1
|
Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer's disease: Possible intervention strategies. Ageing Res Rev 2024; 99:102362. [PMID: 38830545 DOI: 10.1016/j.arr.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The integrity of the endothelial glycocalyx (eGCX), a mixture of carbohydrates attached to proteins expressed on the surface of blood vessel endothelial cells (EC), is critical for the maintenance of homeostasis of the cardiovascular system and all systems of the human body, the endothelium being the critical component of the stroma of all tissues. Consequently, dysfunction of eGCX results in a dysfunctional cardiovascular wall and severe downstream cardiovascular events, which contribute to the onset of cardio- and cerebrovascular diseases and neurodegenerative disorders, as well as other age-related diseases (ARDs). The key role of eGCX dysfunction in the onset of ARDs is examined here, with a focus on the most prevalent neurological diseases: ischemic stroke and Alzheimer's disease. Furthermore, the advantages and limitations of some treatment strategies for anti-eGCX dysfunction are described, ranging from experimental drug therapies, which need to be better tested and explored not only in animal models but also in humans, as well as reprogramming, the use of nutraceuticals, which are emerging as regenerative and new approaches. The promotion of these strategies is essential to keep eGCX and endothelium healthy, as is the development of intravital (e.g., intravascular) tools to estimate eGCX health status and treatment efficacy, which could lead to advanced solutions to address ARDs.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo 90134, Italy.
| | - Lucia Di Giorgi
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy.
| |
Collapse
|
2
|
Xu D, Yuan L, Che M, Lu D, Liu W, Meng F, Yang Y, Du Y, Hou S, Nan Y. Molecular mechanism of Gan-song Yin inhibiting the proliferation of renal tubular epithelial cells by regulating miR-21-5p in adipocyte exosomes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117530. [PMID: 38043753 DOI: 10.1016/j.jep.2023.117530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-β1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS GSY can regulate TGF-β1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shaozhang Hou
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
3
|
Diao Z, Yu H, Wu Y, Sun Y, Tang H, Wang M, Li N, Ge H, Sun J, Gu HF. Identification of the main flavonoids of Abelmoschus manihot (L.) medik and their metabolites in the treatment of diabetic nephropathy. Front Pharmacol 2024; 14:1290868. [PMID: 38313075 PMCID: PMC10836608 DOI: 10.3389/fphar.2023.1290868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction: Huangkui capsule (HKC) is made from the ethanol extract of Abelmoschus manihot (L.) Medik [Malvaceae; abelmoschi corolla] and received approval from the China Food and Drug Administration (Z19990040) in 1999. Currently, HKC is used for treatment of the patients with diabetic nephropathy (DN) in China. The bioactive chemical constituents in HKC are total flavonoids of A. manihot (L.) Medik (TFA). The present study aims to identify the primary flavonoid metabolites in HKC and TFA and their metabolism fates in db/db mice, the animal model for the study of type 2 diabetes and DN. Methods: HKC (0.84 g/kg/d) and TFA (0.076 g/kg/d) or vehicle were respectively administered daily via oral gavage in db/db mice for 4 weeks. The metabolism fate of the main metabolites of HKC in serum, liver, kidney, heart, jejunum, colon, jejunal contents, colonic contents, and urine of db/db mice were analyzed with a comprehensive metabolite identification strategy. Results and Discussion: In db/db mice administered with HKC and TFA, 7 flavonoid prototypes and 38 metabolites were identified. The related metabolic pathways at Phases I and II reactions included dehydroxylation, deglycosylation, hydrogenation, methylation, glucuronidation, sulphation, and corresponding recombined reactions. Quercetin, isorhamnetin, quercetin sulphate, quercetin monoglucuronide, and isorhamnetin monoglucuronide presented a high exposure in the serum and kidney of db/db mice. Thereby, the present study provides a pharmacodynamic substance basis for better understanding the mechanism of A. manihot (L.) Medik for medication of DN.
Collapse
Affiliation(s)
- Zhipeng Diao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yapeng Wu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yuanbo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Mei Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
5
|
Wei C, Wang C, Li R, Bai Y, Wang X, Fang Q, Chen X, Li P. The pharmacological mechanism of Abelmoschus manihot in the treatment of chronic kidney disease. Heliyon 2023; 9:e22017. [PMID: 38058638 PMCID: PMC10695975 DOI: 10.1016/j.heliyon.2023.e22017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Abelmoschus manihot (A.manihot) is a herbaceous flowering medicinal plant and flavonoids are its main pharmacological active ingredients. A.manihot is listed in the 2020 edition of the Chinese Pharmacopoeia for the treatment of chronic kidney disease (CKD). A.manihot significantly reduces proteinuria in CKD, and the effectiveness and safety of A.manihot in the treatment including primary glomerulonephropathy and diabetic kidney disease (DKD) have been proved by several randomized controlled trials (RCT). Emerging pharmacological studies have explored the potential active small molecules and the underlying mechanisms in A.manihot. The active constituents of A.manihot are mainly seven flavonoids, including hibifolin, hyperoside, isoquercetin, rutin, quercetin, myricetin, and quercetin-3-O-robinobioside. The mechanisms of action mainly include alleviating renal fibrosis, reducing the inflammatory response and decreasing the apoptosis of podocytes. In this review, we summarize the updated information of active components and molecular mechanisms of A.manihot on chronic kidney disease.
Collapse
Affiliation(s)
- Cuiting Wei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Run Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qingyun Fang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
6
|
Sui C, Zhou D. ADAM metallopeptidase domain 10 knockdown enables podocytes to resist high glucose stimulation by inhibiting pyroptosis via MAPK pathway. Exp Ther Med 2023; 25:260. [PMID: 37153901 PMCID: PMC10155254 DOI: 10.3892/etm.2023.11959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a common severe microvascular complication of diabetes mellitus, and podocyte damage occurs in the early stages of DN. The urine of patients with various types of glomerular disease presents increased levels of ADAM metallopeptidase domain 10 (ADAM10). The present study aimed to explore the role of ADAM10 in podocyte damage. Therefore, the expression of ADAM10 in high glucose (HG)-stimulated podocytes was measured by reverse transcription-qPCR and western blot. Moreover, the effects of ADAM10 knockdown on podocyte inflammation and apoptosis were determined by ELISA, western blot and TUNEL assay after confirming the efficacy of cell transfection. Subsequently, the effects of ADAM10 knockdown on the MAPK pathway and pyroptosis were assessed by western blot. Through performing the aforementioned experiments, the role of the MAPK pathway in the regulatory effects of ADAM10 was then investigated by pretreating podocytes with pathway agonists. ADAM10 expression was upregulated in HG-stimulated podocytes, while ADAM10 knockdown suppressed inflammation, apoptosis and pyroptosis of HG-stimulated podocytes and inhibited the activation of the MAPK signaling pathway. However, when podocytes were pretreated with pathway agonists (LM22B-10 or p79350), the aforementioned effects of ADAM10 knockdown were suppressed. The present study demonstrated that ADAM10 knockdown suppressed the inflammation, apoptosis and pyroptosis of HG-stimulated podocytes by blocking the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chunjie Sui
- Department of General Practice, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Zhou
- Department of Ophthalmology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, P.R. China
- Correspondence to: Dr Dan Zhou, Department of Ophthalmology, The First Dongguan Affiliated Hospital of Guangdong Medical University, 42 Jiaoping Road, Dongguan, Guangdong 523710, P.R. China
| |
Collapse
|
7
|
Oliveira ESC, Acho LDR, Morales-Gamba RD, do Rosário AS, Barcellos JFM, Lima ES, Machado MB. Hypoglycemic effect of the dry leaf extract of Myrcia multiflora in streptozotocin-induced diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116241. [PMID: 36754187 DOI: 10.1016/j.jep.2023.116241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myrcia multiflora (Lam) DC. is a medicinal plant used in folk medicine for diabetes control, mainly in the Brazilian Amazon. The leaves of this species has already demonstrated antidiabetic properties; however, in mice with type 2 diabetes (DM2), the cumulative effect of the consumption of the dry extract of M. multiflora leaves (Mm) has not yet been reported. AIM OF THE STUDY To investigate the effect of the dry extract obtained from the infusion of the dried leaves of M. multiflora on the blood glucose levels of diabetic mice. MATERIALS AND METHODS DM2 was induced in Swiss male mice by a single intraperitoneal injection of streptozotocin [150 mg/kg body weight (bw)]. The animals were divided into two control groups (healthy and diabetic without treatment) and three sample groups that received Mm (25 and 50 mg/kg bw) and acarbose (200 mg/kg bw) by gavage once daily for 28 days (D28). Additionally, biochemical parameters, thiobarbituric acid reactive species (TBARS) levels in the liver, and histopathological analyses of the kidneys and liver were performed. RESULTS On the seventh day of treatment, a 74.7% reduction in glucose levels were observed in the group of diabetic animals treated with Mm (50 mg/kg bw) when compared to the beginning of the treatment. At D28, the hypoglycemic effect was maintained. The results of the biochemical and histopathological parameters and the TBARS levels suggest that this dry extract exerts nephro- and hepatoprotective effects. CONCLUSIONS The findings demonstrate the potential that this extract has to inhibit the α-glucosidase enzyme, and it acts similarly to the positive control acarbose. Furthermore, this extract is nephro- and hepatoprotective. Therefore, this dry extract has the potential to be an adjuvant for DM2, which corroborates its use in folk medicine.
Collapse
Affiliation(s)
- Edinilze S C Oliveira
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | - Leonard D R Acho
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal Do Amazonas Manaus, Amazonas, Brazil
| | - Ruben Dario Morales-Gamba
- Programa de Pós-graduação Em Zoologia, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | - Alessandro S do Rosário
- Engenharia Florestal, Campus Paragominas, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - José Fernando M Barcellos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal Do Amazonas Manaus, Amazonas, Brazil
| | - Marcos B Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
8
|
Li X, Yang Q, Liu S, Song S, Wang C. Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions. Exp Cell Res 2023; 424:113512. [PMID: 36775185 DOI: 10.1016/j.yexcr.2023.113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Excessive mitochondrial fission in podocytes is a critical feature of diabetic nephropathy (DN). Mitochondria-associated endoplasmic reticulum membranes (MAMs) are contact sites between the endoplasmic reticulum (ER) and mitochondria, which are suggested to be related to mitochondrial function. However, the role of MAMs in mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported a novel mechanism of MAMs' effects on mitochondrial dynamics in podocytes under diabetic conditions. Increased MAMs were found in diabetic podocytes in vivo and in vitro, which were positively correlated with excessive mitochondrial fission. What's more, we also found that A-kinase anchoring protein 1 (AKAP1) was located in MAMs, and its translocation to MAMs was increased in podocytes cultured with high glucose (HG). In addition, AKAP1 knockdown significantly reduced mitochondrial fission and attenuated high glucose induced-podocyte injury through regulating phosphorylation of dynamin-related protein 1 (Drp1) and its subsequent mitochondrial translocation. On the contrary, AKAP1 overexpression in these podocytes showed the opposite effect. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fission and podocyte damage in AKAP1 overexpressed podocytes. Our data suggest that MAMs were increased in podocytes under diabetic conditions, leading to excessive mitochondrial fission and podocyte damage through AKAP1-Drp1 signaling.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
9
|
Yin D, Guo Z, Zhang X. Identification of biomarkers and prediction of upstream miRNAs in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1144331. [PMID: 36896170 PMCID: PMC9989306 DOI: 10.3389/fendo.2023.1144331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE To explore biomarkers of diabetic nephropathy (DN) and predict upstream miRNAs. METHODS The data sets GSE142025 and GSE96804 were obtained from Gene Expression Omnibus database. Subsequently, common differentially expressed genes (DEGs) of renal tissue in DN and control group were identified and protein-protein interaction network (PPI) was constructed. Hub genes were screened from in DEGs and made an investigation on functional enrichment and pathway research. Finally, the target gene was selected for further study. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of target gene and predicted its upstream miRNAs. RESULTS 130 common DEGs were obtained through analysis, and 10 Hub genes were further identified. The function of Hub genes was mainly related to extracellular matrix (ECM), collagen fibrous tissue, transforming growth factor (TGF) -β, advanced glycosylation end product (AGE) -receptor (RAGE) and so on. Research showed that the expression level of Hub genes in DN group was significantly higher than that in control group. (all P<0.05). The target gene matrix metalloproteinase 2 (MMP2) was selected for further study, and it was found to be related to the fibrosis process and the genes regulating fibrosis. Meanwhile, ROC curve analysis showed that MMP2 had a good predictive value for DN. miRNA prediction suggested that miR-106b-5p and miR-93-5p could regulate the expression of MMP2. CONCLUSION MMP2 can be used as a biomarker for DN to participate in the pathogenesis of fibrosis, and miR-106b-5p and miR-93-5p may regulate the expression of MMP2 as upstream signals.
Collapse
|
10
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
12
|
Molecular Mechanisms of Acute Organophosphate Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23168855. [PMID: 36012118 PMCID: PMC9407954 DOI: 10.3390/ijms23168855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals produced by an esterification process and some other routes. They are the main components of herbicides, pesticides, and insecticides and are also widely used in the production of plastics and solvents. Acute or chronic exposure to OPs can manifest in various levels of toxicity to humans, animals, plants, and insects. OPs containing insecticides were widely used in many countries during the 20th century, and some of them continue to be used today. In particular, 36 OPs have been registered in the USA, and all of them have the potential to cause acute and sub-acute toxicity. Renal damage and impairment of kidney function after exposure to OPs, accompanied by the development of clinical manifestations of poisoning back in the early 1990s of the last century, was considered a rare manifestation of their toxicity. However, since the beginning of the 21st century, nephrotoxicity of OPs as a manifestation of delayed toxicity is the subject of greater attention of researchers. In this article, we present a modern view on the molecular pathophysiological mechanisms of acute nephrotoxicity of organophosphate compounds.
Collapse
|
13
|
Wang Y, Feng Y, Li M, Yang M, Shi G, Xuan Z, Yin D, Xu F. Traditional Chinese Medicine in the Treatment of Chronic Kidney Diseases: Theories, Applications, and Mechanisms. Front Pharmacol 2022; 13:917975. [PMID: 35924053 PMCID: PMC9340222 DOI: 10.3389/fphar.2022.917975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and progressive disease that has become a major public health problem on a global scale. Renal fibrosis is a common feature in the pathogenesis of CKD, which is mainly related to the excessive accumulation and deposition of extracellular matrix caused by various inflammatory factors. No ideal treatment has yet been established. In recent years, based on the traditional Chinese medicine (TCM) theory of CKD and its molecular mechanism, clinical evidence or experimental studies have confirmed that a variety of Chinese materia medica (CMM) and their effective components can delay the progress of CKD. TCM believes that the pathogenesis of CKD is the deficiency in the root and excess in the branch, and the deficiency and excess are always accompanied by the disease. The strategies of TCM in treating CKD are mainly based on invigorating Qi, tonifying the kidneys, promoting blood circulation, removing stasis, eliminating heat and dampness, removing turbidity, and eliminating edema, and these effects are multitargeted and multifunctional. This review attempts to summarize the theories and treatment strategies of TCM in the treatment of CKD and presents the efficacy and mechanisms of several CMMs supported by clinical evidence or experimental studies. In addition, the relationship between the macroscopic of TCM and the microscopic of modern medicine and the problems faced in further research were also discussed.
Collapse
Affiliation(s)
- Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Ye Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Manman Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mo Yang
- Scientific Research and Technology Center, Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Dengke Yin, ; Fan Xu,
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Dengke Yin, ; Fan Xu,
| |
Collapse
|
14
|
Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
According to Chinese Pharmacopoeia (2020 edition), Abelmoschi Corolla (AC) is the dried corolla of Flos Abelmoschus manihot (FAM). Market research has found that AC is often mixed with the non-medicinal parts in FAM, including calyx, stamen, and pistil. However, previous studies have not clarified the relationship between the medicinal and non-medicinal parts of FAM. In this study, in order to investigate whether there is any distinction between the medicinal and non-medicinal parts of FAM, the characterization of the constituents in calyx, corolla, stamen, and pistil was analyzed by UFLC-Triple TOF-MS/MS. Multivariate statistical analysis was used to classify and screen differential constituents between medicinal and non-medicinal parts of FAM, and the relative contents of differential constituents were compared based on the peak intensities. Results showed that 51 constituents in medicinal and non-medicinal parts of FAM were identified, and the fragmentation pathways to different types of constituents were preliminarily deduced by the fragmentation behavior of the identified constituents. Furthermore, multivariate statistical analysis revealed that the medicinal and non-medicinal parts of FAM differed significantly; 20 differential constituents were screened out to reveal the characteristics of metabolic differences. Among them, the relative contents of 19 differential constituents in the medicinal part were significantly higher than those in non-medicinal parts. This study could be helpful in the quality evaluation of AC as well as provide basic information for the improvement of the market standard of AC.
Collapse
|
15
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
16
|
Wang Y, Li J, Gu J, He W, Ma B, Fan H. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:985-995. [PMID: 35325199 DOI: 10.1093/jpp/rgac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jingyu Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongqi Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Zhou J, Zhang S, Sun X, Lou Y, Bao J, Yu J. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis. J Pharmacol Sci 2021; 146:10-20. [PMID: 33858650 DOI: 10.1016/j.jphs.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is a serious complication of diabetes. Hyperoside has been widely reported to ameliorate diabetes-associated disease. The current study is designed to explore the mechanism of hyperoside in diabetic nephropathy. In the present study, high glucose was used to treat podocytes. Diabetic nephropathy mice models were established by high-fat feeding followed by multiple low dose injections of streptozocin. Western blot analysis was conducted for detection of extracellular matrix accumulation, inflammatory response and cell apoptosis. We found out that hyperoside improved high glucose-induced cell injury. Additionally, hyperoside prevented mice with diabetic nephropathy from diabetic symptoms and renal dysfunction. Mechanistically, hyperoside inhibited the mRNA and protein expression of APC. MiR-499-5p was found to be an upstream negative mediator of APC, and hyperoside induced the upregulation of miR-499-5p. MiR-499-5p bound with the 3' untranslated region of APC to inhibit its expression. Finally, rescue assays revealed that the suppressive effects of miR-499-5p overexpression on renal dysfunction were rescued by upregulation of APC in mice with diabetic nephropathy. In conclusion, these findings indicated that hyperoside ameliorates diabetic nephropathy via targeting the miR-499-5p/APC axis, suggesting that hyperoside may offer a potential tactic for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Jingbo Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Xinyi Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jinjing Bao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
18
|
Liu YR, Yang NJ, Zhao ML, Tang ZS, Duan JA, Zhou R, Chen L, Sun J, Song ZX, Hu JH, Shi XB. Hypericum perforatum L. Regulates Glutathione Redox Stress and Normalizes Ggt1/Anpep Signaling to Alleviate OVX-Induced Kidney Dysfunction. Front Pharmacol 2021; 12:628651. [PMID: 33981220 PMCID: PMC8109178 DOI: 10.3389/fphar.2021.628651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/19/2021] [Indexed: 11/28/2022] Open
Abstract
Menopause and associated renal complications are linked to systemic redox stress, and the causal factors remain unclear. As the role of Hypericum perforatum L. (HPL) in menopause-induced kidney disease therapy is still ambiguous, we aim to explore the effects of HPL on systemic redox stress under ovariectomy (OVX)-induced kidney dysfunction conditions. Here, using combined proteomic and metabolomic approaches, we constructed a multi-scaled “HPL-disease-gene-metabolite” network to generate a therapeutic “big picture” that indicated an important link between glutathione redox stress and kidney impairment. HPL exhibited the potential to maintain cellular redox homeostasis by inhibiting gamma-glutamyltransferase 1 (Ggt1) overexpression, along with promoting the efflux of accumulated toxic amino acids and their metabolites. Moreover, HPL restored alanyl-aminopeptidase (Anpep) expression and metabolite shifts, promoting antioxidative metabolite processing, and recovery. These findings provide a comprehensive description of OVX-induced glutathione redox stress at multiple levels and support HPL therapy as an effective modulator in renal tissues to locally influence the glutathione metabolism pathway and subsequent redox homeostasis.
Collapse
Affiliation(s)
- Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ning-Juan Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Zhou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lin Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Hang Hu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin-Bo Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
19
|
Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 2021; 25:1774-1784. [PMID: 33722183 DOI: 10.1080/1028415x.2021.1901047] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Literature findings have instituted the role of hyperglycemia-induced oxidative stress and inflammation in the pathogenesis of cognitive derangement in diabetes mellitus (DM). Hyperoside (HYP) is a flavanone glycoside reported to possess diverse pharmacological benefits such as antioxidant and anti-inflammatory properties. The study explored whether HYP could mitigate DM-induced cognitive dysfunction and further elucidate on potential molecular mechanism in rats. METHODS Streptozotocin/high-fat diet-induced diabetic rats were treated orally with HYP (50, 200 and 400 mg/kg/day) for six consecutive weeks. The blood glucose and serum insulin levels, Morris water maze test, intraperitoneal glucose tolerance test, and brain acetylcholinesterase (AChE) activity were determined. The brain expression of inflammatory nuclear factor-kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), lipid profile and caspase-3 activity were estimated. RESULTS DM evoked hyperlipidemia, hypoinsulinemia, cognitive dysfunction by markedly increased AChE and reduction in learning and memory capacity. Brain activities of SOD and CAT, and levels of TAC and GSH were considerably depressed, whereas levels of IL-1β, IL-6, TNF-α, NF-κB, caspase-3 and MDA were prominently increased. Interestingly, the HYP treatment dose-dependently abrogated the altered cognitive and biochemical parameters. DISCUSSION The results suggested that hyperoside prevents DM-induced cognitive dysfunction, neuroinflammation and oxidative stress via antioxidant, anti-inflammatory and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Xiao Chen
- Second Department of Encephalopathy, Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Anhui, People's Republic of China
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | |
Collapse
|
20
|
Yang X, Yang M, Chen Y, Qian Y, Fei X, Gong C, Wang M, Xie X, Wang Z. miR-30a-5p targets Becn1 to ameliorate high-glucose-induced glomerular podocyte injury in immortalized rat podocyte cell line. Am J Transl Res 2021; 13:1516-1525. [PMID: 33841675 PMCID: PMC8014343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is a serious kidney-based complication of diabetes, wherein podocyte injury is deemed crucial in the development of early stage. Various miRNAs, as report goes, is involved in the pathogenesis of varieties of kidney diseases including DN. In this study, we found a target relationship between miR-30a-5p and Becn1, of which there are few studies about the role in podocyte injury. We therefore used immortalized rat podocyte cell line to explore the role and molecular mechanism of miR-30a-5p targeting Becn1 gene in high-glucose-induced glomerular podocyte injury. METHODS The mRNA and protein expressions of miR-30a-5p and Becn1 were detected respectively by quantitative reverse transcriptase PCR and western blotting. The proliferation, apoptosis, and the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were detected by MTT assay, flow cytometry, and enzyme-linked immuno sorbent assay, respectively. Intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also determined. RESULTS Compared with normal group, miR-30a-5p in model groups were down-regulated, while Becn1 expression was significantly up-regulated, with slower proliferation, higher apoptosis rate, lower SOD level, and significantly higher ROS, MDA, IL-6, and TNF-α levels (all P<0.05). Overexpression of miR-30a-5p or Becn1 knock-out could lower Becn1 expression, apoptosis rate, promote proliferation, with relatively higher SOD level and lower ROS, MDA, Il-6, and TNF-α levels of model cells (all P<0.05). CONCLUSION Up-regulation of miR-30a-5p can suppress the expression of Becn1 to increase the growth and inhibit the apoptosis of immortalized rat podocyte cell line, therefore ameliorating podocyte injury induced by high glucose in vitro.
Collapse
Affiliation(s)
- Xiu Yang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Ming Yang
- Department of Nephrology, Shanghai Changzheng HospitalShanghai City, China
| | - Yuemei Chen
- Department of Nephrology, The Second Affiliated School of Medicine, Hospital of Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Yingying Qian
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Chanjuan Gong
- Department of Nephrology, Shanghai Changzheng HospitalShanghai City, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Xiangcheng Xie
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Zhen Wang
- Department of Nephrology & Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
21
|
Yuan W, Wang J, An X, Dai M, Jiang Z, Zhang L, Yu S, Huang X. UPLC-MS/MS Method for the Determination of Hyperoside and Application to Pharmacokinetics Study in Rat After Different Administration Routes. Chromatographia 2021; 84:249-256. [PMID: 33487663 PMCID: PMC7810192 DOI: 10.1007/s10337-020-04002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
A rapid and sensitive UPLC-MS/MS method was developed and fully validated for the quantification of hyperoside in rat plasma after intragastric, intraperitoneal and intravenous administration. Geniposide was used as an internal standard, and simple liquid–liquid extraction by ethyl acetate was utilized for to extracting the analytes from the rat plasma samples. Chromatographic separation was carried out on an InfinityLab Poroshell 120EC-C18column (2.1 mm × 50 mm, 1.9-Micro, Agilent technologies, USA). The mobile phase consisted of methanol (A) and water (B) (containing 0.1% acetic acid) at a flow rate of 0.4 mL/min. A run time of 3 min for each sample made it possible to analyze more than 300 plasma samples per day. The validated linear ranges of hyperoside were 2–1000 ng/mL in rat plasma. The intra-day and inter-day precision were within 2.6–9.3%, and accuracy were ± 8.6%. And the results of recovery and matrix interference studies were well within the accepted variability limits. Finally, this method was fully validated and successfully applied to the pharmacokinetic studies of hyperoside via different administration routes in rats.
Collapse
Affiliation(s)
- Wenjing Yuan
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jingjing Wang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210009 People's Republic of China
| | - Mingxin Dai
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Zhenzhou Jiang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Luyong Zhang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 People's Republic of China
| | - Sen Yu
- Mosim Co., Ltd, Nanjing, 210009 People's Republic of China
| | - Xin Huang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| |
Collapse
|
22
|
Cao M, Li Y, Famurewa AC, Olatunji OJ. Antidiabetic and Nephroprotective Effects of Polysaccharide Extract from the Seaweed Caulerpa racemosa in High Fructose-Streptozotocin Induced Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021; 14:2121-2131. [PMID: 34012278 PMCID: PMC8126874 DOI: 10.2147/dmso.s302748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nephropathy is a frontline complication of diabetes mellitus (DM) associated with impaired redox-inflammatory networks. The study investigated the antidiabetic and nephroprotective potentials of PCR against diabetic nephropathy (DN) in rats. METHODS DN was induced in rats using a combination of a high fructose solution for 4 weeks and an intraperitoneal injection of streptozotocin (35 mg/kg). Diabetic rats were treated with PCR (100 and 400 mg/kg body weight) for 8 weeks. Serum biochemical parameters as well as renal oxidative stress parameters, proinflammatory cytokines, Western blot and histopathological analyses were evaluated. RESULTS There were significant increases in fasting blood glucose, urinary albumin, serum creatinine, blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL-C) levels in diabetic rats compared to the non-diabetic control rats. DM-induced DN prominently depressed renal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, whereas renal malondialdehyde (MDA) level was markedly increased. Furthermore, renal inflammatory cytokines, IL-1β, IL-6, TNF-α and TGF-β, were considerably elevated compared to non-diabetic control rats. Additionally, DN rats showed a significant increase in renal fibrosis, as evidenced by increased expression of TGF-β1, collagen-1, fibronectin and alpha-smooth muscle actin (α-SMA) in the kidneys. Histopathological lesions were consistent with tubule thickening and glomerular hypertrophy. Conversely, PCR treatment exerted significant attenuation of hyperglycemia, dyslipidemia and renal oxidative stress indicators. The increased renal levels of IL-1β, IL-6, TNF-α and TGF-β were also notably reversed dose-dependently with alleviation of nephropathic histology. Furthermore, PCR reduced the expression of α-SMA, fibronectin, collagen-1 and TGF-β1 in the renal tissues. CONCLUSION Our results suggest that PCR displayed antidiabetic and nephroprotective effects against DN by impeding oxidative stress and inflammation. As such, PCR has potentials as a food supplement for alleviating renal dysfunction caused by diabetes.
Collapse
Affiliation(s)
- Meng Cao
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan Province, People’s Republic of China
| | - Yan Li
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan Province, People’s Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, Thailand
- Correspondence: Opeyemi Joshua Olatunji Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand Email
| |
Collapse
|
23
|
Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol 2020; 11:590614. [PMID: 33328998 PMCID: PMC7734331 DOI: 10.3389/fphar.2020.590614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
In recent years, the number of diabetic patients has rapidly increased. Diabetic vascular complications seriously affect people’s quality of life. Studies found that endothelial dysfunction precedes the vascular complications of diabetes. Endothelial dysfunction is related to glycocalyx degradation on the surface of blood vessels. Heparanase (HPSE), matrix metalloproteinase (MMP), hyaluronidase (HYAL), hyaluronic acid synthase (HAS), and neuraminidase (NEU) are related to glycocalyx degradation. Therefore, we reviewed the relationship between endothelial dysfunction and the vascular complications of diabetes from the perspective of enzymes.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Song WY, Jiang XH, Ding Y, Wang Y, Zhou MX, Xia Y, Zhang CY, Yin CC, Qiu C, Li K, Sun P, Han X. Inhibition of heparanase protects against pancreatic beta cell death in streptozotocin-induced diabetic mice via reducing intra-islet inflammatory cell infiltration. Br J Pharmacol 2020; 177:4433-4447. [PMID: 32608014 DOI: 10.1111/bph.15183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Intra-islet heparan sulfate (HS) plays an important role in the maintenance of pancreatic islet function. The aim of this study was to investigate the effect mechanism of HS loss on the functioning of islets in diabetic mice. EXPERIMENTAL APPROACH The hypoglycaemic effect of a heparanase inhibitor, OGT2115, was tested in a streptozotocin-induced diabetic mouse model. The islets in pancreatic sections were also stained to reveal their morphology. An insulinoma cell line (MIN6) and primary isolated murine islets were used to investigate the effect of OGT2115 in vitro. KEY RESULTS Intra-islet HS was clearly lost in streptozotocin-induced diabetic mice due to the increased heparanase expression in damaged islets. OGT2115 prevented intra-islet HS loss and improved the glucose profile and insulin secretion in streptozotocin-treated mice. The apoptosis of pancreatic beta cells and the infiltration of mononuclear macrophages, CD4- and CD8-positive T-cells in islets was reduced by OGT2115 in streptozotocin-treated mice, but OGT2115 did not alter the direct streptozotocin-induced damage in vitro. The expression of heparanase was increased in high glucose-treated isolated islets but not in response to direct streptozotocin stimulation. Further experiments showed that high glucose stimuli could decreased expression of PPARγ in cultured islets, thereby relieving the PPARγ-induced inhibition of heparanase gene expression. CONCLUSION AND IMPLICATIONS Hyperglycaemia could cause intra-islet HS loss by elevating the expression of heparanase, thereby aggravating inflammatory cell infiltration and islet damage. Inhibition of heparanase might provide benefit for pancreatic beta cell protection in Type 1 diabetes.
Collapse
Affiliation(s)
- Wen-Yu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao-Han Jiang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ming-Xuan Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yun Xia
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chen-Yu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chong-Chong Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Antidiabetic Effects of Arginyl-Fructosyl-Glucose, a Nonsaponin Fraction from Ginseng Processing in Streptozotocin-Induced Type 2 Diabetic Mice through Regulating the PI3K/AKT/GSK-3 β and Bcl-2/Bax Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3707904. [PMID: 32714403 PMCID: PMC7352147 DOI: 10.1155/2020/3707904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/06/2020] [Indexed: 01/21/2023]
Abstract
Streptozotocin- (STZ-) induced type 2 diabetes mellitus (T2DM) caused insulin secretion disorder and hyperglycemia, further causing tissue and organ damage. In recent years, studies on ginseng (Panax ginseng C. A. Meyer) and its saponins (Ginsenosides) have proved to possess antidiabetic pharmacological activities, but the mechanism of nonsaponins on STZ-induced T2DM is still unclear. Arginyl-fructosyl-glucose (AFG) is a representative nonsaponin component produced in the processing of red ginseng. The present study was designed to assess the possible healing consequence of AFG on STZ-induced T2DM in mice and also to explore its fundamental molecular contrivances. T2DM-related indexes, fasting blood glucose levels, and body weight, histological changes, biochemical considerations, biomarkers, the mRNA countenance intensities of inflammatory facts, and variations in correlated protein manifestation in adipose tissue and liver tissue were calculated. Consequences specified that AFG usage successfully amends STZ-induced insulin conflict and liver grievance in T2DM. Systematically, AFG action diminished STZ-induced oxidative stress and inflammatory responses in the liver. In addition, we demonstrated that AFG also attenuates apoptosis and insulin secretion disorders in T2DM by adjusting the PI3K/AKT/GSK3β signaling pathway. At the end, these discoveries recommend that AFG averts the development of T2DM through numerous types of machinery and proposes that AFG can also be used in order to treat T2DM in the future.
Collapse
|
27
|
Li N, Tang H, Wu L, Ge H, Wang Y, Yu H, Zhang X, Ma J, Gu HF. Chemical constituents, clinical efficacy and molecular mechanisms of the ethanol extract of Abelmoschus manihot flowers in treatment of kidney diseases. Phytother Res 2020; 35:198-206. [PMID: 32716080 PMCID: PMC7891592 DOI: 10.1002/ptr.6818] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Abelmoschus manihot, also called as “Huangkui” in Chinese, is an annual flowering herb plant in the family of Malvaceae. As a traditional Chinese medicine, the ethanol extract of the flower in Abelmoschus manihot is made as Huangkui capsule and has been used for medication of the patients with kidney diseases. Its efficacy in clinical symptoms is mainly improving renal function and reducing proteinuria among the patients with chronic kidney disease, diabetic kidney disease or IgA nephropathy. The possible mechanism of Huangkui capsule treatment in kidney diseases may include reducing inflammation and anti‐oxidative stress, improving immune response, protecting renal tubular epithelial cells, ameliorating podocyte apoptosis, glomerulosclerosis and mesangial proliferation, as well as inhibiting renal fibrosis. In this review, we first described chemical constituents and pharmacokinetic characteristics in ethanol extract of the flower of Abelmoschus manihot. We then summarized the clinical and epidemiological relevancies of kidney diseases particularly in the mainland of China and discussed the possible molecular mechanisms of Huangkui capsule in the treatment of kidney diseases. Finally, we prospected further research on cellular and molecular mechanisms and application of this Chinese natural medicine in kidney diseases.
Collapse
Affiliation(s)
- Nan Li
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, Jiangsu Province, China.,Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu Province, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Yurong Wang
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Honglin Yu
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Xiuli Zhang
- Department of Nephrology, Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jimei Ma
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Zhang AH, Wang YM, Liu Q, Fu WH. A rapid and efficient approach based on ultra-high liquid chromatography coupled with mass spectrometry for identification in vitro and in vivo constituents from shizao decoction. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_329_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Zhang L, Wen Z, Han L, Zheng Y, Wei Y, Wang X, Wang Q, Fang X, Zhao L, Tong X. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy. J Diabetes Res 2020; 2020:7504798. [PMID: 32695831 PMCID: PMC7368941 DOI: 10.1155/2020/7504798] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is not only an important microvascular complication of diabetes but also the main cause of end-stage renal disease. Studies have shown that the occurrence and development of DN are closely related to morphological and functional changes in podocytes. A series of morphological changes after podocyte injury in DN mainly include podocyte hypertrophy, podocyte epithelial-mesenchymal transdifferentiation, podocyte detachment, and podocyte apoptosis; functional changes mainly involve podocyte autophagy. More and more studies have shown that multiple signaling pathways play important roles in the progression of podocyte injury in DN. Here, we review research progress on the pathological mechanism of morphological and functional changes in podocytes associated with DN, to provide a new target for delaying the occurrence and development of this disorder.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lin Han
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yujiao Zheng
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yu Wei
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Wang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xinyi Fang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Linhua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
30
|
Zhang L, Dai Q, Hu L, Yu H, Qiu J, Zhou J, Long M, Zhou S, Zhang K. Hyperoside Alleviates High Glucose-Induced Proliferation of Mesangial Cells through the Inhibition of the ERK/CREB/miRNA-34a Signaling Pathway. Int J Endocrinol 2020; 2020:1361924. [PMID: 32774360 PMCID: PMC7397715 DOI: 10.1155/2020/1361924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. METHODS Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. RESULTS We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. CONCLUSION Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Le Zhang
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Dai
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lanlan Hu
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Qiu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Long
- Preventive Medicine Department, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shiwen Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Kebin Zhang
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
31
|
Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, Qin X, Sun C. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med 2019; 23:4443-4453. [PMID: 30993911 PMCID: PMC6533469 DOI: 10.1111/jcmm.14340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Salidroside is a major phenylethanoid glycoside in Rhodiola rosea L., a traditional Chinese medicine, with multiple biological activities. It has been shown that salidroside possesses protective effects for alleviating diabetic renal dysfunction, contrast‐induced‐nephropathy and other kidney diseases. However, the involved molecular mechanism was still not understood well. Herein, we examined the protective effects of salidroside in mice with Adriamycin (ADR)‐induced nephropathy and the underlying molecular mechanism. The results showed that salidroside treatment ameliorates proteinuria; improves expressions of nephrin and podocin; and reduces kidney fibrosis and glomerulosclerosis induced by ADR. Mechanistically, ADR induces a robust accumulation of β‐catenin in the nucleus and stimulates its downstream target gene expression. The application of salidroside largely abolishes the nuclear translocation of β‐catenin and thus inhibits its activity. Furthermore, the activation of β‐catenin almost completely counteracts the protective roles of salidroside in ADR‐injured podocytes. Taken together, our data indicate that salidroside ameliorates proteinuria, renal fibrosis and podocyte injury in ADR nephropathy, which may rely on inhibition of β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Xue
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| | | | - Jing Zhang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| | - Yue Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, China
| | - Xiaogang Qin
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
32
|
Liu W, Wu Y, Yu F, Hu W, Fang X, Hao W. The implication of Numb-induced Notch signaling in endothelial-mesenchymal transition of diabetic nephropathy. J Diabetes Complications 2018; 32:889-899. [PMID: 30097225 DOI: 10.1016/j.jdiacomp.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023]
Abstract
AIM This study was purposed to figure out the contribution of Numb-induced Notch signaling to the development of diabetic nephropathy (DN). METHODS Two hundred and twenty six DN patients were included, and human glomerular endothelial cells (RGEC) were cultured. MSCV-Numb-IRES-GFP, MSCV-Notch1-IRES-GFP and MSCV-Hes1-IRES-GFP were transfected to construct the recombinant retroviral vectors. RESULT The over-expressed Numb and Notch1, as well as the under-expressed Hes-1 were correlated with the undesirable prognosis of DN patients (P < 0.05). Within the cell lines transfection with si-Numb would cut down E-cadherin and CD31 expressions (P < 0.05), yet elevated α-SMA and vimentin expressions (P < 0.05). The apoptotic rate of si-Numb cell lines underperformed ones categorized into the hyperglucose group (P < 0.05), whereas the lowly-expressed Notch1 and Hes1 were observably associated with inhibited proliferation of myofibroblasts (P < 0.05). Addition of ADPT caused under-expressed α-SMA and vimentin, along with the over-expressed E-cadherin and CD31 (P < 0.05). Silencing of Notch1 and Hes1 reversed the epithelial-mesenchymal transition (EMT) process that was triggered by high glucose (P < 0.05). CONCLUSION Numb negatively regulated Notch signaling pathway in EMT of DN, implying that they had great potentials to serve as therapeutic targets or diagnostic biomarkers for DN.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Yanhua Wu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Feng Yu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Wenxue Hu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Xiaowu Fang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Wenke Hao
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
33
|
Zhang W, Zhang W, Zhang X, Lu Q, Cai H, Tan WS. Hyperoside promotes ex vivo expansion of hematopoietic stem/progenitor cells derived from cord blood by reducing intracellular ROS level. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Frontiñán-Rubio J, Sancho-Bielsa FJ, Peinado JR, LaFerla FM, Giménez-Llort L, Durán-Prado M, Alcain FJ. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease. Mol Cell Neurosci 2018; 92:67-81. [PMID: 29953929 DOI: 10.1016/j.mcn.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of β-amyloid (Aβ) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aβ burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Francisco J Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Institut of Neuroscience, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| | - Francisco J Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| |
Collapse
|
35
|
Wu W, Hu W, Han WB, Liu YL, Tu Y, Yang HM, Fang QJ, Zhou MY, Wan ZY, Tang RM, Tang HT, Wan YG. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy. Front Pharmacol 2018; 9:443. [PMID: 29881349 PMCID: PMC5976825 DOI: 10.3389/fphar.2018.00443] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro, murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro, the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro, and provided the first evidence that HKC directly contributes to the prevention of the early DN.
Collapse
Affiliation(s)
- Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Hu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Bei Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mo-Yi Zhou
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Ren-Mao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Hai-Tao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
36
|
Zhang Y, Wang M, Dong H, Yu X, Zhang J. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. Int J Mol Med 2017; 41:77-86. [PMID: 29115390 PMCID: PMC5746319 DOI: 10.3892/ijmm.2017.3211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The development of diabetes mellitus (DM) is accompanied by hyperglycemia-induced oxidative stress. Hyperoside is a major bioactive component in Zanthoxylum bungeanum leaves (HZL) and is a natural antioxidant. However, the effects of HZL on DM and its mechanisms of action remain undefined. The present study evaluated the anti-hypoglycemic and hepatocyte-protective effects of HZL in mice with diabetes induced by a high-carbohydrate/high-fat diet (HFD) and alloxan. We also aimed to eludicate the underlying mechanisms. Our resutls demonstrated that the administration of HZL significantly reduced body weight gain, serum glucose levels and insulin levels in diabetic mice compared with the vehicle-treated mice. In addition, the levels of dyslipidemia markers including total cholesterol, triglyceride and low-density lipoprotein cholesterol in the HFD-treated mice were markedly decreased. Further experiments using hepatocytes from mice revealed that HZL significantly attenuated liver injury associated with DM compared with vehicle treatment, as evidenced by lower levels of alanine aminotransferase and aspartate aminotransferase in serum and by lower levels of lipid peroxidation, nitric oxide content and inducible nitric oxide synthase activity in liver tissues. Nuclear factor-κB (NF-κB) and mitogen-associated protein kinase (MAPK) signaling pathways were investigated to elucidate the molecular mechanisms responsible for the protective effects of HZL against diabetic liver injury. The results indicated that HZL inhibited the phosphorylation of p65/NF-κB, MAPK (including p38, JNK and ERK1/2) and activating transcription factor 3 protein expression, with an additional suppression of Bax, cytochrome c, caspase-9 and caspase-3 in the liver tissues of diabetic mice. Taken together, our findings suggest that HZL, which was effective in inhibiting oxidative stress-related pathways may be beneficial for use in the treatment of DM.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xiaomin Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|