1
|
Bu Y, Dong X, Zhang R, Shen X, Liu Y, Wang S, Takano T, Liu S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024; 13:e96797. [PMID: 39037769 PMCID: PMC11364434 DOI: 10.7554/elife.96797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xingye Dong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Rongrong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xianglian Shen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Yan Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Shu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ASNESC), University of TokyoTokyoJapan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
2
|
Siddappa S, Marathe GK. What we know about plant arginases? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:600-610. [PMID: 33069114 DOI: 10.1016/j.plaphy.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Nitrogen is one of the essential element required for plant growth and development. In plants, most of the nitrogen is stored in arginine. Hence, metabolism of arginine to urea by arginase and its further hydrolysis to ammonia by urease is involved in nitrogen recycling to meet the metabolic demands of growing plants. In this respect, plant arginases differ from that of animals. Animals excrete urea while plants recycle the urea. However, the studies on the biochemical and biophysical characteristics of plant arginase are limited when compared to animal arginase(s). In this review, the structural and biochemical characteristics of various plant arginases are discussed. Moreover, the significance of arginase in nitrogen recycling is explained and recent literature on function and activation of plant arginases in response to various environmental (biotic and abiotic) insults is also presented.
Collapse
Affiliation(s)
- Shiva Siddappa
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
3
|
Anwar A, She M, Wang K, Ye X. Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC PLANT BIOLOGY 2020; 20:187. [PMID: 32349679 PMCID: PMC7189522 DOI: 10.1186/s12870-020-02396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/15/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ornithine aminotransferase (OAT, EC:2.6.1.13), alternatively known as ornithine delta aminotransferase (δOAT), is a pyridoxal phosphate (PLP)-dependent enzyme involved in the conversion of ornithine into glutamyl-5-semi-aldehyde (GSA) and vice versa. Up till now, there has been no study on OAT in wheat despite the success of its isolation from rice, maize, and sorghum. This study focuses on identification and molecular characterization of OAT in wheat. RESULTS In total, three homeologous OAT genes in wheat genome were found on chromosome group 5, named as TaOAT-5AL, TaOAT-5BL, and TaOAT-5DL. Sequence alignment between gDNA and its corresponding cDNA obtained a total of ten exons and nine introns. A phylogenetic tree was constructed and results indicated that OATs shared highly conserved domains between monocots and eudicots, which was further illustrated by using WebLogo to generate a sequence logo. Further subcellular localization analysis indicated that they functioned in mitochondria. Protein-protein interactions supported their role in proline biosynthesis through interactions with genes, such as delta 1-pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR), involved in the proline metabolic pathway. Promoter analysis exposed the presence of several stress responsive elements, implying their involvement in stress regulation. Expression profiling illustrated that TaOAT was highly induced in the wheat plants exposed to drought or salt stress condition. Upregulated expression of TaOATs was observed in stamens and at the heading stage. A potential role of TaOAT genes during floret development was also revealed. Furthermore, the transgenic plants overexpressing TaOAT showed enhanced tolerance to drought stress by increasing proline accumulation. In addition, salt tolerance of the transgenic plants was also enhanced. CONCLUSION TaOATs genes were involved in proline synthesis and nitrogen remobilization because they interacted with genes related to proline biosynthesis enzymes and arginine catabolism. In addition, TaOAT genes had a role in abiotic stress tolerance and a potential role in floret development. The results of this study may propose future research in the improvement of wheat resistance to abiotic stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| |
Collapse
|
4
|
Nvsvrot T, Xia W, Xiao Z, Zhan C, Liu M, Yang X, Zhang Y, Wang N. Combining QTL Mapping with Genome Resequencing Identifies an Indel in an R Gene that is Associated with Variation in Leaf Rust Disease Resistance in Poplar. PHYTOPATHOLOGY 2020; 110:900-906. [PMID: 31958037 DOI: 10.1094/phyto-10-19-0402-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poplar trees (Populus spp.) are important and are widely grown worldwide. However, the extensive occurrence of leaf rust disease caused by Melampsora spp. seriously inhibits their growth and reduces their biomass. In our previous study, a high-quality genetic map was constructed for the poplar F1 population I-69 × XYY by using next-generation sequencing-based genotyping-by-sequencing. Here, we collected phenotypic data on leaf rust disease resistance on three different dates for all 300 progenies of the F1 population. Combining a high-quality genetic map and phenotypic data, we were able to detect 11 major quantitative trait loci (QTLs) for leaf rust disease resistance. Among these 11 QTLs, two pairs were detected on at least two dates. In the corresponding genomic sequence, we found that resistance (R) gene clusters were located in these two QTL regions. By using genome resequencing, PCR confirmation and statistical analysis, a 611-bp deletion within an R gene in one QTL region was found to be associated with variation in leaf rust disease resistance. A PCR-based examination of this 611-bp deletion was performed. This 611-bp deletion was also found to affect mRNA splicing and form a new protein with the loss of some key protein domains. Based on this study, we were able to determine the genetic architecture of variation in poplar leaf rust disease resistance, and the 611-bp deletion in the R gene could be used as a diagnostic marker for future poplar molecular breeding.
Collapse
Affiliation(s)
- Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Xia
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Logistics Service Group, Wuhan University, Wuhan, 430070, China
| | - Zheng'ang Xiao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meifeng Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Anwar A, She M, Wang K, Riaz B, Ye X. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. Int J Mol Sci 2018; 19:ijms19113681. [PMID: 30469329 PMCID: PMC6274847 DOI: 10.3390/ijms19113681] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia.
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bisma Riaz
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|