1
|
Zheng L, Chopra A, Weiner J, Beule D, Dommisch H, Schaefer AS. miRNAs from Inflamed Gingiva Link Gene Signaling to Increased MET Expression. J Dent Res 2023; 102:1488-1497. [PMID: 37822091 PMCID: PMC10683346 DOI: 10.1177/00220345231197984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Several array-based microRNA (miRNA) expression studies independently showed increased expression of miRNAs hsa-miR-130a-3p, -142-3p, -144-3p, -144-5p, -223-3p, -17-5p, and -30e-5p in gingiva affected by periodontal inflammation. We aimed to determine direct target genes and signaling pathways regulated by these miRNAs to identify processes relevant to gingival inflammatory responses and tissue homeostasis. We transfected miRNA mimics (mirVana) for each of the 7 miRNAs separately into human primary gingival fibroblasts cultured from 3 different donors. Following RNA sequencing, differential gene expression and second-generation gene set enrichment analyses were performed. miRNA inhibition and upregulation was validated at the transcript and protein levels using quantitative reverse transcriptase polymerase chain reaction, Western blotting, and reporter gene assays. All 7 miRNAs significantly increased expression of the gene MET proto-oncogene, receptor tyrosine kinase (MET). Expression of known periodontitis risk genes CPEB1, ABCA1, and ATP6V1C1 was significantly repressed by hsa-miR-130a-3p, -144-3p, and -144-5p, respectively. The genes WASL, ENPP5, ARL6IP1, and IDH1 showed the most significant and strongest downregulation after hsa-miR-142-3p, -17-5p, -223-3p, and -30e-5p transfection, respectively. The most significantly regulated gene set of each miRNA related to cell cycle (hsa-miRNA-144-3p and -5p [Padj = 4 × 10-40 and Padj = 4 × 10-6], -miR-17-5p [Padj = 9.5 × 10-23], -miR-30e-5p [Padj = 8.2 × 10-18], -miR-130a-3p [Padj = 5 × 10-15]), integrin cell surface interaction (-miR-223-3p [Padj = 2.4 × 10-7]), and interferon signaling (-miR-142-3p [Padj = 5 × 10-11]). At the end of acute inflammation, gingival miRNAs bring together complex regulatory networks that lead to increased expression of the gene MET. This underscores the importance of mesenchymal cell migration and invasion during gingival tissue remodeling and proliferation in restoring periodontal tissue homeostasis after active inflammation. MET, a receptor of the mitogenic hepatocyte growth factor fibroblast secreted, is a core gene of this process.
Collapse
Affiliation(s)
- L. Zheng
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J. Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - D. Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - H. Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. S. Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Kalailingam P, Verma A, Lee YH, Thanabalu T. Conditional Knockout of N-WASP Enhanced the Formation of Keratinizing Squamous Cell Carcinoma Induced by KRas G12D. Cancers (Basel) 2023; 15:4455. [PMID: 37760426 PMCID: PMC10526518 DOI: 10.3390/cancers15184455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Squamous cell carcinoma (SCC) is one of the most common forms of skin cancer in humans, and Neural Wiskott-Aldrich Syndrome Protein (N-WASP) plays a crucial role in epidermal homeostasis. To elucidate the role of N-WASP in skin cancer, we generated mice which expressed constitutively active KRas (KRasG12D) in keratinocytes with either homozygous (N-WASPKOG12D) or heterozygous (N-WASPHetG12D) N-WASP knockout upon Tamoxifen (TAM) injection. Both the N-WASPKOG12D and N-WASPHetG12D mice had similar body weights and no congenital malformations prior to the injection of TAM. Within 2 weeks of the injections, the N-WASPKOG12D mice exhibited significant reductions in weight coupled with visible tumors at numerous sites, unlike the N-WASPHetG12D mice, which had no visible tumors. We found that both sets of mice had oily, sticky skin and wet eyes 3 weeks after their exposure to TAM, indicating the overproduction of sebum/meibum. At 37 days post TAM injection, several notable observations were made. Tumors collected from the N-WASPKOG12D mice had small- to large-sized keratin pearls that were not observed in the N-WASPHetG12D mice. A Western blot and immunostaining analysis both highlighted significantly higher levels of expression of SCC markers, such as the cytokeratins 8, 17, 18, and 19 and TP63, in the tumors of the N-WASPKOG12D mice compared to those of the latter group. Furthermore, we noted increases in the expression levels of EGFR, P-ERK, GLUT1, P-mTOR, and P-4EBP in the N-WASPKOG12D mice, suggesting that the deletion of N-WASP in the keratinocytes enhanced KRas signaling and glucose uptake, resulting in aggressive tumor formation. Interestingly, a thickening of the epidermal layer within the esophagus and tongue was only observed in the N-WASPKOG12D mice. Immunostaining for PCNA emphasized a significantly higher number of PCNA-positive cells in the skin of the N-WASPKOG12D mice compared to their counterparts, implying that epidermal thickening and enhanced tumorigenesis are due to an increased proliferation of keratinocytes. Through our results, we have established that N-WASP plays a tumor-suppressive role in skin cancer.
Collapse
Affiliation(s)
| | | | | | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (P.K.); (A.V.); (Y.H.L.)
| |
Collapse
|
3
|
Jameson C, Boulton KA, Silove N, Nanan R, Guastella AJ. Ectodermal origins of the skin-brain axis: a novel model for the developing brain, inflammation, and neurodevelopmental conditions. Mol Psychiatry 2023; 28:108-117. [PMID: 36284159 PMCID: PMC9812765 DOI: 10.1038/s41380-022-01829-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 01/09/2023]
Abstract
Early life development and its divergence is influenced by multiple genetic, neurological, and environmental factors. Atypical neurodevelopment, such as that observed in autism spectrum disorder, likely begins in early gestation during a period of entwined growth between the brain and epithelial barriers of the skin, gastrointestinal tract, and airway. This review coalesces epidemiological and neuroinflammatory evidence linking cutaneous atopic disease with both reduced skin barrier integrity and determinants of neurodivergence. We consider the shared developmental origin of epidermal and neural tissue with related genetic and environmental risk factors to evaluate potential pre- and postnatal modifiers of the skin-brain connection. Initial postnatal skin barrier integrity may provide a useful marker for both cortical integrity and meaningful subgroups of children showing early neurodevelopmental delays. It may also modify known risk factors to neurodevelopment, such as pathogen caused immune system activation. These novel insights of a skin-brain-neurodevelopment connection may advance detection and intervention opportunities.
Collapse
Affiliation(s)
- C. Jameson
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - K. A. Boulton
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - N. Silove
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.413973.b0000 0000 9690 854XChild Development Unit, The Children’s Hospital at Westmead, Westmead, NSW Australia
| | - R. Nanan
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XCharles Perkins Centre Nepean’s and Sydney Medical School Nepean, The University of Sydney, Nepean, Discipline of Paediatrics, University of Sydney, Camperdown, NSW Australia
| | - A. J. Guastella
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
4
|
Donohue LK, Guo MG, Zhao Y, Jung N, Bussat RT, Kim DS, Neela PH, Kellman LN, Garcia OS, Meyers RM, Altman RB, Khavari PA. A cis-regulatory lexicon of DNA motif combinations mediating cell-type-specific gene regulation. CELL GENOMICS 2022; 2:100191. [PMID: 36742369 PMCID: PMC9894309 DOI: 10.1016/j.xgen.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNA motifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-regulatory sequence logic in gene regulation.
Collapse
Affiliation(s)
- Laura K.H. Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA,These authors contributed equally
| | - Margaret G. Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,These authors contributed equally
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA
| | - Namyoung Jung
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Rose T. Bussat
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,23andMe, Inc., Sunnyvale, CA, USA
| | - Daniel S. Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Poornima H. Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Fauna Bio, Emeryville, CA, USA
| | - Laura N. Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Omar S. Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M. Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA,Lead contact,Correspondence:
| |
Collapse
|
5
|
Chung YJ, Salvi A, Kalailingam P, Alnawaz M, Tan SH, Pan JY, Tan NS, Thanabalu T. N-WASP Attenuates Cell Proliferation and Migration through ERK2-Dependent Enhanced Expression of TXNIP. BIOLOGY 2022; 11:biology11040582. [PMID: 35453780 PMCID: PMC9029996 DOI: 10.3390/biology11040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Neural Wiskott–Aldrich Syndrome Protein (N-WASP) regulates actin cytoskeleton remodeling and can, it has been suggested, suppress several cancers. In this study, HSC-5 cells, a mammalian cell line with reduced N-WASP expression, were used to generate control cells and HSC-5 cells with increased N-WASP expression that is comparable to that of normal keratinocytes. The two cell lines were used to elucidate the regulation of cell proliferation and migration by N-WASP. Our findings suggest that N-WASP increases ERK2-dependent phosphorylation of FOXO1 and increases TXNIP expression, which reduces cell proliferation and migration. This study is the first to propose an antiproliferative role of N-WASP, which is mediated via ERK2, and it suggests new avenues for cancer therapeutic research and treatment. Abstract Neural Wiskott–Aldrich Syndrome Protein (N-WASP) regulates actin cytoskeleton remodeling. It has been known that reduced N-WASP expression in breast and colorectal cancers is associated with poor prognosis. Here, we found reduced N-WASP expression in squamous cell carcinoma (SCC) patient samples. The SCC cell line HSC-5 with reduced N-WASP expression was used to generate HSC-5CN (control) and HSC-5NW (N-WASP overexpression) cells. HSC-5NW cells had reduced cell proliferation and migration compared to HSC-5CN cells. HSC-5NW cells had increased phospho-ERK2 (extracellular signal-regulated kinase 2), phosphorylated Forkhead box protein class O1 (FOXO1) and reduced nuclear FOXO1 staining compared to HSC-5CN cells. Proteasome inhibition stabilized total FOXO1, however, not nuclear staining, suggesting that FOXO1 could be degraded in the cytoplasm. Inhibition of ERK2 enhanced nuclear FOXO1 levels and restored cell proliferation and migration of HSC-5NW to those of HSC-5CN cells, suggesting that ERK2 regulates FOXO1 activity. The expression of thioredoxin-interacting protein (TXNIP), a FOXO1 target that inhibits thioredoxin and glucose uptake, was higher in HSC-5NW cells than in HSC-5CN cells. Knockdown of TXNIP in HSC-5NW cells restored cell proliferation and migration to those of HSC-5CN cells. Thus, we propose that N-WASP regulates cell proliferation and migration via an N-WASP-ERK2-FOXO1-TXNIP pathway.
Collapse
Affiliation(s)
- Yat Joong Chung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Amrita Salvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Myra Alnawaz
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Suat Hoon Tan
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore; (S.H.T.); (J.Y.P.)
| | - Jiun Yit Pan
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore; (S.H.T.); (J.Y.P.)
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
- Correspondence: ; Tel.: +65-6316-2832; Fax: +65-6791-3856
| |
Collapse
|
6
|
Han Y, Villarreal-Ponce A, Gutierrez G, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, Zeng YA, Watanabe K, Dai X. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep 2022; 38:110240. [PMID: 35021086 PMCID: PMC9894649 DOI: 10.1016/j.celrep.2021.110240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Collapse
Affiliation(s)
- Yingying Han
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Ting Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Benjamin Sui
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium,Cancer Research Institute Ghent, Ghent, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine I, University, Erlangen-Nuernberg Glueckstr. 6, 91054 Erlangen, Germany
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Yi Arial Zeng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
Lu Z, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Li SW, Liu XA, Zhong CB, Zhou XQ. Mannan Oligosaccharides Application: Multipath Restriction From Aeromonas hydrophila Infection in the Skin Barrier of Grass Carp ( Ctenopharyngodon idella). Front Immunol 2021; 12:742107. [PMID: 34733280 PMCID: PMC8559429 DOI: 10.3389/fimmu.2021.742107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of dietary Mannan oligosaccharides (MOS) supplementation on skin barrier function and the mechanism of on-growing grass carp (Ctenopharyngodon idella). Five hundred forty grass carp were fed for 60 days from the growing stage with six different levels of MOS diets (0, 200, 400, 600, 800, and 1,000 mg kg-1). At the end of the growth trial, the 14-day Aeromonas hydrophila challenge experiment has proceeded. The obtained data indicate that MOS could (1) decline skin lesion morbidity after being challenged by the pathogenic bacteria; (2) maintain physical barrier function via improving antioxidant ability, inhibiting excessive apoptosis, and strengthening the tight junction between the epithelial cell and the related signaling pathway (Nrf2/Keap1, p38MAPK, and MLCK); and (3) regulate immune barrier function by modulating the production of antimicrobial compound and expression of involved cytokines and the related signaling pathway (TOR and NFκB). Finally, we concluded that MOS supplementation reinforced the disease resistance and protected the fish skin barrier function from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Shu-Wei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiang-An Liu
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Zhao H, Zhu S, Guo T, Han M, Chen B, Qiao G, Wu Y, Yuan C, Liu J, Lu Z, Sun W, Wang T, Li F, Zhang Y, Hou F, Yue Y, Yang B. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J Anim Sci 2021; 99:6319907. [PMID: 34255028 PMCID: PMC8418636 DOI: 10.1093/jas/skab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model circulating probability unification (FarmCPU) for yearling staple length (YSL), yearling mean fiber diameter (YFD), yearling greasy fleece weight (YGFW), and yearling clean fleece rate (YCFR) by using the whole-genome re-sequenced data (totaling 577 sheep) from the following four fine-wool sheep breeds in China: Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Qinghai fine-wool sheep (QHS), and Aohan fine-wool sheep (AHS). A total of 16 SNPs were detected above the genome-wise significant threshold (P = 5.45E-09), and 79 SNPs were located above the suggestive significance threshold (P = 5.00E-07) from the GWAS results. For YFD and YGFW traits, 7 and 9 SNPs reached the genome-wise significance thresholds, whereas 10 and 12 SNPs reached the suggestive significance threshold, respectively. For YSL and YCFR traits, none of the SNPs reached the genome-wise significance thresholds, whereas 57 SNPs exceeded the suggestive significance threshold. We recorded 14 genes located at the region of ±50-kb near the genome-wise significant SNPs and 59 genes located at the region of ±50-kb near the suggestive significant SNPs. Meanwhile, we used the Average Information Restricted Maximum likelihood algorithm (AI-REML) in the “HIBLUP” package to estimate the heritability and variance components of the four desired yearling wool traits. The estimated heritability values (h2) of YSL, YFD, YGFW, and YCFR were 0.6208, 0.7460, 0.6758, and 0.5559, respectively. We noted that the genetic parameters in this study can be used for fine-wool sheep breeding. The newly detected significant SNPs and the newly identified candidate genes in this study would enhance our understanding of yearling wool formation, and significant SNPs can be applied to genome selection in fine-wool sheep breeding.
Collapse
Affiliation(s)
- Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Bowen Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Yi Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
- Corresponding author:
| |
Collapse
|
9
|
Mu Z, Zhang Y, Li L, Han X. Mapping knowledge structures and theme trends of atopic dermatitis: a co-word biclustering and quantitative analysis of the publication between 2015 and 2019. J DERMATOL TREAT 2021; 33:2024-2033. [PMID: 33761805 DOI: 10.1080/09546634.2021.1905769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) has been a hot research direction of dermatologists for a long time. However, the knowledge structures and theme trends for AD have not yet been studied bibliometrically. OBJECTIVE To investigate the distribution pattern and knowledge structure of AD related literatures in PubMed. METHODS Bibliographic information was generated by the Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). A visual matrix was created by the gCLUTO software. GraphPad Prism 5 software was used to construct a Strategic diagram analysis. Ucinet 6.0 software and NetDraw 2.084 software were used to generate a social network analysis (SNA). RESULTS Among all the extracted MeSH terms and subheadings, 77 MeSH terms/MeSH subheadings with a high-frequency were identified, and hot topics were gathered together into 6 groups. In the strategic diagram, immunology, microbiology, and drug therapy of AD were fully developed. In contrast, prevention, pathology, genetics, metabolism, administration, cost of illness, quality of life therapeutic paradigm, and immunosuppressive agents of AD were considerably immature offering prospective scope for further research. CONCLUSIONS The results may potentially aid in describing an all-round grasp of the current research areas and furnish guidelines for the researchers for beginning new projects.
Collapse
Affiliation(s)
- Zhenzhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
|
11
|
Lai Y, Zhao A, Tan M, Yang M, Lin Y, Li S, Song J, Zheng H, Zhu Z, Liu D, Liu C, Li L, Yang G. DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling. EMBO Rep 2020; 21:e49473. [PMID: 31885214 PMCID: PMC7001503 DOI: 10.15252/embr.201949473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
Collapse
Affiliation(s)
- Yerui Lai
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Minghong Tan
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- School of Biomedical SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Yao Lin
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Shengbing Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- Chongqing Key Laboratory for oral Diseases and Biomedical ScienceCollege of StomatologyChongqing Medical UniversityChongqingChina
| | - Hongting Zheng
- Department of EndocrinologyXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiming Zhu
- Department of Hypertension and EndocrinologyDaping HospitalChongqing Institute of HypertensionThird Military Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Ling Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
12
|
Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 318:G144-G161. [PMID: 31709833 PMCID: PMC6985844 DOI: 10.1152/ajpgi.00021.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and β catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.
Collapse
Affiliation(s)
- Nazih L. Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chia-Ling Tu
- 3Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Karen L. Brown
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - M. Toriqul Islam
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anna G. Hodges
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange M. Abdulnour-Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana,4Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
13
|
Yin J, Hwang IH, Lee MW. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii. Altern Ther Health Med 2019; 19:323. [PMID: 31752827 PMCID: PMC6869165 DOI: 10.1186/s12906-019-2734-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Carpinus tschonoskii (CT) has been previously studied for various activities in the improvement of skin diseases. In the present study, we examined the in vitro anti-acne vulgaris (AV) effect of CT leaves (CTL) and tellimagrandin I (TI), one of the main ellagitannins from CT, including skin barrier improvement and 5α-reductase inhibitory activity. METHODS To test the anti-AV activities of CTL and TI, firstly, anti-oxidative and anti-inflammatory activities including DPPH radical scavenging activity, nitric oxide (NO) inhibitory activity, and cytokines [interleukin (IL)-6 and IL-8] were tested. Skin barrier improvement experiments were tested using developing cornified envelope (CE) formation, and filaggrin mRNA expression level was determined by RT-PCR. The 5α-reductase inhibitory activity was determined by measuring the testosterone levels in rat liver microsomes. RESULTS CTL and TI showed potent anti-oxidative activity and anti-inflammatory activities. Especially, the cytokine production inhibitory activities of TI were found to be similar to the positive control, epigallocatechin gallate (EGCG). CTL and TI enhanced the CE formation and filaggrin mRNA expression levels and showed potent activities compared to that in the positive control, 1.5 mM Ca2+. In additionally, CTL and TI showed 5α-reductase inhibitory activities in a dose-dependent manner. CONCLUSION The results showed that CTL and TI inhibit AV endogenous factors such as 5α-reductase and inflammatory cytokines and affect exogenous factors such as developing skin barrier function (CE and filaggrin levels). Therefore, CTL and TI may be plant-derived agent, promising in the treatment of acne vulgaris.
Collapse
|
14
|
Wang Y, Kang W, Shang L, Song A, Ge S. N-WASP knockdown upregulates inflammatory cytokines expression in human gingival fibroblasts. Arch Oral Biol 2019; 110:104605. [PMID: 31751919 DOI: 10.1016/j.archoralbio.2019.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The neuronal wiskott-aldrich syndrome protein (N-WASP) is a member of the wiskott-aldrich syndrome protein (WASP) family. N-WASP plays a vital role in promoting cell migration, receptor signaling and immune inflammatory responses. This study aimed to observe the changes in the expression of inflammatory factors and involving pathways after N-WASP knockdown in human gingival fibroblasts (HGFs). DESIGN Gingival inflammatory condition of N-WASP knockout mice was evaluated by H&E staining. N-WASP in HGFs was knockdown by siRNA and the best knockdown efficiency was determined by qRT-PCR and immunofluorescence. The mRNA levels of interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), superoxide dismutase 2 (SOD2) and prostaglandin endoperoxide synthase 2 (PTGS2) were evaluated by qRT-PCR after N-WASP knockdown with or without mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors. The protein levels of IL-6, IL-8 and CCL2 were assessed by ELISA. Western blotting was used to detect the activation of NF-κB and MAPK signaling pathways. RESULTS Gingival tissue from N-WASP knockout mice exhibited an inflammatory reaction. The expression of IL-6, IL-8, CCL2, SOD2 and PTGS2 was significantly upregulated after N-WASP knockdown in HGFs for 6, 24 and 48 h, except for the SOD2 at 6 h. N-WASP knockdown significantly activated the signaling pathways of NF-κB and MAPK. The inhibitors of p65, p38, ERK and JNK clearly decreased IL-6, IL-8, CCL2, SOD2 and PTGS2 expression after N-WASP knockdown. CONCLUSION These data indicated that N-WASP deficiency in HGFs increases the production of inflammatory cytokine and is regulated via NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Lingling Shang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Aimei Song
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| |
Collapse
|
15
|
Alencar-Silva T, Zonari A, Foyt D, Gang M, Pogue R, Saldanha-Araujo F, Dias SC, Franco OL, Carvalho JL. IDR-1018 induces cell proliferation, migration, and reparative gene expression in 2D culture and 3D human skin equivalents. J Tissue Eng Regen Med 2019; 13:2018-2030. [PMID: 31408919 DOI: 10.1002/term.2953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Skin lesions are associated with functional/cosmetic problems for those afflicted. Scarless regeneration is a challenge, not limited to the skin, and focus of active investigation. Recently, the host defense peptide innate defense regulatory peptide 1018 (IDR-1018) has shown exciting regenerative properties. Nevertheless, literature regarding IDR-1018 regenerative potential is scarce and limited to animal models. Here, we evaluated the regenerative potential of IDR-1018 using human 2D and 3D human skin equivalents. First, we investigated IDR-1018 using human cells found in skin-primary fibroblasts, primary keratinocytes, and the MeWo melanocytes cell line. IDR-1018 promoted cell proliferation and expression of marker of proliferation Ki-67, matrix metalloproteinase 1, and hyaluronan synthase 2 by fibroblasts. In keratinocytes, a drastic increase in expression was observed for Ki-67, matrix metalloproteinase 1, C-X-C motif chemokine receptor type 4, C-X-C motif chemokine receptor type 7, fibroblast growth factor 2, hyaluronan synthase 2, vascular endothelial growth factor, and elastin, reflecting an intense stimulation of these cells. In melanocytes, increased migration and proliferation were observed following IDR-1018 treatment. The capacity of IDR-1018 to promote dermal contraction was verified using a dermal model. Finally, using a 3D human skin equivalent lesion model, we revealed that the regenerative potential of IDR1018, previously tested in mice and pigs, is valid for human skin tissue. Lesions closed faster in IDR-1018-treated samples, and the gene expression signature observed in 2D was reproduced in the 3D human skin equivalents. Overall, the present data show the regenerative potential of IDR-1018 in an experimental system comprising human cells, underscoring the potential application for clinical investigation.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
| | | | - Daniel Foyt
- OneSkin Technologies, San Francisco, CA, USA
| | | | - Robert Pogue
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Simoni Campos Dias
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,OneSkin Technologies, San Francisco, CA, USA.,Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
16
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Kalailingam P, Tan HB, Pan JY, Tan SH, Thanabalu T. Overexpression of CDC42SE1 in A431 Cells Reduced Cell Proliferation by Inhibiting the Akt Pathway. Cells 2019; 8:cells8020117. [PMID: 30717410 PMCID: PMC6406378 DOI: 10.3390/cells8020117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cell division cycle 42 (CDC42), a small Rho GTPase, plays a critical role in many cellular processes, including cell proliferation and survival. CDC42 interacts with the CRIB (Cdc42- and Rac-interactive binding) domain of CDC42SE1, a small effector protein of 9 kDa. We found that the expression of CDC42SE1 was reduced in human skin cancer samples relative to matched perilesional control. Exogenous expression of CDC42SE1 but not CDC42SE1H38A (mutation within CRIB domain) in A431 cells (A431SE1, A431SE1-H38A) reduced cell proliferation. Antibody microarray analysis of A431Ctrl and A431SE1 lysate suggested that reduced A431SE1 cells proliferation was due to inhibition of Akt pathway, which was confirmed by the reduced P-Akt and P-mTOR levels in A431SE1 cells compared to A431Ctrl cells. This suggests that CDC42SE1 modulates the CDC42-mediated Akt pathway by competing with other effector proteins to bind CDC42. A431SE1 cells formed smaller colonies in soft agar compared to A431Ctrl and A431SE1-H38A cells. These findings correlate with nude mice xenograft assays, where A431SE1 cells formed tumors with significantly-reduced volume compared to the tumors formed by A431Ctrl cells. Our results suggest that CDC42SE1 is downregulated in skin cancer to promote tumorigenesis, and thus CDC42SE1 might be an important marker of skin cancer progression.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Jiun Yit Pan
- National Skin Centre, Singapore 308205, Singapore.
| | | | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|