obtained with the present sensor array agree well with those obtained using polymerase chain reaction (PCR) analysis.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Zhao-Yang Qin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital (Eastern), 160 Pujian Rd, Shanghai 200127, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital (Eastern), 160 Pujian Rd, Shanghai 200127, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
3
|
Castro BE, Rios R, Carvajal LP, Vargas ML, Cala MP, León L, Hanson B, Dinh AQ, Ortega-Recalde O, Seas C, Munita JM, Arias CA, Rincon S, Reyes J, Diaz L. Multiomics characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates with heterogeneous intermediate resistance to vancomycin (hVISA) in Latin America. J Antimicrob Chemother 2022; 78:122-132. [PMID: 36322484 PMCID: PMC10205466 DOI: 10.1093/jac/dkac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.
Collapse
Affiliation(s)
- Betsy E Castro
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica L Vargas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Lizeth León
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Blake Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Seas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| |
Collapse
|
4
|
Tsai CE, Yang CJ, Chuang YC, Wang JT, Sheng WH, Chen YC, Chang SC. Evaluation of the synergistic effect of ceftaroline against methicillin-resistant Staphylococcus aureus. Int J Infect Dis 2022; 122:230-236. [PMID: 35640827 DOI: 10.1016/j.ijid.2022.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES We aimed to determine the synergistic effects of ceftaroline (CPT) in combination with daptomycin (DAP), vancomycin (VAN), or linezolid (LNZ) against various methicillin-resistant Staphylococcus aureus (MRSA) strains. METHODS MRSA strains randomly selected from 2014 to 2018 were studied. Checkerboard titration and in vitro time-kill analyses were used to determine the synergistic activities of the antibiotic combinations. RESULTS A total of 10 genetically distinct MRSA strains were included in this study. The checkerboard titration analysis revealed that the CPT-DAP, CPT-VAN, and CPT-LNZ combinations had a synergistic effect against 30%, 10%, and 10% of the selected MRSA strains, respectively. Using time-kill analysis, we showed that CPT-DAP exhibited a significant synergistic and sustained bactericidal effect against both DAP-susceptible (Δ colony-forming units/ml, -5.79; P = 0.0495) and DAP-resistant (Δ colony-forming units/ml, -6.40; P = 0.0463) MRSA strains at a concentration of 0.5 × the minimum inhibitory concentration of CPT plus 0.5 × the minimum inhibitory concentration of DAP. No synergistic bactericidal effects were observed for the CPT-VAN and CPT-LNZ combinations against the selected strains. CONCLUSION The CPT-DAP combination showed better synergistic activity than the CPT-VAN and CPT-LNZ combinations against the enrolled MRSA strains. DAP, rather than VAN or LNZ, might be a better choice for CPT combination in the treatment of MRSA infections.
Collapse
Affiliation(s)
- Cheng-En Tsai
- School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
5
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Widodo A, Riwu KHP. A review of horses as a source of spreading livestock-associated methicillin-resistant Staphylococcus aureus to human health. Vet World 2022; 15:1906-1915. [PMID: 36313842 PMCID: PMC9615495 DOI: 10.14202/vetworld.2022.1906-1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) was first discovered in horses in 1989. Since then, LA-MRSA has begun to be considered an important strain of pathogenic bacteria in horses, which can cause LA-MRSA infection and colonization in humans with public health impacts. The anterior nares are the primary site of LA-MRSA colonization in horses, although LA-MRSA colonization may also occur in the gastrointestinal tract in horses. LA-MRSA-infected horses typically exhibit clinical infection or may not exhibit clinical infection. There are two potential risks associated with LA-MRSA colonization in horses: The possibility of disease development in horses infected with LA-MRSA and the possibility of LA-MRSA transfer to humans and other horses. The diagnosis of LA-MRSA in horses can be made by conducting in vitro sensitivity testing for oxacillin and cefoxitin, and then followed by a molecular test using polymerase chain reaction. LA-MRSA transmission in animal hospitals and on farms is most likely due to contact with horses infected or colonized by LA-MRSA. The history of prior antibiotic administration, history of prior LA-MRSA colonization, and length of equine hospitalization were described as risk factors in cases of infection and colonization of LA-MRSA in horses. Nebulized antibiotics may be a viable alternative to use in horses, but nebulized antibiotics are only used in horses that are persistently colonized with LA-MRSA. Controlling the spread of LA-MRSA in horses can be done by regularly washing horses, eradicating vectors in horse stalls such as rats, and maintaining the cleanliness of the stable and animal hospital environment. Meanwhile, cleaning hands, using gloves, and donning protective clothes are ways that humans can prevent the transmission of LA-MRSA when handling horses. This review will explain the definition of LA-MRSA in general, LA-MRSA in horses, the epidemiology of LA-MRSA in horses, the diagnosis of LA-MRSA in horses, the transmission of LA-MRSA in horses, risk factors for spreading LA-MRSA in horses, public health impact, treatment of LA-MRSA infection in horses, and control of the spread of LA-MRSA in horses.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | | | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| |
Collapse
|
6
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
7
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
8
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand swabs. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmers' hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
9
|
Itano J, Tanimoto Y, Nishimura T, Aoki K, Kimura G. Pneumonia Caused by Community-Acquired Methicillin-Resistant Staphylococcus aureus Positive for Exfoliative Toxin A and Secondary to Allergic Bronchopulmonary Aspergillosis. Cureus 2022; 14:e25334. [PMID: 35774683 PMCID: PMC9236638 DOI: 10.7759/cureus.25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pneumonia. Previous reports found that CA-MRSA producing the Panton-Valentine leukocidin (PVL) or toxic shock syndrome toxin-1 (TSST-1) triggered severe necrotizing pneumonia. However, other toxins and genetic factors responsible for CA-MRSA pneumonia are rarely analyzed in Japan. In this study, we performed whole-genome sequencing (WGS) to analyze the clinical features of CA-MRSA genetically. As a result, we identified a strain with a rare sequence-type of MRSA. Herein, we present a case of CA-MRSA pneumonia in a 64-year-old woman. Her condition improved rapidly with vancomycin therapy. Draft WGS led to identifying the genotype and virulence factors and showed that the strain was a rare sequence-type of MRSA with the following characteristics: staphylococcal cassette chromosome mec (SCCmec) type IV, sequence type 121, exfoliative toxin A-positive, and specific staphylococcal protein A type t5110. To the best of our knowledge, a strain with this profile has not been previously reported. Our findings provide new insights into CA-MRSA pneumonia and its genetic and clinical features. Therefore, we recommend accumulating genetic profiles of CA-MRSA pneumonia to identify genetic features and the clinical characteristics of the patients.
Collapse
Affiliation(s)
- Junko Itano
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama, JPN
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama, JPN
| | - Tomoka Nishimura
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama, JPN
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, JPN
| | - Goro Kimura
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama, JPN
| |
Collapse
|
10
|
Berndsen R, Cunningham T, Kaelin L, Callender M, Boldog WD, Viering B, King A, Labban N, Pollock JA, Miller HB, Blackledge MS. Identification and Evaluation of Brominated Carbazoles as a Novel Antibiotic Adjuvant Scaffold in MRSA. ACS Med Chem Lett 2022; 13:483-491. [PMID: 35295086 PMCID: PMC8919279 DOI: 10.1021/acsmedchemlett.1c00680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
![]()
Antibiotic-resistant
infections are a pressing global concern,
causing millions of deaths each year. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of nosocomial
infections in healthcare settings and is increasingly responsible
for community-acquired infections that are often more difficult to
treat. Antibiotic adjuvants are small molecules that potentiate antibiotics
through nontoxic mechanisms and show excellent promise as novel therapeutics.
Screening of low-molecular-weight compounds was employed to identify
novel antibiotic adjuvant scaffolds for further elaboration. Brominated
carbazoles emerged from this screening as lead compounds for further
evaluation. Lead carbazoles were able to potentiate several β-lactam
antibiotics in three medically relevant strains of MRSA. Gene expression
studies determined that these carbazoles were dampening the transcription
of key genes that modulate β-lactam resistance in MRSA. The
lead brominated carbazoles represent novel scaffolds for elaboration
as antibiotic adjuvants.
Collapse
Affiliation(s)
- Rachel Berndsen
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Taylor Cunningham
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Lauren Kaelin
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Makayla Callender
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - W. Dexter Boldog
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Brianna Viering
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Ashley King
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Najwa Labban
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Julie A. Pollock
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Heather B. Miller
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
11
|
Bouchelaghem S, Das S, Naorem RS, Czuni L, Papp G, Kocsis M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022; 27:574. [PMID: 35056886 PMCID: PMC8782033 DOI: 10.3390/molecules27020574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from six regions in Hungary. The minimum inhibitory concentrations (MIC) values and the interaction of EEP-antibiotics were evaluated by the broth microdilution and the chequerboard broth microdilution methods, respectively. The effect of EEP on biofilm formation and eradication was estimated by crystal violet assay. Resazurin/propidium iodide dyes were applied for simultaneous quantification of cellular metabolic activities and dead cells in mature biofilms. The EEP1 sample showed the highest phenolic and flavonoid contents. The EEP1 successfully prevented the growth of planktonic cells of S. aureus (MIC value = 50 µg/mL). Synergistic interactions were shown after the co-exposition to EEP1 and vancomycin at 108 CFU/mL. The EEP1 effectively inhibited the biofilm formation and caused significant degradation of mature biofilms (50-200 µg/mL), as a consequence of the considerable decrement of metabolic activity. The EEP acts effectively as an antimicrobial and antibiofilm agent on S. aureus. Moreover, the simultaneous application of EEP and vancomycin could enhance their effect against MRSA infection.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Sourav Das
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság Str. 13, 7624 Pécs, Hungary;
| | - Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
12
|
D’Huys L, Vitale R, Ruppeka-Rupeika E, Goyvaerts V, Ruckebusch C, Hofkens J. Assessing the Resolution of Methyltransferase-Mediated DNA Optical Mapping. ACS OMEGA 2021; 6:21276-21283. [PMID: 34471732 PMCID: PMC8387989 DOI: 10.1021/acsomega.1c01381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Interest in the human microbiome is growing and has been, for the past decade, leading to new insights into disease etiology and general human biology. Stimulated by these advances and in a parallel trend, new DNA sequencing platforms have been developed, radically expanding the possibilities in microbiome research. While DNA sequencing plays a pivotal role in this field, there are some technological hurdles that are yet to be overcome. Targeting of the 16S rRNA gene with amplicon sequencing, for instance, is frequently used for sample composition profiling due to its short sample-to-result time and low cost, which counterbalance its low resolution (genus to species level). On the other hand, more comprehensive methods, namely, whole-genome sequencing (WGS) and shallow shotgun sequencing, are capable of yielding single-gene- and functional-level resolution at a higher cost and much higher sample processing time. It goes without saying that the existing gap between these two types of approaches still calls for the development of a fast, robust, and low-cost analytical platform. In search of the latter, we investigated the taxonomic resolution of methyltransferase-mediated DNA optical mapping and found that strain-level identification can be achieved with both global and whole-genome analyses as well as using a unique identifier (UI) database. In addition, we demonstrated that UI selection in DNA optical mapping, unlike variable region selection in 16S amplicon sequencing, is not limited to any genomic location, explaining the increase in resolution. This latter aspect was highlighted by SCCmec typing in methicillin-resistant Staphylococcus aureus (MRSA) using a simulated data set. In conclusion, we propose DNA optical mapping as a method that has the potential to be highly complementary to current sequencing platforms.
Collapse
Affiliation(s)
- Laurens D’Huys
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Dynamics,
Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE,
Laboratoire Avancé de Spectroscopie pour les Interactions,
la Réactivité et l’Environnement, Cité Scientifique, F-59000 Lille, France
| | - Elizabete Ruppeka-Rupeika
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Vince Goyvaerts
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Cyril Ruckebusch
- Dynamics,
Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE,
Laboratoire Avancé de Spectroscopie pour les Interactions,
la Réactivité et l’Environnement, Cité Scientifique, F-59000 Lille, France
| | - Johan Hofkens
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Long DR, Wolter DJ, Lee M, Precit M, McLean K, Holmes E, Penewit K, Waalkes A, Hoffman LR, Salipante SJ. Polyclonality, Shared Strains, and Convergent Evolution in Chronic Cystic Fibrosis Staphylococcus aureus Airway Infection. Am J Respir Crit Care Med 2021; 203:1127-1137. [PMID: 33296290 DOI: 10.1164/rccm.202003-0735oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rationale: Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.
Collapse
Affiliation(s)
- Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine
| | - Daniel J Wolter
- Department of Pediatrics.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | | | - Kathryn McLean
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Elizabeth Holmes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Lucas R Hoffman
- Department of Pediatrics.,Department of Microbiology, and.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
14
|
RexAB promotes the survival of Staphylococcus aureus exposed to multiple classes of antibiotics. Antimicrob Agents Chemother 2021; 65:e0059421. [PMID: 34310219 PMCID: PMC8448105 DOI: 10.1128/aac.00594-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotics inhibit essential bacterial processes, resulting in arrest of growth and, in some cases, cell death. Many antibiotics are also reported to trigger endogenous production of reactive oxygen species (ROS), which damage DNA, leading to induction of the mutagenic SOS response associated with the emergence of drug resistance. However, the type of DNA damage that arises and how this triggers the SOS response are largely unclear. We found that several different classes of antibiotic triggered dose-dependent induction of the SOS response in Staphylococcus aureus, indicative of DNA damage, including some bacteriostatic drugs. The SOS response was heterogenous and varied in magnitude between strains and antibiotics. However, in many cases, full induction of the SOS response was dependent upon the RexAB helicase/nuclease complex, which processes DNA double-strand breaks to produce single-stranded DNA and facilitate RecA nucleoprotein filament formation. The importance of RexAB in repair of DNA was confirmed by measuring bacterial survival during antibiotic exposure, with most drugs having significantly greater bactericidal activity against rexB mutants than against wild-type strains. For some, but not all, antibiotics there was no difference in bactericidal activity between wild type and rexB mutant under anaerobic conditions, indicative of a role for reactive oxygen species in mediating DNA damage. Taken together, this work confirms previous observations that several classes of antibiotics cause DNA damage in S. aureus and extends them by showing that processing of DNA double-strand breaks by RexAB is a major trigger of the mutagenic SOS response and promotes bacterial survival.
Collapse
|
15
|
Hernández-Aristizábal I, Ocampo-Ibáñez ID. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int J Mol Sci 2021; 22:7927. [PMID: 34360692 PMCID: PMC8347216 DOI: 10.3390/ijms22157927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.
Collapse
Affiliation(s)
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
16
|
Moura MC, Procópio TF, Ferreira GRS, Alves RRV, Sá RA, Paiva PMG, Ingmer H, Coelho LCBB, Napoleão TH. Anti-staphylococcal effects of Myracrodruon urundeuva lectins on nonresistant and multidrug resistant isolates. J Appl Microbiol 2020; 130:745-754. [PMID: 32750211 DOI: 10.1111/jam.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS To evaluate the anti-staphylococcal effects of lectins isolated from bark (MuBL), heartwood (MuHL) and leaves (MuLL) of Myracrodruon urundeuva. METHODS AND RESULTS The lectins were evaluated for: effects on growth, aggregation, haemolytic activity and biofilm-forming ability of Staphylococcus aureus clinical isolates nonresistant (8325-4) and multidrug resistant (LAC USA300); interference with the expression of virulence genes (hla, rnaIII and spa) of the Agr system of S. aureus; and synergistic effect with the antibiotics cefoxitin and cefotaxime. MuBL, MuHL and MuLL reduced growth (minimal inhibitory concentration (MIC): 12·5-50 µg ml-1 ) and viability (minimal bactericidal concentration (MBC): 100 µg ml-1 ) of 8325-4 and LAC USA300 cells. MuLL (at ½MIC and MIC) reduced LAC USA300 agglutination. The lectins did not interfere with haemolytic activity and expression of hla, rnaIII and spa genes. Only MuHL was able to reduce the biofilm production by 8325-4 (50-400 µg ml-1 ) and LAC USA300 (400 µg ml-1 ). CONCLUSION The M. urundeuva lectins showed antibacterial activity against nonresistant and resistant clinical isolates of S. aureus and synergistic effects with antibiotics in reducing growth and biofilm formation. SIGNIFICANCE AND IMPACT OF THE STUDY This work reports bioactive molecules capable of acting as anti-staphylococcal agents, since there are increasing reports of multiresistant isolates of this bacterium.
Collapse
Affiliation(s)
- M C Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - G R S Ferreira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R A Sá
- Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - P M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Fergestad ME, Stamsås GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiologyopen 2020; 9:e1057. [PMID: 32419377 PMCID: PMC7424258 DOI: 10.1002/mbo3.1057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to most β-lactams due to the expression of an extra penicillin-binding protein, PBP2a, with low β-lactam affinity. It has long been known that heterologous expression of the PBP2a-encoding mecA gene in methicillin-sensitive S. aureus (MSSA) provides protection towards β-lactams, however, some reports suggest that the degree of protection can vary between different β-lactams. To test this more systematically, we introduced an IPTG-inducible mecA into the MSSA laboratory strain RN4220. We confirm, by growth assays as well as single-cell microfluidics time-lapse microscopy experiments, that PBP2a expression protects against β-lactams in S. aureus RN4220. By testing a panel of ten different β-lactams, we conclude that there is also a great variation in the level of protection conferred by PBP2a. Expression of PBP2a resulted in an only fourfold increase in minimum inhibitory concentration (MIC) for imipenem, while a 32-fold increase in MIC was observed for cefaclor and cephalexin. Interestingly, in our experimental setup, PBP2a confers the highest protection against cefaclor and cephalexin-two β-lactams that are known to have a high specific affinity toward the transpeptidase PBP3 of S. aureus. Notably, using a single-cell microfluidics setup we demonstrate a considerable phenotypic variation between cells upon β-lactam exposure and show that mecA-expressing S. aureus can survive β-lactam concentrations much higher than the minimal inhibitory concentrations. We discuss possible explanations and implications of these results including important aspects regarding treatment of infection.
Collapse
Affiliation(s)
- Marte Ekeland Fergestad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Caruso M, Fraccalvieri R, Pasquali F, Santagada G, Latorre LM, Difato LM, Miccolupo A, Normanno G, Parisi A. Antimicrobial Susceptibility and Multilocus Sequence Typing of Listeria monocytogenes Isolated Over 11 Years from Food, Humans, and the Environment in Italy. Foodborne Pathog Dis 2020; 17:284-294. [PMID: 31718307 DOI: 10.1089/fpd.2019.2723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Due to the increasing number of studies reporting the detection of antimicrobial-resistant isolates of Listeria monocytogenes, we sought to determine the antimicrobial susceptibility of L. monocytogenes isolates collected in Italy and find potential correlations to their serotypes and multilocus sequence types (MLST). The antimicrobial susceptibility of 317 L. monocytogenes isolates collected from food, humans, and the environment from 1998 to 2009 was assessed by minimum inhibitory concentration (MIC). Serotyping and MLST was also performed on all isolates. Potential correlations among antimicrobial resistance profiles, serotyping, and MLST were statistically evaluated. Twenty-four percent of L. monocytogenes isolates were resistant to oxacillin, 28.7% intermediate to clindamycin, and 24.3% to ciprofloxacin. The majority of isolates with elevated MIC to oxacillin was of environmental origin and belonged to serotype 4b/4e and ST2. Isolates with intermediate MIC values to clindamycin and ciprofloxacin were mostly of food and human origin and belonged to serotype 4b/4e and ST9. Regarding the time frame of isolate collection, comparing the last 3 years (2007-2009) to previous years (1998-2006), an increase was observed in the percentage of resistant and intermediate isolates per year. This trend strongly suggests the need for increasing attention on the prevalence of antimicrobial resistance in L. monocytogenes in Italy. To predict future resistance trends, the monitoring of clinical intermediate resistance might represent a useful tool especially for antibiotics associated to multiple-step mechanisms of acquired resistance. A specific focus should be addressed to antimicrobial-resistant isolates of serotype 4b, repeatedly associated with food-borne outbreaks.
Collapse
Affiliation(s)
- Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gianfranco Santagada
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura M Latorre
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura M Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
19
|
Dan M, Yehui W, Qingling M, Jun Q, Xingxing Z, Shuai M, Kuojun C, Jinsheng Z, Zibing C, Zaichao Z, Xuepeng C. Antimicrobial resistance, virulence gene profile and molecular typing of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, northwest China. J Glob Antimicrob Resist 2019; 16:98-104. [DOI: 10.1016/j.jgar.2018.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
|
20
|
Absence of the mecC gene in methicillin-resistant Staphylococcus aureus isolated from various clinical samples: The first multi-centered study in Turkey. J Infect Public Health 2019; 12:528-533. [PMID: 30745200 DOI: 10.1016/j.jiph.2019.01.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND mecA is a predefined gene causing methicillin resistance in Staphylococcus aureus (S. aureus) isolates; however, it has been shown that some methicillin-resistant S. aureus (MRSA) strains do not carry this gene. Recently, in isolates found to be MRSA-positive but mecA-negative, a new resistance gene called mecC, which is a homolog of mecA, has been reported. This study aimed to investigate the mecC and mecA genes in MRSA strains isolated from different geographic regions in Turkey. METHODS The sample of the study consisted of 494 MRSA strains isolated from seven geographical regions in Turkey between 2013 and 2016. The strains were obtained from 17 centers, comprising 13 university hospitals, three education and research hospitals, and one state hospital. Methicillin resistance in S. aureus strains was determined using the agar disk diffusion method with a cefoxitin disk and the agar dilution method with oxacillin. The mecC and mecA genes in MRSA strains was investigated by Polymerase Chain Reaction (PCR). RESULTS Of the MRSA strains investigated, 47.9% were isolated from intensive care units. Concerning sample type, 36.7% were detected in the respiratory tract (tracheal aspirate, sputum, etc.), 24.8% in blood, 18.7% in skin and soft tissues, 9.3% in nasal swabs, 5.4% in urine, 4.1% in ears, and 1% in sterile body fluid. Using PCR, mecC was not identified in any of the S. aureus strains isolated from different clinical microbiology laboratories. mecA gene positivity was found in 315 of the MRSA strains (63.8%). Staphylococcal Cassette Chromosome mec (SCCmec) type was identified in 232 strains (46.9%), of which 136 (58.7%) were type II, 75 (32.4%) were type IV, 12 (5.1%) were type IIIb, six (2.5%) were type I, and three (1.3%) were type III. CONCLUSION This is the first multi-centered study to investigate MRSA strains isolated from different regions in Turkey. The mecC gene was not detected in any of the MRSA strains. We believe that this study will constitute an important basis for monitoring possible future changes.
Collapse
|
21
|
Foster TJ. Can β-Lactam Antibiotics Be Resurrected to Combat MRSA? Trends Microbiol 2018; 27:26-38. [PMID: 30031590 DOI: 10.1016/j.tim.2018.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
Abstract
The use of β-lactam antibiotics to treat infections caused by Staphylococcus aureus has been severely compromised by the acquisition by horizontal gene transfer of a gene that encodes the β-lactam-insensitive penicillin-binding protein PBP2a. This allows methicillin-resistant S. aureus (MRSA) to proliferate in the presence of β-lactam antibiotics. Paradoxically the dependence on PBP2a for the essential transpeptidase activity in cell wall peptidoglycan biosynthesis is the 'Achilles heel' of MRSA. Compounds that disrupt the divisome, wall teichoic acid, and functional membrane microdomains act synergistically with β-lactams against MRSA. These include drugs such as statins that are widely used in human medicine. The antibiotics vancomycin and daptomycin are also synergistic with β-lactams, and combinations have been employed to treat persistent MRSA infections. An additional benefit of exposing MRSA to β-lactams could be a reduction in virulence mediated by interfering with the global regulator Agr. The mechanistic basis of synergy is discussed, and the possibility that β-lactams can be resurrected to combat MRSA infections is explored.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|