1
|
Cabrera-Sosa L, Nolasco O, Kattenberg JH, Fernandez-Miñope C, Valdivia HO, Barazorda K, Arévalo de Los Rios S, Rodriguez-Ferrucci H, Vinetz JM, Rosanas-Urgell A, Van Geertruyden JP, Gamboa D, Delgado-Ratto C. Genomic surveillance of malaria parasites in an indigenous community in the Peruvian Amazon. Sci Rep 2024; 14:16291. [PMID: 39009685 PMCID: PMC11250820 DOI: 10.1038/s41598-024-66925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = 0.07-0.52 and Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Oscar Nolasco
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Johanna H Kattenberg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Keare Barazorda
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | | | - Hugo Rodriguez-Ferrucci
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Iquitos, Loreto, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Pierre Van Geertruyden
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Kattenberg JH, Cabrera-Sosa L, Figueroa-Ildefonso E, Mutsaers M, Monsieurs P, Guetens P, Infante B, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Plasmodium vivax genomic surveillance in the Peruvian Amazon with Pv AmpliSeq assay. PLoS Negl Trop Dis 2024; 18:e0011879. [PMID: 38991038 PMCID: PMC11265702 DOI: 10.1371/journal.pntd.0011879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.
Collapse
Affiliation(s)
| | - Luis Cabrera-Sosa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Erick Figueroa-Ildefonso
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mathijs Mutsaers
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Monsieurs
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Berónica Infante
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
3
|
Banegas S, Escobar D, Pinto A, Moncada M, Matamoros G, Valdivia HO, Reyes A, Fontecha G. Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination. Pathogens 2024; 13:541. [PMID: 39057768 PMCID: PMC11280452 DOI: 10.3390/pathogens13070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Efforts on a global scale for combating malaria have achieved substantial progress over the past twenty years. Two Central American nations have accomplished their goal of eliminating malaria: El Salvador and Belize. Honduras has decreased the incidence of malaria and now reports fewer than 4000 malaria cases annually, aspiring to reach elimination by 2030. To accomplish this goal, it is essential to assess the existing strategies employed for malaria control and to address the task of incorporating novel intervention strategies to identify asymptomatic reservoirs. METHODS A survey for detecting asymptomatic cases was carried out in the community of Kaukira, in Gracias a Dios, Honduras, focusing on malaria transmission during 2023. Asymptomatic community members were recruited as participants, malaria screening was performed through a rapid diagnostic test in situ, and a blood sample was collected on filter paper. Highly sensitive molecular assays based on photo-induced electron transfer PCR (PET-PCR) were performed to detect the two species of Plasmodium circulating in Honduras: Plasmodium vivax and Plasmodium falciparum. In addition, the identification of the parasite species was verified by amplifying three genetic markers (Pvmsp3α, Pvmsp3ß, and Pfmsp1). RESULTS A total of 138 participants were recruited, mostly adult women. All individuals tested negative on the rapid diagnostic test. Positive results for malaria were detected by PET-PCR in 17 samples (12.3%). Most samples (12 out of 17) were amplified with a Ct value between 37 and 42, indicating very low parasitemias. Out of the 17 samples, 16 of them also showed amplification in the species assays. There were nine cases of P. falciparum infections and seven cases of P. vivax infections that were further confirmed by nested PCR (nPCR) of Pvmsp3 and Pfmsp1. Parasitemias ranged from 100 p/μL to less than 0.25 p/μL. One sample showed mixed infection. CONCLUSIONS The existence of asymptomatic malaria reservoirs in Honduras can contribute to disease transmission and pose a challenge that may hinder elimination efforts, requiring public health authorities to modify surveillance strategies to identify the disease and treat this population accordingly.
Collapse
Affiliation(s)
- Sharon Banegas
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Denis Escobar
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Alejandra Pinto
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Marcela Moncada
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Gabriela Matamoros
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit South (NAMRU SOUTH), Lima 07006, Peru
| | - Allan Reyes
- Unidad de Entomología, Región Sanitaria de Gracias a Dios, Secretaría de Salud de Honduras, Puerto Lempira 33101, Gracias a Dios, Honduras
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| |
Collapse
|
4
|
Ventocilla JA, Tapia LL, Ponce R, Franco A, Leelawong M, Aguiar JC, Baldeviano GC, Wilder BK. Evaluation of naturally acquired immune responses against novel pre-erythrocytic Plasmodium vivax proteins in a low endemic malaria population located in the Peruvian Amazon Basin. Malar J 2024; 23:163. [PMID: 38783317 PMCID: PMC11118720 DOI: 10.1186/s12936-024-04978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.
Collapse
Affiliation(s)
- Julio A Ventocilla
- Vysnova Partners Inc., Bethesda, USA
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
| | | | | | - Mindy Leelawong
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- NYC Department of Health and Mental Hygiene, Long Island City, USA
| | | | - G Christian Baldeviano
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- Bluebird Bio, Inc, Somerville, USA
| | - Brandon K Wilder
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru.
- Oregon Health & Science University, Portland, USA.
| |
Collapse
|
5
|
Bickersmith SA, Saavedra MP, Prussing C, Lange RE, Morales JA, Alava F, Vinetz JM, Gamboa D, Moreno M, Conn JE. Effect of spatiotemporal variables on abundance, biting activity and parity of Nyssorhynchus darlingi (Diptera: Culicidae) in peri-Iquitos, Peru. Malar J 2024; 23:112. [PMID: 38641572 PMCID: PMC11031940 DOI: 10.1186/s12936-024-04940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.
Collapse
Affiliation(s)
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Rachel E Lange
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Juliana A Morales
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Iquitos, Peru
| | - Joseph M Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA.
| |
Collapse
|
6
|
Cabrera-Sosa L, Nolasco O, Kattenberg JH, Fernandez-Miñope C, Valdivia HO, Barazorda K, Rios SADL, Rodriguez-Ferrucci H, Vinetz JM, Rosanas-Urgell A, Geertruyden JPV, Gamboa D, Delgado-Ratto C. Genomic surveillance of malaria parasites in an indigenous community in the Peruvian Amazon. RESEARCH SQUARE 2024:rs.3.rs-3979991. [PMID: 38464169 PMCID: PMC10925399 DOI: 10.21203/rs.3.rs-3979991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = -0.52 & Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | - Oscar Nolasco
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | | | - Carlos Fernandez-Miñope
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH)
| | - Keare Barazorda
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH)
| | | | | | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine
| | | | - Jean-Pierre Van Geertruyden
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | - Christopher Delgado-Ratto
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| |
Collapse
|
7
|
Tréhard H, Musset L, Lazrek Y, Djossou F, Epelboin L, Roux E, Landier J, Gaudart J, Mosnier E. Understanding the impact of mobility on Plasmodium spp. carriage in an Amazon cross-border area with low transmission rate. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002706. [PMID: 38349936 PMCID: PMC10863871 DOI: 10.1371/journal.pgph.0002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Despite the large reduction in malaria incidence in the last decade, the last kilometre to elimination is often the hardest, especially in international border areas. This study investigated the impact of mobility on Plasmodium spp. carriage in people living in a cross-border area in Amazonia with a low malaria transmission rate. We implemented a longitudinal ancillary study in the French Guiana town of St. Georges de l'Oyapock, which is located on the border with Brazil. It was based on data from two transversal surveys performed in October 2017 and October 2018. Data were collected on peri-domestic mobility for food-producing activities, and longer-distance mobility in high-risk areas. Participants were screened for Plasmodium spp. carriage using PCR tests, and treated if positive. Vector density around a participant's home was estimated using a previously published model based on remote sensing and meteorological data. The association between Plasmodium spp. carriage and mobility was analysed using a generalized additive mixed model. A total of 1,192 inhabitants, aged between 0 and 92 years old, were included. Median age was 18 years in 2017 (IQR [8;35]). Plasmodium spp. prevalence in the study population was 7% in 2017 (n = 89) and 3% in 2018 (n = 35). Plasmodium spp. carriage was independently associated with i) travel to the adjoining Oiapoque Indigenous Territories in Brazil (OR = 1.76, p = 0.023), ii) the estimated vector density around a participant's home (High versus Low risk OR = 4.11, p<0.001), iii) slash-and-burn farming (OR = 1.96, p = 0.013), and iv) age (p = 0.032). Specific surveillance systems and interventions which take into account different types of mobility are needed in cross-border areas to achieve and maintain malaria elimination (e.g., reactive case detection and treatment in the places visited).
Collapse
Affiliation(s)
- Hélène Tréhard
- Aix Marseille Institute of Public Health ISSPAM, UMR1252 SESSTIM, Aix-Marseille University, Inserm, IRD, Marseille, France
| | - Lise Musset
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Centre Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Yassamine Lazrek
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Centre Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Felix Djossou
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, French Guiana
| | - Loïc Epelboin
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, French Guiana
- Centre d’Investigation Clinique Antilles Guyane CIC Inserm 1424, Centre Hospitalier de Cayenne, French Guiana
| | - Emmanuel Roux
- French National Research Institute for Sustainable Development (IRD), ESPACE‐DEV, University of Montpellier, University of French West Indies, University of French Guiana, University of La Reunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Sentinela International Joint Laboratory, University of Brasilia (UnB), Oswaldo Cruz Foundation (Fiocruz), Montpellier, France
| | - Jordi Landier
- Aix Marseille Institute of Public Health ISSPAM, UMR1252 SESSTIM, Aix-Marseille University, Inserm, IRD, Marseille, France
| | - Jean Gaudart
- Aix Marseille University, INSERM, IRD, ISSPAM, SESSTIM, UMR1252, APHM, Hop Timone, BioSTIC, Biostatistic & ICT, Marseille, France
| | - Emilie Mosnier
- Aix Marseille Institute of Public Health ISSPAM, UMR1252 SESSTIM, Aix-Marseille University, Inserm, IRD, Marseille, France
- Grant Management Office, University of Health Sciences, Phnom Penh, Cambodia
- French Agency for Research on AIDS, Viral Hepatitis and Emerging Infectious Diseases (ANRS-MIE), Phnom Penh, Cambodia
| |
Collapse
|
8
|
Bickersmith SA, Jurczynski JD, Sallum MAM, Chaves LSM, Bergo ES, Rodriguez GAD, Morante CA, Rios CT, Saavedra MP, Alava F, Gamboa D, Vinetz JM, Conn JE. Mutations Linked to Insecticide Resistance Not Detected in the Ace-1 or VGSC Genes in Nyssorhynchus darlingi from Multiple Localities in Amazonian Brazil and Peru. Genes (Basel) 2023; 14:1892. [PMID: 37895241 PMCID: PMC10606710 DOI: 10.3390/genes14101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.
Collapse
Affiliation(s)
- Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
| | - John D. Jurczynski
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Leonardo S. M. Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Eduardo S. Bergo
- Secretaria de Estado da Saúde de São Paulo, Instituto Pasteur, São Paulo 01027-000, Brazil;
| | - Gloria A. D. Rodriguez
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Clara A. Morante
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Carlos T. Rios
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru;
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
9
|
Barros LB, Calil PR, Rodrigues PT, Tonini J, Fontoura PS, Sato PM, Cardoso MA, Russo MWDAA, Cavasini CE, Fernandes ARDJ, Ferreira MU. Clinically silent Plasmodium vivax infections in native Amazonians of northwestern Brazil: acquired immunity or low parasite virulence? Mem Inst Oswaldo Cruz 2022; 117:e220175. [PMID: 36542002 PMCID: PMC9756956 DOI: 10.1590/0074-02760220175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malaria remains common among native Amazonians, challenging Brazil's elimination efforts. OBJECTIVES We examined the epidemiology of malaria in riverine populations of the country's main hotspot - the upper Juruá Valley in Acre state, close to the Brazil-Peru border, where Plasmodium vivax accounts for > 80% of cases. METHODS Participants (n = 262) from 10 villages along the Azul River were screened for malaria parasites by microscopy and genus-specific, cytochrome b (cytb) gene-based polymerase chain reaction. Positive samples were further tested with quantitative TaqMan assays targeting P. vivax- and P. falciparum-specific cytb domains. We used multiple logistic regression analysis to identify independent correlates of P. vivax infection. FINDINGS Microscopy detected only one P. vivax and two P. falciparum infections. TaqMan assays detected 33 P. vivax infections (prevalence, 11.1%), 78.1% of which asymptomatic, with a median parasitaemia of 34/mL. Increasing age, male sex and use of insecticide-treated bed nets were significant predictors of elevated P. vivax malaria risk. Children and adults were similarly likely to remain asymptomatic once infected. MAIN CONCLUSIONS Our findings are at odds with the hypothesis of age-related clinical immunity in native Amazonians. The low virulence of local parasites is suggested as an alternative explanation for subclinical infections in isolated populations.
Collapse
Affiliation(s)
- Luiza Barbosa Barros
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Rodrigues Calil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Thihara Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Juliana Tonini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Pablo Secato Fontoura
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Moraes Sato
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | - Marly Augusto Cardoso
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | | | - Carlos Eduardo Cavasini
- Faculdade de Medicina de São José do Rio Preto, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, São José do Rio Preto, SP, Brasil
| | | | - Marcelo Urbano Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil,Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal,+ Corresponding author: /
| |
Collapse
|
10
|
Carrasco-Escobar G, Rosado J, Nolasco O, White MT, Mueller I, Castro MC, Rodriguez-Ferruci H, Gamboa D, Llanos-Cuentas A, Vinetz JM, Benmarhnia T. Effect of out-of-village working activities on recent malaria exposure in the Peruvian Amazon using parametric g-formula. Sci Rep 2022; 12:19144. [PMID: 36351988 PMCID: PMC9645738 DOI: 10.1038/s41598-022-23528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
In the Amazon Region of Peru, occupational activities are important drivers of human mobility and may increase the individual risk of being infected while contributing to increasing malaria community-level transmission. Even though out-of-village working activities and other mobility patterns have been identified as determinants of malaria transmission, no studies have quantified the effect of out-of-village working activities on recent malaria exposure and proposed plausible intervention scenarios. Using two population-based cross-sectional studies in the Loreto Department in Peru, and the parametric g-formula method, we simulated various hypothetical scenarios intervening in out-of-village working activities to reflect their potential health benefits. This study estimated that the standardized mean outcome (malaria seroprevalence) in the unexposed population (no out-of-village workers) was 44.6% (95% CI: 41.7%-47.5%) and 66.7% (95% CI: 61.6%-71.8%) in the exposed population resulting in a risk difference of 22.1% (95% CI: 16.3%-27.9%). However, heterogeneous patterns in the effects of interest were observed between peri-urban and rural areas (Cochran's Q test = 15.5, p < 0.001). Heterogeneous patterns were also observed in scenarios of increased prevalence of out-of-village working activities and restriction scenarios by gender (male vs. female) and age (18 and under vs. 19 and older) that inform possible occupational interventions targetting population subgroups. The findings of this study support the hypothesis that targeting out-of-village workers will considerably benefit current malaria elimination strategies in the Amazon Region. Particularly, males and adult populations that carried out out-of-village working activities in rural areas contribute the most to the malaria seropositivity (recent exposure to the parasite) in the Peruvian Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Health Innovation Lab, Institute of Tropical Medicine "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Jason Rosado
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T White
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92037, USA
| |
Collapse
|
11
|
Torres K, Ferreira MU, Castro MC, Escalante AA, Conn JE, Villasis E, da Silva Araujo M, Almeida G, Rodrigues PT, Corder RM, Fernandes ARJ, Calil PR, Ladeia WA, Garcia-Castillo SS, Gomez J, do Valle Antonelli LR, Gazzinelli RT, Golenbock DT, Llanos-Cuentas A, Gamboa D, Vinetz JM. Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:168-181. [PMID: 36228921 PMCID: PMC9662219 DOI: 10.4269/ajtmh.22-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Collapse
Affiliation(s)
- Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ananias A. Escalante
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Elizabeth Villasis
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gregorio Almeida
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Anderson R. J. Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Priscila R. Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Winni A. Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Stefano S. Garcia-Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquin Gomez
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas T. Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Address correspondence to Joseph M. Vinetz, Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 25 York St., Winchester 403D, PO Box 802022, New Haven, CT 06520. E-mail:
| |
Collapse
|
12
|
Zewude BT, Debusho LK, Diriba TA. Multilevel logistic regression modelling to quantify variation in malaria prevalence in Ethiopia. PLoS One 2022; 17:e0273147. [PMID: 36174003 PMCID: PMC9521912 DOI: 10.1371/journal.pone.0273147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Ethiopia has low malaria prevalence compared to most other malaria-endemic countries in Africa. However, malaria is still a major public health problem in the country. The binary logistic regression model has been widely used to analyse malaria indicator survey (MIS) data. However, most MIS have a hierarchical structure which may result in dependent data. Since this model assumes that conditional on the covariates the malaria statuses of individuals are independent, it ignores potential intra-cluster correlation among observations within a cluster and may generate biased analysis results and conclusions. Therefore, the aim of this study was to quantify the variation in the prevalence of malaria between sample enumeration areas (SEAs) or clusters, the effects of cluster characteristics on the prevalence of malaria using the intra-class correlation coefficient as well as to identify significant factors that affect the prevalence of malaria using the multilevel logistic regression modelling in three major regions of Ethiopia, namely Amhara, Oromia and Southern Nations, Nationalities and Peoples’ (SNNP).
Methods
Dataset for three regional states extracted from the 2011 Ethiopian National Malaria Indicator Surveys (EMIS) national representative samples was used in this study. It contains 9272 sample individuals selected from these regions. Various multilevel models with random sample SEA effects were applied taking into account the survey design weights. These weights are scaled to address unequal probabilities of selection within clusters. The spatial clustering of malaria prevalence was assessed applying Getis-Ord statistic to best linear unbiased prediction values of model random effects.
Results
About 53.82 and 28.72 per cents of the sampled households in the study regions had no mosquito net and sprayed at least once within the last 12 months, respectively. The results of this study indicate that age, gender, household had mosquito nets, the dwelling has windows, source of drinking water, the two SEA-level variables, i.e. region and median altitude, were significantly related to the prevalence of malaria. After adjusting for these seven variables, about 45% of the residual variation in the prevalence of malaria in the study regions was due to systematic differences between SEAs, while the remaining 55% was due to unmeasured differences between persons or households. The estimated MOR, i.e. the unexplained SEA heterogeneity, was 4.784. This result suggests that there is high variation between SEAs in the prevalence of malaria. In addition, the 80% interval odds ratios (IORs) related to SEA-level variables contain one suggesting that the SEA variability is large in comparison with the effect of each of the variable.
Conclusions
The multilevel logistic regression with random effects model used in this paper identified five individual / household and two SEA-level risk factors of malaria infection. Therefore, the public health policy makers should pay attentions to those significant factors, such as improving the availability of pure drinking water. Further, the findings of spatial clustering provide information to health policymakers to plan geographically targeted interventions to control malaria transmission.
Collapse
Affiliation(s)
- Bereket Tessema Zewude
- Department of Statistics, University of South Africa, Johannesburg, South Africa
- * E-mail:
| | | | - Tadele Akeba Diriba
- Department of Statistics, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
13
|
Villasis E, Garcia Castillo SS, Guzman M, Torres J, Gomez J, Garro K, Cordova AM, Reategui C, Abanto C, Vinetz J, Gamboa D, Torres K. Epidemiological characteristics of P. vivax asymptomatic infections in the Peruvian Amazon. Front Cell Infect Microbiol 2022; 12:901423. [PMID: 36118037 PMCID: PMC9471197 DOI: 10.3389/fcimb.2022.901423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Herein, we tested the hypothesis that Asymptomatic P. vivax (Pv) infected individuals (Asym) feature different epidemiological, clinical and biochemical characteristics, as well as hematological parameters, potentially predictive of clinical immunity in comparison to symptomatic Pv infected individuals (Sym). Methodology Between 2018 - 2021, we conducted 11 population screenings (PS, Day 0 (D0)) in 13 different riverine communities around Iquitos city, in the Peruvian Amazon, to identify Pv Sym and Asym individuals. A group of these individuals agreed to participate in a nested case - control study to evaluate biochemical and hematological parameters. Pv Asym individuals did not present common malaria symptoms (fever, headache, and chills), had a positive/negative microscopy result, a positive qPCR result, reported no history of antimalarial treatment during the last month, and were followed-up weekly until Day 21 (D21). Control individuals, had a negative malaria microscopy and qPCR result, no history of antimalarial treatment or malaria infections during the last three years, and no history of comorbidities or chronic infections. Results From the 2159 individuals screened during PS, data revealed a low but heterogeneous Pv prevalence across the communities (11.4%), where most infections were Asym (66.7%) and submicroscopic (82.9%). A total of 29 Asym, 49 Sym, and 30 control individuals participated in the nested case - control study (n=78). Ten of the individuals that were initially Asym at D0, experienced malaria symptoms during follow up and therefore, were included in the Sym group. 29 individuals remained Asym throughout all follow-ups. High levels of eosinophils were found in Asym individuals in comparison to Sym and controls. Conclusion For the first-time, key epidemiological, hematological, and biochemical features are reported from Pv Asym infections from the Peruvian Amazon. These results should be considered for the design and reshaping of malaria control measures as the country moves toward malaria elimination.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Elizabeth Villasis,
| | - Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Julian Torres
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Joaquin Gomez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ana Maria Cordova
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Carolina Reategui
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Caroline Abanto
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph Vinetz
- Laboratorio ICEMR−Amazonia y Enfermedades Infecciosas Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
14
|
Carrasco-Escobar G, Matta-Chuquisapon J, Manrique E, Ruiz-Cabrejos J, Barboza JL, Wong D, Henostroza G, Llanos-Cuentas A, Benmarhnia T. Quantifying the effect of human population mobility on malaria risk in the Peruvian Amazon. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211611. [PMID: 35875474 PMCID: PMC9297009 DOI: 10.1098/rsos.211611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The impact of human population movement (HPM) on the epidemiology of vector-borne diseases, such as malaria, has been described. However, there are limited data on the use of new technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS trackers coupled with a Bayesian spatial model to quantify the role of HPM on malaria risk. By using a densely sampled population cohort, this study highlighted the elevated malaria transmission in a riverine community of the Peruvian Amazon. We also found that the high connectivity between Amazon communities for reasons such as work, trading or family plausibly sustains such transmission levels. Finally, by using multiple human mobility metrics including GPS trackers, and adapted causal inference methods we identified for the first time the effect of human mobility patterns on malaria risk in rural Peruvian Amazon. This study provides evidence of the causal effect of HPM on malaria that may help to adapt current malaria control programmes in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Jose Matta-Chuquisapon
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel Wong
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
15
|
Rosado J, Carrasco-Escobar G, Nolasco O, Garro K, Rodriguez-Ferruci H, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Nekkab N, White MT, Mueller I, Gamboa D. Malaria transmission structure in the Peruvian Amazon through antibody signatures to Plasmodium vivax. PLoS Negl Trop Dis 2022; 16:e0010415. [PMID: 35533146 PMCID: PMC9119515 DOI: 10.1371/journal.pntd.0010415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/19/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The landscape of malaria transmission in the Peruvian Amazon is temporally and spatially heterogeneous, presenting different micro-geographies with particular epidemiologies. Most cases are asymptomatic and escape routine malaria surveillance based on light microscopy (LM). Following the implementation of control programs in this region, new approaches to stratify transmission and direct efforts at an individual and community level are needed. Antibody responses to serological exposure markers (SEM) to Plasmodium vivax have proven diagnostic performance to identify people exposed in the previous 9 months. METHODOLOGY We measured antibody responses against 8 SEM to identify recently exposed people and determine the transmission dynamics of P. vivax in peri-urban (Iquitos) and riverine (Mazán) communities of Loreto, communities that have seen significant recent reductions in malaria transmission. Socio-demographic, geo-reference, LM and qPCR diagnosis data were collected from two cross-sectional surveys. Spatial and multilevel analyses were implemented to describe the distribution of seropositive cases and the risk factors associated with exposure to P. vivax. PRINCIPAL FINDINGS Low local transmission was detected by qPCR in both Iquitos (5.3%) and Mazán (2.7%); however, seroprevalence indicated a higher level of (past) exposure to P. vivax in Mazán (56.5%) than Iquitos (38.2%). Age and being male were factors associated with high odds of being seropositive in both sites. Higher antibody levels were found in individuals >15 years old. The persistence of long-lived antibodies in these individuals could overestimate the detection of recent exposure. Antibody levels in younger populations (<15 years old) could be a better indicator of recent exposure to P. vivax. CONCLUSIONS The large number of current and past infections detected by SEMs allows for detailed local epidemiological analyses, in contrast to data from qPCR prevalence surveys which did not produce statistically significant associations. Serological surveillance will be increasingly important in the Peruvian Amazon as malaria transmission is reduced by continued control and elimination efforts.
Collapse
Affiliation(s)
- Jason Rosado
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Sorbonne Université, ED 393, Paris, France
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Gabriel Carrasco-Escobar
- School of Public Health, University of California San Diego, La Jolla, California, United States of America
- Health Innovation Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Peru
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Narimane Nekkab
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
| | - Michael T. White
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Ivo Mueller
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
16
|
Johansen IC, Rodrigues PT, Tonini J, Vinetz J, Castro MC, Ferreira MU. Cohort profile: the Mâncio Lima cohort study of urban malaria in Amazonian Brazil. BMJ Open 2021; 11:e048073. [PMID: 34789490 PMCID: PMC8727682 DOI: 10.1136/bmjopen-2020-048073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE This population-based open cohort study aims to investigate biological and sociodemographic drivers of malaria transmission in the main urban hotspot of Amazonian Brazil. PARTICIPANTS Nearly 20% of the households in the northwestern town of Mâncio Lima were randomly selected and 2690 participants were enrolled since April 2018. Sociodemographic, housing quality, occupational, behavioural and morbidity information and travel histories were collected during consecutive study visits. Blood samples from participants>3 months old were used for malaria diagnosis and human genetic studies; samples from participants with laboratory-confirmed malaria have been cryopreserved for genetic and phenotypic characterisation of parasites. Serology was introduced in 2020 to measure the prevalence and longevity of SARS-CoV-2 IgG antibodies. FINDINGS TO DATE Malaria prevalence rates were low (up to 1.0% for Plasmodium vivax and 0.6% for P. falciparum) during five consecutive cross-sectional surveys between April-May 2018 and October-November 2020; 63% of infections diagnosed by microscopy were asymptomatic. Malaria risk is heterogeneously distributed, with 20% study participants contributing 86% of the overall burden of P. vivax infection. Adult males are at greatest risk of infection and human mobility across the urban-rural interface may contribute to sustained malaria transmission. Local P. vivax parasites are genetically diverse and fragmented into discrete inbred lineages that remain stable across space and time. FUTURE PLANS Two follow-up visits, with similar study protocols, are planned in 2021. We aim to identify high-risk individuals that fuel onwards malaria transmission and represent a priority target for more intensive and effective control interventions. TRIAL REGISTRATION NUMBER NCT03689036.
Collapse
Affiliation(s)
| | | | - Juliana Tonini
- Parasitology, University of Sao Paulo, Sao Paulo, Brazil
| | - Joseph Vinetz
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marcia C Castro
- Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
17
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Rosas-Aguirre A, Moreno M, Moreno-Gutierrez D, Llanos-Cuentas A, Saavedra M, Contreras-Mancilla J, Barboza J, Alava F, Aguirre K, Carrasco G, Prussing C, Vinetz J, Conn JE, Speybroeck N, Gamboa D. Integrating Parasitological and Entomological Observations to Understand Malaria Transmission in Riverine Villages in the Peruvian Amazon. J Infect Dis 2021; 223:S99-S110. [PMID: 33906225 PMCID: PMC8079135 DOI: 10.1093/infdis/jiaa496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Diamantina Moreno-Gutierrez
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Barboza
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kristhian Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Catharine Prussing
- School of Public Health, Department of Biomedical Sciences, State University of New York, Albany, New York, USA.,Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jan E Conn
- School of Public Health, Department of Biomedical Sciences, State University of New York, Albany, New York, USA.,Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Niko Speybroeck
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
19
|
Hamdi A, Shaban K, Erradi A, Mohamed A, Rumi SK, Salim FD. Spatiotemporal data mining: a survey on challenges and open problems. Artif Intell Rev 2021; 55:1441-1488. [PMID: 33879953 PMCID: PMC8049397 DOI: 10.1007/s10462-021-09994-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.
Collapse
Affiliation(s)
- Ali Hamdi
- School of Computing Technologies, RMIT University, Melbourne, Australia
| | - Khaled Shaban
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Abdelkarim Erradi
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Amr Mohamed
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Shakila Khan Rumi
- School of Computing Technologies, RMIT University, Melbourne, Australia
| | - Flora D. Salim
- School of Computing Technologies, RMIT University, Melbourne, Australia
| |
Collapse
|
20
|
Villasis E, Garro K, Rosas-Aguirre A, Rodriguez P, Rosado J, Gave A, Guzman-Guzman M, Manrique P, White M, Speybroeck N, Vinetz JM, Torres K, Gamboa D. PvMSP8 as a Novel Plasmodium vivax Malaria Sero-Marker for the Peruvian Amazon. Pathogens 2021; 10:pathogens10030282. [PMID: 33801386 PMCID: PMC7999794 DOI: 10.3390/pathogens10030282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Correspondence:
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Pamela Rodriguez
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Jason Rosado
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
- Sorbonne Université, Faculté des Sciences et Ingénierie, École Doctorale Pierre Louis - Santé Publique, Campus des Cordeliers, ED 393, F-75005 Paris, France
| | - Anthony Gave
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Paulo Manrique
- Leishmania and Malaria Research Unit. Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Joseph Michael Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
21
|
Fernandez-Miñope C, Delgado-Ratto C, Contreras-Mancilla J, Ferrucci HR, Llanos-Cuentas A, Gamboa D, Van Geertruyden JP. Towards one standard treatment for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria: Perspectives from and for the Peruvian Amazon. Int J Infect Dis 2021; 105:293-297. [PMID: 33596478 DOI: 10.1016/j.ijid.2021.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Malaria continues to wreak havoc in the Peruvian Amazon. Lengthy research efforts have brought important lessons on its particular epidemiology: the heterogeneous levels of transmission, the large reservoir of both asymptomatic and submicroscopic infections, the co-transmission of Plasmodium vivax and Plasmodium falciparum in the same areas, and the limitations of current diagnostics. Based on these features, the national elimination program could greatly benefit from simplified standard treatment, with the use of artemisinin-based combination therapy and even shorter schemes of primaquine maintaing the total dosing. It is acknowledged that there is some uncertainty regarding the true prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PD) and genetic polymorphisms related to cytochrome P-450 isozyme 2D6 functioning. Once we have a better understanding, tafenoquine, whether or not in combination with a rapid G6PD enzyme test, may become a future pathway to eliminate the otherwise hidden reservoir of the P. vivax hypnozoite through one standard Plasmodium treatment.
Collapse
Affiliation(s)
- Carlos Fernandez-Miñope
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Christopher Delgado-Ratto
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | |
Collapse
|
22
|
Chaves LSM, Bergo ES, Conn JE, Laporta GZ, Prist PR, Sallum MAM. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS One 2021; 16:e0245087. [PMID: 33444320 PMCID: PMC7808592 DOI: 10.1371/journal.pone.0245087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Inter-relationships among mosquito vectors, Plasmodium parasites, human ecology, and biotic and abiotic factors, drive malaria risk. Specifically, rural landscapes shaped by human activities have a great potential to increase the abundance of malaria vectors, putting many vulnerable people at risk. Understanding at which point the abundance of vectors increases in the landscape can help to design policies and interventions for effective and sustainable control. Using a dataset of adult female mosquitoes collected at 79 sites in malaria endemic areas in the Brazilian Amazon, this study aimed to (1) verify the association among forest cover percentage (PLAND), forest edge density (ED), and variation in mosquito diversity; and to (2) test the hypothesis of an association between landscape structure (i.e., PLAND and ED) and Nyssorhynchus darlingi (Root) dominance. Mosquito collections were performed employing human landing catch (HLC) (peridomestic habitat) and Shannon trap combined with HLC (forest fringe habitat). Nyssorhynchus darlingi abundance was used as the response variable in a generalized linear mixed model, and the Shannon diversity index (H') of the Culicidae community, PLAND, and the distance house-water drainage were used as predictors. Three ED categories were also used as random effects. A path analysis was used to understand comparative strengths of direct and indirect relationships among Amazon vegetation classes, Culicidae community, and Ny. darlingi abundance. Our results demonstrate that Ny. darlingi is negatively affected by H´ and PLAND of peridomestic habitat, and that increasing these variables (one-unit value at β0 = 768) leads to a decrease of 226 (P < 0.001) and 533 (P = 0.003) individuals, respectively. At the forest fringe, a similar result was found for H' (β1 = -218; P < 0.001) and PLAND (β1 = -337; P = 0.04). Anthropogenic changes in the Amazon vegetation classes decreased mosquito biodiversity, leading to increased Ny. darlingi abundance. Changes in landscape structure, specifically decreases in PLAND and increases in ED, led to Ny. darlingi becoming the dominant species, increasing malaria risk. Ecological mechanisms involving changes in landscape and mosquito species composition can help to understand changes in the epidemiology of malaria.
Collapse
Affiliation(s)
| | - Eduardo Sterlino Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, United States of America
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação ABC, Santo André, SP, Brazil
| | - Paula Ribeiro Prist
- Department of Ecology, Institute of Bioscience, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Gomes MFC, Codeço CT, Bastos LS, Lana RM. Measuring the contribution of human mobility to malaria persistence. Malar J 2020; 19:404. [PMID: 33176792 PMCID: PMC7659106 DOI: 10.1186/s12936-020-03474-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/31/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To achieve malaria elimination, it is important to determine the role of human mobility in parasite transmission maintenance. The Alto Juruá basin (Brazil) exhibits one of the largest vivax and falciparum malaria prevalence in the Amazon. The goal of this study was to estimate the contribution of human commutes to malaria persistence in this region, using data from an origin-destination survey. METHODS Data from an origin-destination survey were used to describe the intensity and motivation for commutations between rural and urban areas in two Alto Juruá basin (Brazil) municipalities, Mâncio Lima and Rodrigues Alves. The relative time-person spent in each locality per household was estimated. A logistic model was developed to estimate the effect of commuting on the probability of contracting malaria for a certain residence zone inhabitant commuting to another zone. RESULTS The main results suggest that the assessed population is not very mobile. A total of [Formula: see text] households reported spending over [Formula: see text] of their annual person-hour in areas within the same residence zone. Study and work were the most prevalent commuting motivations, calculated at [Formula: see text] and [Formula: see text] respectively. Spending person-hours in urban Rodrigues Alves conferred relative protection to urban Mâncio Lima residents. The opposite effect was observed for those spending time in rural areas of both municipalities. CONCLUSION Residence area is a stronger determinant for contracting malaria than commuting zones in the Alto Juruá region. As these municipalities are a hotspot for Plasmodium transmission, understanding the main local human fluxes is essential for planning control strategies, since the probability of contracting malaria is dependent on the transmission intensity of both the origin and the displacement area. The natural conditions for the circulation of certain pathogens, such as Plasmodium spp., combined with the Amazon human mobility pattern indicate the need for disease control perspective changes. Therefore, intersectoral public policies should become the basis for health mitigation actions.
Collapse
Affiliation(s)
- Marcelo F C Gomes
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil.
| | - Cláudia T Codeço
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| | - Leonardo S Bastos
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| | - Raquel M Lana
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Malaria Transmission and Spillover across the Peru-Ecuador Border: A Spatiotemporal Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207434. [PMID: 33066022 PMCID: PMC7600436 DOI: 10.3390/ijerph17207434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
Abstract
Border regions have been implicated as important hot spots of malaria transmission, particularly in Latin America, where free movement rights mean that residents can cross borders using just a national ID. Additionally, rural livelihoods largely depend on short-term migrants traveling across borders via the Amazon’s river networks to work in extractive industries, such as logging. As a result, there is likely considerable spillover across country borders, particularly along the border between Peru and Ecuador. This border region exhibits a steep gradient of transmission intensity, with Peru having a much higher incidence of malaria than Ecuador. In this paper, we integrate 13 years of weekly malaria surveillance data collected at the district level in Peru and the canton level in Ecuador, and leverage hierarchical Bayesian spatiotemporal regression models to identify the degree to which malaria transmission in Ecuador is influenced by transmission in Peru. We find that increased case incidence in Peruvian districts that border the Ecuadorian Amazon is associated with increased incidence in Ecuador. Our results highlight the importance of coordinated malaria control across borders.
Collapse
|
25
|
Carrasco-Escobar G, Fornace K, Wong D, Padilla-Huamantinco PG, Saldaña-Lopez JA, Castillo-Meza OE, Caballero-Andrade AE, Manrique E, Ruiz-Cabrejos J, Barboza JL, Rodriguez H, Henostroza G, Gamboa D, Castro MC, Vinetz JM, Llanos-Cuentas A. Open-Source 3D Printable GPS Tracker to Characterize the Role of Human Population Movement on Malaria Epidemiology in River Networks: A Proof-of-Concept Study in the Peruvian Amazon. Front Public Health 2020; 8:526468. [PMID: 33072692 PMCID: PMC7542225 DOI: 10.3389/fpubh.2020.526468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pierre G Padilla-Huamantinco
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose A Saldaña-Lopez
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ober E Castillo-Meza
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Armando E Caballero-Andrade
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - German Henostroza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Joseph M Vinetz
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
26
|
Krieger MS, Denison CE, Anderson TL, Nowak MA, Hill AL. Population structure across scales facilitates coexistence and spatial heterogeneity of antibiotic-resistant infections. PLoS Comput Biol 2020; 16:e1008010. [PMID: 32628660 PMCID: PMC7365476 DOI: 10.1371/journal.pcbi.1008010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant infections are a growing threat to human health, but basic features of the eco-evolutionary dynamics remain unexplained. Most prominently, there is no clear mechanism for the long-term coexistence of both drug-sensitive and resistant strains at intermediate levels, a ubiquitous pattern seen in surveillance data. Here we show that accounting for structured or spatially-heterogeneous host populations and variability in antibiotic consumption can lead to persistent coexistence over a wide range of treatment coverages, drug efficacies, costs of resistance, and mixing patterns. Moreover, this mechanism can explain other puzzling spatiotemporal features of drug-resistance epidemiology that have received less attention, such as large differences in the prevalence of resistance between geographical regions with similar antibiotic consumption or that neighbor one another. We find that the same amount of antibiotic use can lead to very different levels of resistance depending on how treatment is distributed in a transmission network. We also identify parameter regimes in which population structure alone cannot support coexistence, suggesting the need for other mechanisms to explain the epidemiology of antibiotic resistance. Our analysis identifies key features of host population structure that can be used to assess resistance risk and highlights the need to include spatial or demographic heterogeneity in models to guide resistance management.
Collapse
Affiliation(s)
- Madison S. Krieger
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Carson E. Denison
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Thayer L. Anderson
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martin A. Nowak
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alison L. Hill
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Manrique P, Miranda-Alban J, Alarcon-Baldeon J, Ramirez R, Carrasco-Escobar G, Herrera H, Guzman-Guzman M, Rosas-Aguirre A, Llanos-Cuentas A, Vinetz JM, Escalante AA, Gamboa D. Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Negl Trop Dis 2019; 13:e0007876. [PMID: 31710604 PMCID: PMC6874088 DOI: 10.1371/journal.pntd.0007876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022] Open
Abstract
Despite efforts made over decades by the Peruvian government to eliminate malaria, Plasmodium vivax remains a challenge for public health decision-makers in the country. The uneven distribution of its incidence, plus its complex pattern of dispersion, has made ineffective control measures based on global information that lack the necessary detail to understand transmission fully. In this sense, population genetic tools can complement current surveillance. This study describes the genetic diversity and population structure from September 2012 to March 2015 in three geographically distant settlements, Cahuide (CAH), Lupuna (LUP) and Santa Emilia (STE), located in the Peruvian Amazon. A total 777 P. vivax mono-infections, out of 3264, were genotyped. Among study areas, LUP showed 19.7% of polyclonal infections, and its genetic diversity (Hexp) was 0.544. Temporal analysis showed a significant increment of polyclonal infections and Hexp, and the introduction and persistence of a new parasite population since March 2013. In STE, 40.1% of infections were polyclonal, with Hexp = 0.596. The presence of four genetic clusters without signals of clonal expansion and infections with lower parasite densities compared against the other two areas were also found. At least four parasite populations were present in CAH in 2012, where, after June 2014, malaria cases decreased from 213 to 61, concomitant with a decrease in polyclonal infections (from 0.286 to 0.18), and expectedly variable Hexp. Strong signals of gene flow were present in the study areas and wide geographic distribution of highly diverse parasite populations were found. This study suggests that movement of malaria parasites by human reservoirs connects geographically distant malaria transmission areas in the Peruvian Amazon. The maintenance of high levels of parasite genetic diversity through human mobility is a critical barrier to malaria elimination in this region. Plasmodium vivax transmission is heterogeneous and discontinuous in the Peruvian Amazon. Such heterogeneity is the result of factors that include, but are not restricted to, the environment, public policies, and characteristics of the parasite, the vector, and human activities. All these factors make P. vivax transmission resilient to interventions. In order to achieve the goals of control and local elimination, P. vivax surveillance must inform how those factors sustain disease transmission in order to focalize and synchronize control strategies. In this study, we implemented molecular surveillance complemented with population genetic tools in the areas of Cahuide, Lupuna, and Santa Emilia located in the Peruvian Amazon. In particular, we characterize the transmission and the parasite genetic variation in these sites from September 2012 to March 2015. The changes in parasite diversity, the wide geographic dispersion of parasite subpopulation and the introduction of a new parasite clone or subpopulation in Lupuna documented in this study suggest that connectivity among the different endemic areas, likely due to human mobility, sustains disease transmission in the region hindering the success of control measures. This information must be considered in the design of current control strategies.
Collapse
Affiliation(s)
- Paulo Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- * E-mail:
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jhonatan Alarcon-Baldeon
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Henry Herrera
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Fund for Scientific Research FNRS, Brussels, Belgium
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine (IGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
28
|
Pizzitutti F, Mena CF, Feingold B, Pan WK. Modeling asymptomatic infections and work-related human circulation as drivers of unstable malaria transmission in low-prevalence areas: A study in the Northern Peruvian Amazon. Acta Trop 2019; 197:104909. [PMID: 30703339 DOI: 10.1016/j.actatropica.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite relatively successful control campaigns, malaria remains a relevant public health problem in the Peruvian Amazon. Several studies suggest that malaria persistence in the area can be connected with a high prevalence of asymptomatic infections, which were subsequently shown to be connected with work-related exposure in areas of hyperendemic transmission. In this study, we tested the hypothesis that the infection reservoir represented by asymptomatic carriers in the northern Peruvian Amazon, combined with circular human movement to and from hyperendemic working areas, can capture the observed hypoendemic malaria transmission. METHODS We designed a set of agent-based models that represent local-scale malaria transmission in a typical riverine community in the northern Peruvian Amazon. The models include asymptomatic individuals as well as a full representation of human movements within the community and between the community and external hyperendemic working places. Several theoretical scenarios are explored to verify if and how malaria clinical immunity prevalence and human work-related movements influence the malaria morbidity registered in the community. RESULTS Agent-based simulations suggest that malaria incidence observed through passive case detection can be reproduced as exclusively generated by the asymptomatic infection reservoir. Scenarios analysis also show that, even if asymptomatic infections are completely eliminated, human movements to and from hyperendemic working areas generate a flow of imported cases that is enough to permit the persistence of transmission in the community. Simulation results were verified over a wide range of clinical immunity prevalence values and over a wide range of percentages of people working in remote hyperendemic areas. This context of unstable malaria transmission is observed to be vulnerable to severe outbreaks. CONCLUSIONS Asymptomatic malaria infection and occupational circular human movement to hyperendemic transmission areas are designated by agent-based models as possible exclusive causes of residual hypoendemic malaria transmission observed in the Peruvian Amazon. Control strategies are proposed to decrease asymptomatic infection prevalence and to block transmission from asymptomatic individuals to the malaria susceptible population.
Collapse
|
29
|
Saavedra MP, Conn JE, Alava F, Carrasco-Escobar G, Prussing C, Bickersmith SA, Sangama JL, Fernandez-Miñope C, Guzman M, Tong C, Valderrama C, Vinetz JM, Gamboa D, Moreno M. Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon. Parasit Vectors 2019; 12:374. [PMID: 31358033 PMCID: PMC6664538 DOI: 10.1186/s13071-019-3619-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/19/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Malaria remains an important public health problem in Peru where incidence has been increasing since 2011. Of over 55,000 cases reported in 2017, Plasmodium vivax was the predominant species (76%), with P. falciparum responsible for the remaining 24%. Nyssorhynchus darlingi (previously Anopheles darlingi) is the main vector in Amazonian Peru, where hyperendemic Plasmodium transmission pockets have been found. Mazán district has pronounced spatial heterogeneity of P. vivax malaria. However, little is known about behavior, ecology or seasonal dynamics of Ny. darlingi in Mazán. This study aimed to gather baseline information about bionomics of malaria vectors and transmission risk factors in a hyperendemic malaria area of Amazonian Peru. METHODS To assess vector biology metrics, five surveys (two in the dry and three in the rainy season), including collection of sociodemographic information, were conducted in four communities in 2016-2017 on the Napo (Urco Miraño, URC; Salvador, SAL) and Mazán Rivers (Visto Bueno, VIB; Libertad, LIB). Human-biting rate (HBR), entomological inoculation rate (EIR) and human blood index (HBI) were measured to test the hypothesis of differences in entomological indices of Ny. darlingi between watersheds. A generalized linear mixed effect model (GLMM) was constructed to model the relationship between household risk factors and the EIR. RESULTS Nyssorhynchus darlingi comprised 95% of 7117 Anophelinae collected and its abundance was significantly higher along the Mazán River. The highest EIRs (3.03-4.54) were detected in March and June in URC, LIB and VIB, and significantly more Ny. darlingi were infected outdoors than indoors. Multivariate analysis indicated that the EIR was >12 times higher in URC compared with SAL. The HBI ranged from 0.42-0.75; humans were the most common blood source, followed by Galliformes and cows. There were dramatic differences in peak biting time and malaria incidence with similar bednet coverage in the villages. CONCLUSIONS Nyssorhynchus darlingi is the predominant contributor to malaria transmission in the Mazán District, Peru. Malaria risk in these villages is higher in the peridomestic area, with pronounced heterogeneities between and within villages on the Mazán and the Napo Rivers. Spatiotemporal identification and quantification of the prevailing malaria transmission would provide new evidence to orient specific control measures for vulnerable or at high risk populations.
Collapse
Affiliation(s)
- Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY USA
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY USA
| | | | - Jorge L. Sangama
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernandez-Miñope
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Tong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA USA
- Present Address: Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT USA
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA USA
- Present Address: Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
30
|
Prussing C, Saavedra MP, Bickersmith SA, Alava F, Guzmán M, Manrique E, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE. Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Negl Trop Dis 2019; 13:e0007412. [PMID: 31091236 PMCID: PMC6538195 DOI: 10.1371/journal.pntd.0007412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential. We conducted a multi-level study of the larval ecology of Anophelinae mosquitoes in the peri-Iquitos region of Amazonian Peru, examining the environmental characteristics of the larval habitats of four species, comparing the larval microbiota among species and habitats, and placing Ny. darlingi larval habitats in the context of spatial heterogeneity in human malaria transmission. We collected Ny. darlingi, Nyssorhynchus rangeli (formerly Anopheles rangeli), Nyssorhynchus triannulatus s.l. (formerly Anopheles triannulatus s.l.), and Nyssorhynchus sp. nr. konderi (formerly Anopheles sp. nr. konderi) from natural and artificial water bodies throughout the rainy and dry seasons. We found that, consistent with previous studies in this region and in Brazil, the presence of Ny. darlingi was significantly associated with water bodies in landscapes with more recent deforestation and lower light intensity. Nyssorhynchus darlingi presence was also significantly associated with a lower vegetation index, other Anophelinae species, and emergent vegetation. Though they were collected in the same water bodies, the microbial communities of Ny. darlingi larvae were distinct from those of Ny. rangeli and Ny. triannulatus s.l., providing evidence either for a species-specific larval microbiome or for segregation of these species in distinct microhabitats within each water body. We demonstrated that houses with more reported malaria cases were located closer to Ny. darlingi larval habitats; thus, targeted control of these sites could help ameliorate malaria risk. The co-occurrence of Ny. darlingi larvae in water bodies with other putative malaria vectors increases the potential impact of larval source management in this region.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | | | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|
31
|
Quah YW, Waltmann A, Karl S, White MT, Vahi V, Darcy A, Pitakaka F, Whittaker M, Tisch DJ, Barry A, Barnadas C, Kazura J, Mueller I. Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands. Malar J 2019; 18:106. [PMID: 30922304 PMCID: PMC6437916 DOI: 10.1186/s12936-019-2727-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
Background Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. Methods An observational cohort study was conducted among 860 children aged 0.5–12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. Results Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2–47.4%, p < 0.01; molFOB: 0.05–4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. Conclusion Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities. Electronic supplementary material The online version of this article (10.1186/s12936-019-2727-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wan Quah
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreea Waltmann
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephan Karl
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Ventis Vahi
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Andrew Darcy
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Freda Pitakaka
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | | | - Alyssa Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Celine Barnadas
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Kazura
- Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. .,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| |
Collapse
|
32
|
Carrasco-Escobar G, Castro MC, Barboza JL, Ruiz-Cabrejos J, Llanos-Cuentas A, Vinetz JM, Gamboa D. Use of open mobile mapping tool to assess human mobility traceability in rural offline populations with contrasting malaria dynamics. PeerJ 2019; 7:e6298. [PMID: 30697487 PMCID: PMC6346981 DOI: 10.7717/peerj.6298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Infectious disease dynamics are affected by human mobility more powerfully than previously thought, and thus reliable traceability data are essential. In rural riverine settings, lack of infrastructure and dense tree coverage deter the implementation of cutting-edge technology to collect human mobility data. To overcome this challenge, this study proposed the use of a novel open mobile mapping tool, GeoODK. This study consists of a purposive sampling of 33 participants in six villages with contrasting patterns of malaria transmission that demonstrates a feasible approach to map human mobility. The self-reported traceability data allowed the construction of the first human mobility framework in rural riverine villages in the Peruvian Amazon. The mobility spectrum in these areas resulted in travel profiles ranging from 2 hours to 19 days; and distances between 10 to 167 km. Most Importantly, occupational-related mobility profiles with the highest displacements (in terms of time and distance) were observed in commercial, logging, and hunting activities. These data are consistent with malaria transmission studies in the area that show villages in watersheds with higher human movement are concurrently those with greater malaria risk. The approach we describe represents a potential tool to gather critical information that can facilitate malaria control activities.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jose Luis Barboza
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Infectious diseases, School of Medicine, Yale University, New Haven, CT, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
33
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
34
|
Moreno-Gutierrez D, Llanos-Cuentas A, Luis Barboza J, Contreras-Mancilla J, Gamboa D, Rodriguez H, Carrasco-Escobar G, Boreux R, Hayette MP, Beutels P, Speybroeck N, Rosas-Aguirre A. Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122670. [PMID: 30486449 PMCID: PMC6314008 DOI: 10.3390/ijerph15122670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Background: Faced with the resurgence of malaria, malaria surveillance in the Peruvian Amazon incorporated consecutive active case detection (ACD) interventions using light microscopy (LM) as reactive measure in communities with an unusual high number of cases during high transmission season (HTS). We assessed the effectiveness in malaria detection of this local ACD-based strategy. Methods: A cohort study was conducted in June–July 2015 in Mazan, Loreto. Four consecutive ACD interventions at intervals of 10 days were conducted in four riverine communities (Gamitanacocha, Primero de Enero, Libertad and Urco Miraño). In each intervention, all inhabitants were visited at home, and finger-prick blood samples collected for immediate diagnosis by LM and on filter paper for later analysis by quantitative real-time polymerase chain reaction (qPCR). Effectiveness was calculated by dividing the number of malaria infections detected using LM by the number of malaria infections detected by delayed qPCR. Results: Most community inhabitants (88.1%, 822/933) were present in at least one of the four ACD interventions. A total of 451 infections were detected by qPCR in 446 participants (54.3% of total participants); five individuals had two infections. Plasmodium vivax was the predominant species (79.8%), followed by P. falciparum (15.3%) and P. vivax-P. falciparum co-infections (4.9%). Most qPCR-positive infections were asymptomatic (255/448, 56.9%). The ACD-strategy using LM had an effectiveness of 22.8% (detection of 103 of the total qPCR-positive infections). Children aged 5–14 years, and farming as main economic activity were associated with P. vivax infections. Conclusions: Although the ACD-strategy using LM increased the opportunity of detecting and treating malaria infections during HTS, the number of detected infections was considerably lower than the real burden of infections (those detected by qPCR).
Collapse
Affiliation(s)
- Diamantina Moreno-Gutierrez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - José Luis Barboza
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Hugo Rodriguez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
| | - Gabriel Carrasco-Escobar
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raphaël Boreux
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| |
Collapse
|
35
|
Bannister-Tyrrell M, Srun S, Sluydts V, Gryseels C, Mean V, Kim S, Sokny M, Peeters Grietens K, Coosemans M, Menard D, Tho S, Van Bortel W, Durnez L. Importance of household-level risk factors in explaining micro-epidemiology of asymptomatic malaria infections in Ratanakiri Province, Cambodia. Sci Rep 2018; 8:11643. [PMID: 30076361 PMCID: PMC6076298 DOI: 10.1038/s41598-018-30193-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity in malaria risk is considered a challenge for malaria elimination. A cross-sectional study was conducted to describe and explain micro-epidemiological variation in Plasmodium infection prevalence at household and village level in three villages in Ratanakiri Province, Cambodia. A two-level logistic regression model with a random intercept fitted for each household was used to model the odds of Plasmodium infection, with sequential adjustment for individual-level then household-level risk factors. Individual-level risk factors for Plasmodium infection included hammock net use and frequency of evening outdoor farm gatherings in adults, and older age in children. Household-level risk factors included house wall material, crop types, and satellite dish and farm machine ownership. Individual-level risk factors did not explain differences in odds of Plasmodium infection between households or between villages. In contrast, once household-level risk factors were taken into account, there was no significant difference in odds of Plasmodium infection between households and between villages. This study shows the importance of ongoing indoor and peridomestic transmission in a region where forest workers and mobile populations have previously been the focus of attention. Interventions targeting malaria risk at household level should be further explored.
Collapse
Affiliation(s)
| | - Set Srun
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Vincent Sluydts
- Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium
- University of Antwerp, Antwerpm, Belgium
| | | | - Vanna Mean
- Ratanakiri Provincial Health Department, Banlung, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Mao Sokny
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Marc Coosemans
- Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium
| | | | - Sochantha Tho
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Wim Van Bortel
- Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium
| | - Lies Durnez
- Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium
- University of Antwerp, Antwerpm, Belgium
| |
Collapse
|
36
|
Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km 2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep 2018; 8:7077. [PMID: 29728637 PMCID: PMC5935754 DOI: 10.1038/s41598-018-25344-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
The precise role that deforestation for agricultural settlements and commercial forest products plays in promoting or inhibiting malaria incidence in Amazonian Brazil is controversial. Using publically available databases, we analyzed temporal malaria incidence (2009–2015) in municipalities of nine Amazonian states in relation to ecologically defined variables: (i) deforestation (rate of forest clearing over time); (ii) degraded forest (degree of human disturbance and openness of forest canopy for logging) and (iii) impacted forest (sum of deforested and degraded forest patches). We found that areas affected by one kilometer square of deforestation produced 27 new malaria cases (r² = 0.78; F1,10 = 35.81; P < 0.001). Unexpectedly, we found both a highly significant positive correlation between number of impacted forest patches less than 5 km2 and malaria cases, and that these patch sizes accounted for greater than ~95% of all patches in the study area. There was a significantly negative correlation between extraction forestry economic indices and malaria cases. Our results emphasize not only that deforestation promotes malaria incidence, but also that it directly or indirectly results in a low Human Development Index, and favors environmental conditions that promote malaria vector proliferation.
Collapse
Affiliation(s)
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Micro-epidemiology of mixed-species malaria infections in a rural population living in the Colombian Amazon region. Sci Rep 2018; 8:5543. [PMID: 29615693 PMCID: PMC5883018 DOI: 10.1038/s41598-018-23801-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Malaria outbreaks have been reported in recent years in the Colombian Amazon region, malaria has been re-emerging in areas where it was previously controlled. Information from malaria transmission networks and knowledge about the population characteristics influencing the dispersal of parasite species is limited. This study aimed to determine the distribution patterns of Plasmodium vivax, P. malariae and P. falciparum single and mixed infections, as well as the significant socio-spatial groupings relating to the appearance of such infections. An active search in 57 localities resulted in 2,106 symptomatic patients being enrolled. Parasitaemia levels were assessed by optical microscopy, and parasites were detected by PCR. The association between mixed infections (in 43.2% of the population) and socio-spatial factors was modelled using logistic regression and multiple correspondence analyses. P. vivax occurred most frequently (71.0%), followed by P. malariae (43.2%), in all localities. The results suggest that a parasite density-dependent regulation model (with fever playing a central role) was appropriate for modelling the frequency of mixed species infections in this population. This study highlights the under-reporting of Plasmodium spp. mixed infections in the malaria-endemic area of the Colombian Amazon region and the association between causative and environmental factors in such areas.
Collapse
|
38
|
Martin TCS, Vinetz JM. Asymptomatic Plasmodium vivax parasitaemia in the low-transmission setting: the role for a population-based transmission-blocking vaccine for malaria elimination. Malar J 2018; 17:89. [PMID: 29466991 PMCID: PMC5822557 DOI: 10.1186/s12936-018-2243-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax remains an important cause of morbidity and mortality across the Americas, Horn of Africa, East and South East Asia. Control of transmission has been hampered by emergence of chloroquine resistance and several intrinsic characteristics of infection including asymptomatic carriage, challenges with diagnosis, difficulty eradicating the carrier state and early gametocyte appearance. Complex human-parasite-vector immunological interactions may facilitate onward infection of mosquitoes. Given these challenges, new therapies are being explored including the development of transmission to mosquito blocking vaccines. Herein, the case supporting the need for transmission-blocking vaccines to augment control of P. vivax parasite transmission and explore factors that are limiting eradication efforts is discussed.
Collapse
Affiliation(s)
- Thomas C S Martin
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Carrasco-Escobar G, Miranda-Alban J, Fernandez-Miñope C, Brouwer KC, Torres K, Calderon M, Gamboa D, Llanos-Cuentas A, Vinetz JM. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission. Malar J 2017; 16:415. [PMID: 29037202 PMCID: PMC5644076 DOI: 10.1186/s12936-017-2063-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. METHODS This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. RESULTS Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/μL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). CONCLUSIONS This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with stable local transmission for P. vivax and the source of P. falciparum to the study villages dominated by very low parasitaemia carriers, age 10 years and older, who had travelled away from home for work and brought P. falciparum infection with them.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernandez-Miñope
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly C. Brouwer
- Division of Epidemiology, Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA USA
| | - Katherine Torres
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maritza Calderon
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC0760, Biomedical Research Facility-2, Room 4A16, La Jolla, CA USA
| |
Collapse
|