1
|
Skonieczna K, Kovacevic-Grujicic N, Srivastava A, Gawrych M, Ciesielka M, Rana N, Drakulic D, Mojsin M, Milivojevic M, Stevanovic M, Teresiński G, Grzybowski T. Salivary microbiome signatures of Poles and Serbians and its potential for prediction of biogeographic ancestry. Forensic Sci Int Genet 2024; 74:103173. [PMID: 39520915 DOI: 10.1016/j.fsigen.2024.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Biogeographical ancestry analysis is valuable in forensic investigations, especially in missing person cases or crimes without eyewitnesses, as it helps to infer geographic origins from genetic markers. This approach enhances forensic efforts by providing essential clues for identifying individuals with limited direct evidence. Slavic-speaking populations are poorly distinguishable based on human genome variability. However, recent studies show that even populations with close biogeographic origin could be differentiated based on salivary microbiomes. Nevertheless, the salivary microbiomes of Slavs have not been characterized yet. Therefore, this study aimed to compare the composition of the salivary microbiomes of Western and Southern Slavs' representatives. 16S rRNA libraries from salivary microbiomes of 40 Poles (Western Slavs) and 40 Serbians (Southern Slavs) were prepared via PCR and sequenced on the MiSeq FGx platform (Illumina), giving approximately 100,000 reads per sample. Bioinformatic and statistical analyses were performed to assess the alpha and beta diversity of microbiomes and determine the differences in the abundance of bacterial genera between the groups studied. Analyses of alpha (ACE, Chao1, Shannon, and Simpson) and beta (Jaccard and Bray-Curtis dissimilarity) diversities in the salivary microbiomes clearly distinguished between Poles and Serbians. Alpha and beta diversity metrics were significantly higher in the Serbian population. Fusobacterium, Lautropia, Porphyromonas, Actinobacillus, Capnocytophaga, and Kingella were the most significantly increased genera in Serbians, whereas Veillonella, Selenomonas, Megasphaera, and Atopobium were more prevalent in Poles. In summary, our study identified significant differences in the salivary microbiomes of Poles and Serbians, with distinct microbial signatures associated with each population. These findings highlight the potential of salivary microbiome analysis as a tool for predicting biogeographic ancestry. Nevertheless, further analysis extended to other Slavic-speaking populations is necessary to clarify this issue.
Collapse
Affiliation(s)
- Katarzyna Skonieczna
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | | | - Aashish Srivastava
- Genome Core Facility, Clinical Laboratory, K2, Haukeland University Hospital, Bergen, Norway
| | - Mariusz Gawrych
- Department of Family Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University in Lublin, Lublin, Poland
| | - Nisha Rana
- Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; Faculty of Biology, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University in Lublin, Lublin, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
2
|
Vinerbi E, Morini G, Picozzi C, Tofanelli S. Human Salivary Microbiota Diversity According to Ethnicity, Sex, TRPV1 Variants and Sensitivity to Capsaicin. Int J Mol Sci 2024; 25:11585. [PMID: 39519137 PMCID: PMC11546822 DOI: 10.3390/ijms252111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The salivary microbiota of Italian and sub-Saharan African individuals was investigated using Nanopore sequencing technology (ONT: Oxford Nanopore Technologies). We detected variations in community composition in relation to endogenous (ethnicity, sex, and diplotypic variants of the TRPV1 gene) and exogenous (sensitivity to capsaicin) factors. The results showed that Prevotella, Haemophilus, Neisseria, Streptococcus, Veillonella, and Rothia are the most abundant genera, in accordance with the literature. However, alpha diversity and frequency spectra differed significantly between DNA pools. The microbiota in African, male TRPV1 bb/ab diplotype and capsaicin low-sensitive DNA pools was more diverse than Italian, female TRPV1 aa diplotype and capsaicin high-sensitive DNA pools. Relative abundance differed at the phylum, genus, and species level.
Collapse
Affiliation(s)
- Elena Vinerbi
- Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy;
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 09042 Monserrato, Italy
| | | | - Claudia Picozzi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università Degli Studi di Milano, 20133 Milano, Italy;
| | - Sergio Tofanelli
- Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy;
| |
Collapse
|
3
|
Yadav S, Kumari P, Sinha A, Tripathi V, Saran V. Salivary microbiomes: a potent evidence in forensic investigations. Forensic Sci Med Pathol 2024; 20:1058-1065. [PMID: 38175312 DOI: 10.1007/s12024-023-00759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Saliva components combine with oral cavity microorganisms, blood cells, and airway secretions after entering the oral cavity via salivary ducts; these factors provide relevant information about persons' health state, quality of life, and lifestyle, in addition to their age and gender due to which salivary microbiome has emerged as a subject of significant interest in the forensic domain. This study aims to provide an extensive review of the possible applications of the salivary microbiome in characterizing the habit-specific microbiomes. Thirty-three relevant articles were selected for inclusion in this study. The study highlighted the influence of habits on the salivary microbiome suggesting smokers have distinct bacteria like Synergistetes, Streptococcus, Prevotella, and Veillonella in relation to age; people of higher age have more Prevotella; further, dental plaque can be corelated with Streptococci and Actinomycetes. Likewise, dietary habits, alcoholism, and consumption of coffee also affect bacteria types in oral cavities. The study underscores the added benefits of salivary microbiome profiling in forensics, as it is evident that microbial DNA profiling holds substantial promise for enhancing forensic investigations; it enables the characterization of an individual's habits, such as smoking, alcohol consumption, and dietary preferences; bacteria specific to these habits can be identified, thereby helping to narrow down the pool of potential suspects. In conclusion, the salivary microbiome presents a valuable avenue for forensic science, offering a novel approach which not only enhances the prospects of solving complex cases but also underscores the rich potential of microbiome analysis in the realm of forensic investigation.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India.
| | - Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India
| | | | - Vijay Tripathi
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India
| |
Collapse
|
4
|
Tansirichaiya S, Songsomboon K, Chaianant N, Lertsivawinyu W, Al‐Haroni M. Impact of cell lysis treatment before saliva metagenomic DNA extraction on the oral microbiome and the associated resistome. Clin Exp Dent Res 2024; 10:e905. [PMID: 38938117 PMCID: PMC11211641 DOI: 10.1002/cre2.905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVES The human oral microbiome, a complex ecosystem linked to oral and systemic health, harbors a diverse array of microbial populations, including antimicrobial resistance genes (ARGs). As a critical component of the One Health approach to tackle antibiotic resistance, comprehending the oral resistome's composition and diversity is imperative. The objective of this study was to investigate the impact of chemical cell lysis treatment using MetaPolyzyme on the detectability of the oral microbiome, resistome, and DNA quality and quantity. MATERIALS AND METHODS Saliva samples were collected from five healthy individuals, and each of the samples was subjected to DNA extraction with and without the treatment with MetaPolyzyme. Through metagenomic sequencing, we analyzed, assessed, and compared the microbial composition, resistome, and DNA characteristics between both groups of extracted DNA. RESULTS Our study revealed that MetaPolyzyme treatment led to significant shifts in the detectability of microbial composition, favoring Gram-positive bacteria, notably Streptococcus, over Gram-negative counterparts. Moreover, the MetaPolyzyme treatment also resulted in a distinct change in ARG distribution. This shift was characterized by an elevated proportion of ARGs linked to fluoroquinolones and efflux pumps, coupled with a reduction in the prevalence of tetracycline and β-lactam resistance genes when compared with the nontreated group. Alpha diversity analysis demonstrated altered species and ARG distribution without affecting overall diversity, while beta diversity analysis confirmed significant differences in the taxonomical composition and oral resistome between treated and nontreated groups. CONCLUSIONS These findings underscore the critical role of cell lysis treatment in optimizing oral metagenomic studies and enhance our understanding of the oral resistome's dynamics in the context of antimicrobial resistance.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Clinical Dentistry, Faculty of Health SciencesUiT the Arctic University of NorwayTromsøNorway
- Centre for New Antimicrobial StrategiesUiT the Arctic University of NorwayTromsøNorway
| | - Kittikun Songsomboon
- School of Life and Environmental SciencesThe University of SydneySydneyAustralia
| | - Nichamon Chaianant
- Faculty of Dentistry and Research Unit in Mineralized Tissue ReconstructionThammasat UniversityPathumthaniThailand
| | - Wasawat Lertsivawinyu
- Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Mohammed Al‐Haroni
- Department of Clinical Dentistry, Faculty of Health SciencesUiT the Arctic University of NorwayTromsøNorway
- Centre for New Antimicrobial StrategiesUiT the Arctic University of NorwayTromsøNorway
| |
Collapse
|
5
|
Baek HJ, Kim KS, Kwoen M, Park ES, Lee HJ, Park KU. Saliva assay: a call for methodological standardization. J Periodontal Implant Sci 2024; 54:54.e13. [PMID: 39058348 DOI: 10.5051/jpis.2304180209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 07/28/2024] Open
Abstract
The oral cavity provides an ideal environment for microorganisms, including bacteria, viruses, and fungi, to flourish. Increasing attention has been focused on the connection between the oral microbiome and both oral and systemic diseases, spurring active research into the collection and analysis of specimens for healthcare purposes. Among the various methods for analyzing the oral microbiome, saliva analysis is especially prominent. Saliva samples, which can be collected non-invasively, provide information on the systemic health and oral microbiome composition of an individual. This review was performed to evaluate the current state of the relevant research through an examination of the literature and to suggest an appropriate assay method for investigating the oral microbiome. We analyzed articles published in English in SCI(E) journals after January 1, 2000, ultimately selecting 53 articles for review. Articles were identified through keyword searches in the PubMed, Embase, Cochrane, Web of Science, and CINAHL databases. Three experienced researchers conducted full-text assessments following title and abstract screening to select appropriate papers. Subsequently, they organized and analyzed the desired data. Our review revealed that most studies utilized unstimulated saliva samples for oral microbiome analysis. Of the 53 studies examined, 29 identified relationships between the oral microbiome and various diseases, such as oral disease, Behçet disease, cancer, and oral lichen planus. However, the studies employed diverse methods of collection and analysis, which compromised the reliability and accuracy of the findings. To address the limitations caused by methodological inconsistencies, a standardized saliva assay should be established.
Collapse
Affiliation(s)
- Hyeong-Jin Baek
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - MinJeong Kwoen
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun-Sun Park
- Medical Library, College of Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Kyoung-Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
6
|
Wong HH, Hung CH, Yip J, Lim TW. Metagenomic Characterization and Comparative Analysis of Removable Denture-Wearing and Non-Denture-Wearing Individuals in Healthy and Diseased Periodontal Conditions. Microorganisms 2024; 12:1197. [PMID: 38930579 PMCID: PMC11205920 DOI: 10.3390/microorganisms12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Removable denture wearers are at an increased risk of developing periodontal diseases due to biofilm deposition and microbial colonization on the denture surface. This study aimed to characterize and compare the metagenomic composition of saliva in denture wearers with different periodontal statuses. Twenty-four community-dwelling elders were recruited and grouped into denture wearers with active periodontitis (APD), non-denture wearers with active periodontitis (APXD), denture wearers with stable periodontal health conditions (SPCD), and non-denture wearers with stable periodontal health conditions (SPCXD). Saliva samples were collected and underwent Type IIB restriction-site-associated DNA for microbiome (2bRAD-M) metagenomic sequencing to characterize the species-resolved microbial composition. Alpha diversity analysis based on the Shannon index revealed no significant difference between groups. Beta diversity analysis using the Jaccard distance matrix was nearly significantly different between denture-wearing and non-denture-wearing groups (p = 0.075). Some respiratory pathogens, including Streptococcus agalactiae and Streptococcus pneumoniae, were detected as the top 30 species in saliva samples. Additionally, LEfSe analysis revealed a substantial presence of pathogenic bacteria in denture groups. In the cohort of saliva samples collected from community-dwelling elders, a remarkable abundance of certain opportunistic pathogens was detected in the microbial community.
Collapse
Affiliation(s)
| | | | | | - Tong-Wah Lim
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (H.-H.W.); (C.-H.H.); (J.Y.)
| |
Collapse
|
7
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2024:10.1007/s12035-024-04241-1. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Zhou S, Zhu W, Guo H, Nie Y, Sun J, Liu P, Zeng Y. Microbes for lung cancer detection: feasibility and limitations. Front Oncol 2024; 14:1361879. [PMID: 38779090 PMCID: PMC11109454 DOI: 10.3389/fonc.2024.1361879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
As the second most common cancer in the world, the development of lung cancer is closely related to factors such as heredity, environmental exposure, and lung microenvironment, etc. Early screening and diagnosis of lung cancer can be helpful for the treatment of patients. Currently, CT screening and histopathologic biopsy are widely used in the clinical detection of lung cancer, but they have many disadvantages such as false positives and invasive operations. Microbes are another genome of the human body, which has recently been shown to be closely related to chronic inflammatory, metabolic processes in the host. At the same time, they are important players in cancer development, progression, treatment, and prognosis. The use of microbes for cancer therapy has been extensively studied, however, the diagnostic role of microbes is still unclear. This review aims to summarize recent research on using microbes for lung cancer detection and present the current shortcomings of microbes in collection and detection. Finally, it also looks ahead to the clinical benefits that may accrue to patients in the future about screening and early detection.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehua Guo
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Nie
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ju HM, Ahn YW, Ok SM, Jeong SH, Na HS, Chung J. Microbial Profiles in Oral Lichen Planus: Comparisons with Healthy Controls and Erosive vs. Non-Erosive Subtypes. Diagnostics (Basel) 2024; 14:828. [PMID: 38667474 PMCID: PMC11049134 DOI: 10.3390/diagnostics14080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies have begun exploring the potential involvement of microbiota in the pathogenesis of oral lichen planus (OLP), yet comprehensive investigations remain limited. Hence, this study aimed to compare the microbial profiles in saliva samples obtained from patients with OLP against those from healthy controls (HC), along with a comparison between erosive (E) and non-erosive (NE) OLP patients. Saliva samples were collected from 60 OLP patients (E: n = 25, NE: n = 35) and 30 HC individuals. Analysis revealed no significant differences in alpha diversity, as assessed by the Chao1 and Shannon index, across the three groups. However, Bray-Curtis distance analysis indicated a significant disparity in microbiome composition distribution between HC and E-OLP, as well as HC and NE-OLP groups. The six most abundant phyla observed across the groups were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and Saccharibacteria (TM7). Notably, OLP groups exhibited a higher prevalence of Bacteroidetes. Prevotella emerged as the predominant genus in the OLP groups, while Capnocytophaga showed a relatively higher prevalence in E-OLP compared to NE-OLP. This study's findings indicate a notable difference in microbiota composition between HC and patients with OLP. Additionally, differences in the microbiome were identified between the E-OLP and NE-OLP groups. The increase in the proportion of certain bacterial species in the oral microbiome suggests that they may exacerbate the inflammatory response and act as antigens for OLP.
Collapse
Affiliation(s)
- Hye-Min Ju
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Yong-Woo Ahn
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Soo-Min Ok
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Sung-Hee Jeong
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Hee-Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
10
|
Mortazavi H, Yousefi-Koma AA, Yousefi-Koma H. Extensive comparison of salivary collection, transportation, preparation, and storage methods: a systematic review. BMC Oral Health 2024; 24:168. [PMID: 38308289 PMCID: PMC10837873 DOI: 10.1186/s12903-024-03902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Human saliva as a bodily fluid-similar to blood-is utilized for diagnostic purposes. Unlike blood sampling, collecting saliva is non-invasive, inexpensive, and readily accessible. There are no previously published systematic reviews regarding different collection, transportation, preparation, and storage methods for human saliva. DESIGN This study has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines. This systematic review has been registered at PROSPERO (Registration ID: CRD42023415384). The study question according to the PICO format was as followed: Comparison of the performance (C) of different saliva sampling, handling, transportation, and storage techniques and methods (I) assessed for analyzing stimulated or unstimulated human saliva (P and O). An electronic search was executed in Scopus, Google Scholar, and PubMed. RESULTS Twenty-three descriptive human clinical studies published between 1995 and 2022 were included. Eight categories of salivary features and biomarkers were investigated (i.e., salivary flow rate, total saliva quantity, total protein, cortisol, testosterone, DNA quality and quantity, pH and buffering pH). Twenty-two saliva sampling methods/devices were utilized. Passive drooling, Salivette®, and spitting were the most utilized methods. Sampling times with optimum capabilities for cortisol, iodine, and oral cancer metabolites are suggested to be 7:30 AM to 9:00 AM, 10:30 AM to 11:00 AM, and 14:00 PM to 20:00 PM, respectively. There were 6 storage methods. Centrifuging samples and storing them at -70 °C to -80 °C was the most utilized storage method. For DNA quantity and quality, analyzing samples immediately after collection without centrifuging or storage, outperformed centrifuging samples and storing them at -70 °C to -80 °C. Non-coated Salivette® was the most successful method/device for analyzing salivary flow rate. CONCLUSION It is highly suggested that scientists take aid from the reported categorized outcomes, and design their study questions based on the current voids for each method/device.
Collapse
Affiliation(s)
- Hamed Mortazavi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, 1983963113, Iran
| | - Amir-Ali Yousefi-Koma
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, 1983963113, Iran.
- Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Bender O, Khoury J, Hirsch G, Weinberg E, Sagy N, Buller S, Lapides-Levy S, Blumer S, Bar DZ. Immunorecognition of Streptococcus mutans secreted proteins protects against caries by limiting tooth adhesion. J Dent 2024; 141:104805. [PMID: 38101504 DOI: 10.1016/j.jdent.2023.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Childhood caries, a prevalent chronic disease, affects 60-90 % of children in industrialized regions, leading to lesions in both primary and permanent teeth. This condition precipitates hospital admissions, emergency room visits, elevated treatment costs, and missed school days, thereby impeding the child's academic engagement and increasing the likelihood of caries into adulthood. Despite multiple identified risk factors, significant interpersonal variability remains unexplained. The immune system generates a unique antibody repertoire, essential for maintaining a balanced and healthy oral microbiome. Streptococcus mutans is a primary contributor to the development of caries. METHODS Employing mass spectrometry, we investigated the S. mutans proteins targeted by antibodies in children both with and without caries, delineating a fundamental suite of proteins discernible by the immune systems of a majority of individuals. Notably, this suite was enriched with proteins pivotal for bacterial adhesion. To ascertain the physiological implications of these discoveries, we evaluated the efficacy of saliva in thwarting S. mutans adherence to dental surfaces. RESULTS Antibodies in most children recognized a core set of ten S. mutans proteins, with additional proteins identified in some individuals. There was no significant difference in the proteins identified by children with or without caries, but there was variation in antibody binding intensity to some proteins. Functionally, saliva from caries-free individuals, but not children with caries, was found to hinder the binding of S. mutans to teeth. These findings delineate the S. mutans proteome targeted by the immune system and suggest that the inhibition of bacterial adherence to teeth is a primary mechanism employed by the immune system to maintain oral balance and prevent caries formation. CONCLUSIONS These findings enhance our knowledge of the immune system's function in oral health maintenance and caries prevention, shedding light on how immunoglobulins interact with S. mutans proteins. CLINICAL SIGNIFICANCE Targeting S. mutans proteins implicated in bacterial adhesion could be a promising strategy for preventing childhood caries.
Collapse
Affiliation(s)
- Omer Bender
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Jessica Khoury
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Gal Hirsch
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel; Department of Periodontology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Naor Sagy
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Shani Buller
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Shiri Lapides-Levy
- Department of Pediatric Dentistry, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Sigalit Blumer
- Department of Pediatric Dentistry, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel.
| |
Collapse
|
12
|
Rogers MB, Harner A, Buhay M, Firek B, Methé B, Morris A, Palmer OMP, Promes SB, Sherwin RL, Southerland L, Vieira AR, Yende S, Morowitz MJ, Huang DT. The salivary microbiota of patients with acute lower respiratory tract infection-A multicenter cohort study. PLoS One 2024; 19:e0290062. [PMID: 38206940 PMCID: PMC10783762 DOI: 10.1371/journal.pone.0290062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/01/2023] [Indexed: 01/13/2024] Open
Abstract
The human microbiome contributes to health and disease, but the oral microbiota is understudied relative to the gut microbiota. The salivary microbiota is easily accessible, underexplored, and may provide insight into response to infections. We sought to determine the composition, association with clinical features, and heterogeneity of the salivary microbiota in patients with acute lower respiratory tract infection (LRTI). We conducted a multicenter prospective cohort study of 147 adults with acute LRTI presenting to the emergency department of seven hospitals in three states (Pennsylvania, Michigan, and Ohio) between May 2017 and November 2018. Salivary samples were collected in the emergency department, at days 2-5 if hospitalized, and at day 30, as well as fecal samples if patients were willing. We compared salivary microbiota profiles from patients to those of healthy adult volunteers by sequencing and analyzing bacterial 16-rRNA. Compared to healthy volunteers, the salivary microbiota of patients with LRTI was highly distinct and strongly enriched with intestinal anaerobes such as Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae (e.g., mean 10% relative abundance of Bacteroides vs < 1% in healthy volunteers). Within the LRTI population, COPD exacerbation was associated with altered salivary microbiota composition compared to other LRTI conditions. The largest determinant of microbiota variation within the LRTI population was geography (city in which the hospital was located).
Collapse
Affiliation(s)
- Matthew B. Rogers
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ashley Harner
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Megan Buhay
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brian Firek
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Barbara Methé
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison Morris
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Susan B. Promes
- Pennsylvania State University, State College, Pennsylvania, United States of America
| | | | - Lauren Southerland
- The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Alexandre R. Vieira
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sachin Yende
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Morowitz
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David T. Huang
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Tang KD, Amenábar JM, Schussel JL, Torres-Pereira CC, Bonfim C, Dimitrova N, Hartel G, Punyadeera C. Profiling salivary miRNA expression levels in Fanconi anemia patients - a pilot study. Odontology 2024; 112:299-308. [PMID: 37458838 PMCID: PMC10776736 DOI: 10.1007/s10266-023-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/25/2023] [Indexed: 01/10/2024]
Abstract
The overarching goal of this study is to predict the risk of developing oral squamous cell carcinoma (OSCC) in Fanconi anemia (FA) patients. We have compared the microRNA (miRNA, miR) expression levels in saliva samples from FA patients (n = 50) who are at a low-moderate and/or high risk of developing OSCC to saliva samples from healthy controls (n = 16). The miRNA expression levels in saliva samples were quantified using qPCR. We observed that miR-744, miR-150-5P, and miR-146B-5P had the best discriminatory capacity between FA patients and controls, with an area under the curve (AUC) of 94.0%, 92.9% and 85.3%, respectively. Our data suggest that miR-1, miR-146B-5P, miR-150-5P, miR-155-5P, and miR-744 could be used as panel to predict the risk of developing OSCC in FA patients, with a 89.3% sensitivity and a 68.2% specificity (AUC = 81.5%). Our preliminary data support the notion that the expression levels of salivary miRNAs have the potential to predict the risk of developing OSCC in FA patients and in the future may reduce deaths associated with OSCC.
Collapse
Affiliation(s)
- Kai Dun Tang
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia
| | - José M Amenábar
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia
- Stomatology Department, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Juliana L Schussel
- Stomatology Department, Universidade Federal Do Paraná, Curitiba, Brazil
| | | | - Carmem Bonfim
- Bone Marrow Transpantation Unit, Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Brazil
| | | | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chamindie Punyadeera
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
15
|
Cauwenberghs E, Oerlemans E, Wittouck S, Allonsius CN, Gehrmann T, Ahannach S, De Boeck I, Spacova I, Bron PA, Donders G, Verhoeven V, Lebeer S. Salivary microbiome of healthy women of reproductive age. mBio 2023; 14:e0030023. [PMID: 37655878 PMCID: PMC10653790 DOI: 10.1128/mbio.00300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.
Collapse
Affiliation(s)
- Eline Cauwenberghs
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Eline Oerlemans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Peter A. Bron
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Gilbert Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
- Regional Hospital Heilig Hart, Tienen, Belgium
- Femicare, Clinical Research for Women, Tienen, Belgium
| | - Veronique Verhoeven
- Department of Family medicine and population health (FAMPOP), University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Meslier V, Menozzi E, David A, Morabito C, Lucas Del Pozo S, Famechon A, North J, Quinquis B, Koletsi S, Macnaughtan J, Mezabrovschi R, Ehrlich SD, Schapira AHV, Almeida M. Evaluation of an Adapted Semi-Automated DNA Extraction for Human Salivary Shotgun Metagenomics. Biomolecules 2023; 13:1505. [PMID: 37892187 PMCID: PMC10604855 DOI: 10.3390/biom13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Recent attention has highlighted the importance of oral microbiota in human health and disease, e.g., in Parkinson's disease, notably using shotgun metagenomics. One key aspect for efficient shotgun metagenomic analysis relies on optimal microbial sampling and DNA extraction, generally implementing commercial solutions developed to improve sample collection and preservation, and provide high DNA quality and quantity for downstream analysis. As metagenomic studies are today performed on a large number of samples, the next evolution to increase study throughput is with DNA extraction automation. In this study, we proposed a semi-automated DNA extraction protocol for human salivary samples collected with a commercial kit, and compared the outcomes with the DNA extraction recommended by the manufacturer. While similar DNA yields were observed between the protocols, our semi-automated DNA protocol generated significantly higher DNA fragment sizes. Moreover, we showed that the oral microbiome composition was equivalent between DNA extraction methods, even at the species level. This study demonstrates that our semi-automated protocol is suitable for shotgun metagenomic analysis, while allowing for improved sample treatment logistics with reduced technical variability and without compromising the structure of the oral microbiome.
Collapse
Affiliation(s)
- Victoria Meslier
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Elisa Menozzi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Aymeric David
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Christian Morabito
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sara Lucas Del Pozo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Alexandre Famechon
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Janet North
- Research Department of Hematology, Cancer Institute, University College London (UCL), London WC1E 6BT, UK
| | - Benoit Quinquis
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sofia Koletsi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Jane Macnaughtan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London WC1E 6BT, UK
| | - Roxana Mezabrovschi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - S. Dusko Ehrlich
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Anthony H. V. Schapira
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Mathieu Almeida
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| |
Collapse
|
17
|
Yang HJ, Seo SI, Lee J, Huh CW, Kim JS, Park JC, Kim H, Shin H, Shin CM, Park CH, Lee SK. Sample Collection Methods in Upper Gastrointestinal Research. J Korean Med Sci 2023; 38:e255. [PMID: 37582502 PMCID: PMC10427214 DOI: 10.3346/jkms.2023.38.e255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023] Open
Abstract
In recent years, significant translational research advances have been made in the upper gastrointestinal (GI) research field. Endoscopic evaluation is a reasonable option for acquiring upper GI tissue for research purposes because it has minimal risk and can be applied to unresectable gastric cancer. The optimal number of biopsy samples and sample storage is crucial and might influence results. Furthermore, the methods for sample acquisition can be applied differently according to the research purpose; however, there have been few reports on methods for sample collection from endoscopic biopsies. In this review, we suggested a protocol for collecting study samples for upper GI research, including microbiome, DNA, RNA, protein, single-cell RNA sequencing, and organoid culture, through a comprehensive literature review. For microbiome analysis, one or two pieces of biopsied material obtained using standard endoscopic forceps may be sufficient. Additionally, 5 mL of gastric fluid and 3-4 mL of saliva is recommended for microbiome analyses. At least one gastric biopsy tissue is necessary for most DNA or RNA analyses, while proteomics analysis may require at least 2-3 biopsy tissues. Single cell-RNA sequencing requires at least 3-5 tissues and additional 1-2 tissues, if possible. For successful organoid culture, multiple sampling is necessary to improve the quality of specimens.
Collapse
Affiliation(s)
- Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung In Seo
- Division of Gastroenterology, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jin Lee
- Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Cheal Wung Huh
- Division of Gastroenterology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Joon Sung Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Jun Chul Park
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, Sejong University, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Faruque MRJ, Bikker FJ, Laine ML. Comparing SARS-CoV-2 Viral Load in Human Saliva to Oropharyngeal Swabs, Nasopharyngeal Swabs, and Sputum: A Systematic Review and Meta-Analysis. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:5807370. [PMID: 37600753 PMCID: PMC10435302 DOI: 10.1155/2023/5807370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/04/2022] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
A systematic review and meta-analysis were conducted to investigate the SARS-CoV-2 viral load in human saliva and compared it with the loads in oropharyngeal swabs, nasopharyngeal swabs, and sputum. In addition, the salivary viral loads of symptomatic and asymptomatic COVID-19 patients were compared. Searches were conducted using four electronic databases: PubMed, Embase, Scopus, and Web of Science, for studies published on SARS-CoV-2 loads expressed by CT values or copies/mL RNA. Three reviewers evaluated the included studies to confirm eligibility and assessed the risk of bias. A total of 37 studies were included. Mean CT values in saliva ranged from 21.5 to 39.6 and mean copies/mL RNA ranged from 1.91 × 101 to 6.98 × 1011. Meta-analysis revealed no significant differences in SARS-CoV-2 load in saliva compared to oropharyngeal swabs, nasopharyngeal swabs, and sputum. In addition, no significant differences were observed in the salivary viral load of symptomatic and asymptomatic COVID-19 patients. We conclude that saliva specimen can be used as an alternative for SARS-CoV-2 detection in oropharyngeal swabs, nasopharyngeal swabs, and sputum.
Collapse
Affiliation(s)
- Mouri R. J. Faruque
- Department of Periodontology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Marja L. Laine
- Department of Periodontology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Armstrong AJS, Horton DB, Andrews T, Greenberg P, Roy J, Gennaro ML, Carson JL, Panettieri RA, Barrett ES, Blaser MJ. Saliva microbiome in relation to SARS-CoV-2 infection in a prospective cohort of healthy US adults. EBioMedicine 2023; 94:104731. [PMID: 37487417 PMCID: PMC10382861 DOI: 10.1016/j.ebiom.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The clinical outcomes of SARS-CoV-2 infection vary in severity, potentially influenced by the resident human microbiota. There is limited consensus on conserved microbiome changes in response to SARS-CoV-2 infection, with many studies focusing on severely ill individuals. This study aimed to assess the variation in the upper respiratory tract microbiome using saliva specimens in a cohort of individuals with primarily mild to moderate disease. METHODS In early 2020, a cohort of 831 adults without known SARS-CoV-2 infection was followed over a six-month period to assess the occurrence and natural history of SARS-CoV-2 infection. From this cohort, 81 participants with a SARS-CoV-2 infection, along with 57 unexposed counterparts were selected with a total of 748 serial saliva samples were collected for analysis. Total bacterial abundance, composition, population structure, and gene function of the salivary microbiome were measured using 16S rRNA gene and shotgun metagenomic sequencing. FINDINGS The salivary microbiome remained stable in unexposed individuals over the six-month study period, as evidenced by all measured metrics. Similarly, participants with mild to moderate SARS-CoV-2 infection showed microbiome stability throughout and after their infection. However, there were significant reductions in microbiome diversity among SARS-CoV-2-positive participants with severe symptoms early after infection. Over time, the microbiome diversity in these participants showed signs of recovery. INTERPRETATION These findings demonstrate the resilience of the salivary microbiome in relation to SARS-CoV-2 infection. Mild to moderate infections did not significantly disrupt the stability of the salivary microbiome, suggesting its ability to maintain its composition and function. However, severe SARS-CoV-2 infection was associated with temporary reductions in microbiome diversity, indicating the limits of microbiome resilience in the face of severe infection. FUNDING This project was supported in part by Danone North America and grants from the National Institutes of Health, United States.
Collapse
Affiliation(s)
- Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel B Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Patricia Greenberg
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Maria Laura Gennaro
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jeffrey L Carson
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
20
|
Bang E, Oh S, Ju U, Chang HE, Hong JS, Baek HJ, Kim KS, Lee HJ, Park KU. Factors influencing oral microbiome analysis: from saliva sampling methods to next-generation sequencing platforms. Sci Rep 2023; 13:10086. [PMID: 37344534 DOI: 10.1038/s41598-023-37246-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
The exploration of oral microbiome has been increasing due to its relatedness with various systemic diseases, but standardization of saliva sampling for microbiome analysis has not been established, contributing to the lack of data comparability. Here, we evaluated the factors that influence the microbiome data. Saliva samples were collected by the two collection methods (passive drooling and mouthwash) using three saliva-preservation methods (OMNIgene, DNA/RNA shield, and simple collection). A total of 18 samples were sequenced by both Illumina short-read and Nanopore long-read next-generation sequencing (NGS). The component of the oral microbiome in each sample was compared with alpha and beta diversity and the taxonomic abundances, to find out the effects of factors on oral microbiome data. The alpha diversity indices of the mouthwash sample were significantly higher than that of the drooling group with both short-read and long-read NGS, while no significant differences in microbial diversities were found between the three saliva-preservation methods. Our study shows mouthwash and simple collection are not inferior to other sample collection and saliva-preservation methods, respectively. This result is promising since the convenience and cost-effectiveness of mouthwash and simple collection can simplify the saliva sample preparation, which would greatly help clinical operators and lab workers.
Collapse
Affiliation(s)
- Eunsik Bang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Uijin Ju
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Jin-Sil Hong
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyeong-Jin Baek
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
21
|
Ji S, Kook JK, Park SN, Lim YK, Choi GH, Jung JS. Characteristics of the Salivary Microbiota in Periodontal Diseases and Potential Roles of Individual Bacterial Species To Predict the Severity of Periodontal Disease. Microbiol Spectr 2023; 11:e0432722. [PMID: 37191548 PMCID: PMC10269672 DOI: 10.1128/spectrum.04327-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The purposes of this study were to examine the compositional changes in the salivary microbiota according to the severity of periodontal disease and to verify whether the distribution of specific bacterial species in saliva can distinguish the severity of disease. Saliva samples were collected from 8 periodontally healthy controls, 16 patients with gingivitis, 19 patients with moderate periodontitis, and 29 patients with severe periodontitis. The V3 and V4 regions of the 16S rRNA gene in the samples were sequenced, and the levels of 9 bacterial species showing significant differences among the groups by sequencing analysis were identified using quantitative real-time PCR (qPCR). The predictive performance of each bacterial species in distinguishing the severity of disease was evaluated using a receiver operating characteristic curve. Twenty-nine species, including Porphyromonas gingivalis, increased as the severity of disease increased, whereas 6 species, including Rothia denticola, decreased. The relative abundances of P. gingivalis, Tannerella forsythia, Filifactor alocis, and Prevotella intermedia determined by qPCR were significantly different among the groups. The three bacterial species P. gingivalis, T. forsythia, and F. alocis were positively correlated with the sum of the full-mouth probing depth and were moderately accurate at distinguishing the severity of periodontal disease. In conclusion, the salivary microbiota showed gradual compositional changes according to the severity of periodontitis, and the levels of P. gingivalis, T. forsythia, and F. alocis in mouth rinse saliva had the ability to distinguish the severity of periodontal disease. IMPORTANCE Periodontal disease is one of the most widespread medical conditions and the leading cause of tooth loss, imposing high economic costs and an increasing burden worldwide as life expectancy increases. Changes in the subgingival bacterial community during the progression of periodontal disease can affect the entire oral ecosystem, and bacteria in saliva can reflect the degree of bacterial imbalance in the oral cavity. This study explored whether the specific bacterial species in saliva can distinguish the severity of periodontal disease by analyzing the salivary microbiota and suggested P. gingivalis, T. forsythia, and F. alocis as biomarkers for distinguishing the severity of periodontal disease in saliva.
Collapse
Affiliation(s)
- Suk Ji
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Geum Hee Choi
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Suk Jung
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
22
|
Abola I, Gudra D, Ustinova M, Fridmanis D, Emulina DE, Skadins I, Brinkmane A, Lauga-Tunina U, Gailite L, Auzenbaha M. Oral Microbiome Traits of Type 1 Diabetes and Phenylketonuria Patients in Latvia. Microorganisms 2023; 11:1471. [PMID: 37374973 DOI: 10.3390/microorganisms11061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Some metabolic disorder treatments require patients to follow a specific diet or to consume supplements that, over time, can lead to oral microbiome alterations. Well-known disorders requiring such treatment are phenylketonuria (PKU), an inborn error of amino acid metabolism, and type 1 diabetes (T1D), a metabolic disorder that requires a specific diet regimen. Therefore, the aim of this study was to investigate the oral health and microbiome characteristics that might contribute to caries activity and periodontal disease risk in PKU and T1D patients. In this cross-sectional study, 45 PKU patients, 24 T1D patients, and 61 healthy individuals between the ages of 12 and 53 years were examined. Their anamnestic data and dental status were assessed by one dentist. Microbial communities were detected from saliva-isolated DNA using 16S rRNA gene V3-V4 sequencing on Illumina MiSeq sequencing platform. Results revealed that the PKU patient group displayed the highest number of extracted teeth (on average 1.34), carious teeth (on average 4.95), and carious activity (44.44% of individuals) compared to the T1D and CTRL groups. The lowest numbers of filled teeth (on average 5.33) and extracted teeth (on average 0.63) per individual were observed in T1D patients. Gingivitis appeared more often in the T1D group; however, possible risk of periodontal disease was seen in both the T1D and PKU patient groups. The highest number of differentially abundant genera was detected in the PKU group (n = 20), with enrichment of Actinomyces (padj = 4.17 × 10-22), Capnocytophaga (padj = 8.53 × 10-8), and Porphyromonas (padj = 1.18 × 10-5) compared to the CTRL group. In conclusion, the dental and periodontal health of PKU patients was found to be significantly inferior compared to T1D patients and healthy controls. T1D patients showed early signs of periodontal disease. Several genera that correlate with periodontal disease development were found in both groups, thus suggesting that T1D and PKU patients should seek early and regular dental advice and be educated about proper oral hygiene practices.
Collapse
Affiliation(s)
- Iveta Abola
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | | | - Ingus Skadins
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Brinkmane
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Una Lauga-Tunina
- Department of Endocrinology, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Auzenbaha
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, LV-1004 Riga, Latvia
- European Reference Network for Hereditary Metabolic Disorders, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
23
|
Muller Bark J, Karpe AV, Doecke JD, Leo P, Jeffree RL, Chua B, Day BW, Beale DJ, Punyadeera C. A pilot study: Metabolic profiling of plasma and saliva samples from newly diagnosed glioblastoma patients. Cancer Med 2023; 12:11427-11437. [PMID: 37031458 PMCID: PMC10242862 DOI: 10.1002/cam4.5857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Despite aggressive treatment, more than 90% of glioblastoma (GBM) patients experience recurrences. GBM response to therapy is currently assessed by imaging techniques and tissue biopsy. However, difficulties with these methods may cause misinterpretation of treatment outcomes. Currently, no validated therapy response biomarkers are available for monitoring GBM progression. Metabolomics holds potential as a complementary tool to improve the interpretation of therapy responses to help in clinical interventions for GBM patients. METHODS Saliva and blood from GBM patients were collected pre and postoperatively. Patients were stratified conforming their progression-free survival (PFS) into favourable or unfavourable clinical outcomes (>9 months or PFS ≤ 9 months, respectively). Analysis of saliva (whole-mouth and oral rinse) and plasma samples was conducted utilising LC-QqQ-MS and LC-QTOF-MS to determine the metabolomic and lipidomic profiles. The data were investigated using univariate and multivariate statistical analyses and graphical LASSO-based graphic network analyses. RESULTS Altogether, 151 metabolites and 197 lipids were detected within all saliva and plasma samples. Among the patients with unfavourable outcomes, metabolites such as cyclic-AMP, 3-hydroxy-kynurenine, dihydroorotate, UDP and cis-aconitate were elevated, compared to patients with favourable outcomes during pre-and post-surgery. These metabolites showed to impact the pentose phosphate and Warburg effect pathways. The lipid profile of patients who experienced unfavourable outcomes revealed a higher heterogeneity in the abundance of lipids and fewer associations between markers in contrast to the favourable outcome group. CONCLUSION Our findings indicate that changes in salivary and plasma metabolites in GBM patients can potentially be employed as less invasive prognostic biomarkers/biomarker panel but validation with larger cohorts is required.
Collapse
Affiliation(s)
- Juliana Muller Bark
- Faculty of Health, Centre for Biomedical TechnologiesSchool of Biomedical Sciences, Queensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery – Griffith UniversityBrisbaneQueenslandAustralia
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
| | - Avinash V. Karpe
- Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences PrecinctDutton ParkQueenslandAustralia
- Agriculture and FoodCommonwealth Scientific and Industrial Research Organization (CSIRO)ActonAustralian Capital TerritoryAustralia
| | - James D. Doecke
- Australian eHealth Research Centre, CSIRO. Level 7, Surgical Treatment and Rehabilitation Service – STARSRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Paul Leo
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
- Faculty of Health, Translational Genomics GroupSchool of Biomedical Sciences, Queensland University of TechnologyWoolloongabbaAustralia
| | - Rosalind L. Jeffree
- QIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - David J. Beale
- Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences PrecinctDutton ParkQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery – Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute, Griffith UniversitySouthportQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
| |
Collapse
|
24
|
Maher YA, Rajeh MT, Hamooda FA, Zerain GO, Habis RM, Sulaimani RH, Albar ST, H Ali FM, Abdelaleem NA. Evaluation of the clinical impact and In Vitro antibacterial activities of two bioactive restoratives against S. mutans ATCC 25175 in class II carious restorations. Niger J Clin Pract 2023; 26:404-411. [PMID: 37203103 DOI: 10.4103/njcp.njcp_406_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Background Streptococcus mutans is a Gram-positive opportunistic bacterial pathogen and that causes dental caries and then restorative treatment remains the best clinical practice approach to repair and prevent dental caries. Aims This study compared the antimicrobial performance of resin modified glass ionomer cement (RM-GIC) and ACTIVA restoratives by evaluating the S. mutans count, pH levels, and plaque index (PI) scores before and on the 7th day of restoration, and then determined the antimicrobial activities against S. mutans ATCC 25175 in both restoratives in vitro. Materials and Methods Seventy-eight eligible Saudi female participants, with class II carious lesions, were randomly distributed into RM-GIC and ACTIVA restorative groups. We evaluated the S. mutans count by the serial dilution technique and salivary pH by using a portable pH meter. The PI scores were determined by Silness-Löe method and the antibacterial activity by the agar well diffusion method. Statistical analysis of normality distribution was performed with the Kolmogorov-Smirnov and the difference between groups was an analysis by paired t-test. In addition, the independent sample was compared with the independent samples t-test. Results Both groups reduced the S. mutans count, pH acidity, and PI scores, and this reduction was statistically significant on the 7th day of restoration (P < 0.05), preference for ACTIVA. The in vitro antibacterial activity against S. mutans ATCC 25175 showed a non-significant difference between both bioactive restorative materials (P < 0.05). Conclusion The novel application of ACTIVA restorative material is a promising option for patients at risk of caries.
Collapse
Affiliation(s)
- Y A Maher
- Department of Basic Oral Sciences, College of Dentistry - Umm Al-Qura University, Makkah, Saudi Arabia; Department of Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - M T Rajeh
- Department of Dental Public Health, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F A Hamooda
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - G O Zerain
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R M Habis
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R H Sulaimani
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - S T Albar
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - F M H Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N A Abdelaleem
- Department of Conservative and Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
25
|
Erdem MG, Unlu O, Ates F, Karis D, Demirci M. Oral Microbiota Signatures in the Pathogenesis of Euthyroid Hashimoto’s Thyroiditis. Biomedicines 2023; 11:biomedicines11041012. [PMID: 37189630 DOI: 10.3390/biomedicines11041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
One of the most prevalent autoimmune illnesses in the world is Hashimoto’s thyroiditis, whose pathogenesis is still unknown. The gut–thyroid axis is frequently examined, and although oral health affects thyroid functions, there are limited data on how oral microbiota is linked to Hashimoto’s thyroiditis. The study aims to identify the oral microbiota from saliva samples taken from treated (with levothyroxine) and untreated female euthyroid Hashimoto’s thyroiditis patients as well as healthy controls who were age- and sex-matched to compare the oral microbiota across the groups and to contribute preliminary data to the literature. This study was designed as a single-center cross-sectional observational study. Sixty (60) female patients with euthyroid Hashimoto’s thyroiditis (HT) and eighteen (18) age- and gender-matched healthy controls were included in this study. Unstimulated saliva samples were collected. After DNA isolation, sequencing was performed by targeting the V3-V4 gene regions of the 16S rRNA on the MiSeq instrument. R scripts and SPSS were used for bioinformatic and statistical analysis. No significant differences were found in the diversity indices. However, Patescibacteria phylum showed a significantly higher abundance (3.59 vs. 1.12; p = 0.022) in the oral microbiota of HT patients compared to HC. In the oral microbiota, the euthyroid HT group had approximately 7, 9, and 10-fold higher levels of the Gemella, Enterococcus, and Bacillus genera levels than healthy controls, respectively. In conclusion, the results of our study demonstrated that Hashimoto’s thyroiditis causes changes in the oral microbiota, whereas the medicine used to treat the condition had no such effects. Therefore, revealing the core oral microbiota and long-term follow-up of the HT process by conducting extensive and multicenter studies might provide some important data for understanding the pathogenesis of the disease.
Collapse
|
26
|
Cheung MK, Tong SLY, Wong MCS, Chan JYK, Ip M, Hui M, Lai CKC, Ng RWY, Ho WCS, Yeung ACM, Chan PKS, Chen Z. Extent of Oral-Gut Transmission of Bacterial and Fungal Microbiota in Healthy Chinese Adults. Microbiol Spectr 2023; 11:e0281422. [PMID: 36625652 PMCID: PMC9927295 DOI: 10.1128/spectrum.02814-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have provided evidence on the presence of an oral-gut microbiota axis in gastrointestinal diseases; however, whether a similar axis exists in healthy individuals is still in debate. Here, we characterized the bacterial and fungal microbiomes in paired oral rinse and stool samples collected from 470 healthy Chinese adults by sequencing the 16S rRNA V3-V4 and ITS1 regions, respectively. We hypothesized that there is limited oral-gut transmission of both the bacterial and fungal microbiota in healthy Chinese adults. Our results showed that the oral and gut microbiota in healthy individuals differed in taxonomic composition, alpha and beta diversity, metabolic potential, and network properties. Bayesian analysis showed that the vast majority of subjects had negligible or low bacterial and fungal oral-to-stool contribution. Detailed examination of the prevalent amplicon sequence variants (ASVs) also revealed limited cases of sharing between the oral and stool samples within the same individuals, except a few bacterial and fungal ASVs. Association analysis showed that sharing of the potentially transmissible fungal ASVs was associated with host factors, including an older age and a higher body mass index. Our findings indicate that oral-gut transmission of both bacterial and fungal microbiota in healthy adults is limited. Detection of a large amount of shared bacterial or fungal members between the oral and gut microbiome of an individual may indicate medical conditions that warrant detailed checkup. IMPORTANCE The oral-gut microbiota axis in health is a fundamentally important and clinically relevant topic; however, our current understanding of it remains biased and incomplete. By characterizing the bacterial and fungal microbiomes in paired oral rinse and stool samples from a large cohort of healthy Chinese adults, here we provided new evidence that oral-gut microbiota transmission is limited in non-Western population and across biological domains. Our study has established an important baseline of a healthy oral-gut microbiota axis, with which other disease conditions can be compared. Besides, our findings have practical implications that detection of a large amount of shared bacterial or fungal members between the oral cavity and gut within the same individual as an indicator of potential medical conditions.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Sylvia L. Y. Tong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Martin C. S. Wong
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jason Y. K. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Mamie Hui
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Christopher K. C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Rita W. Y. Ng
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wendy C. S. Ho
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Apple C. M. Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
27
|
Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH, Tsai PF, Ko NY, Ko WC, Wang JL. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol 2023; 13:1056534. [PMID: 36816590 PMCID: PMC9932516 DOI: 10.3389/fcimb.2023.1056534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chlorhexidine (CHX) and essential oil containing mouthwashes like Listerine® can improve oral hygiene via suppressing oral microbes. In hospitalized patients, CHX mouthwash reduces the incidence of ventilator-associated pneumonia. However, CHX use was also associated with increased mortality, which might be related to nitrate-reducing bacteria. Currently, no study determines oral bacteria targeted by essential oils mouthwash in hospitalized patients using a metagenomic approach. Methods We recruited 87 hospitalized patients from a previous randomized control study, and assigned them to three mouthwash groups: CHX, Listerine, and normal saline (control). Before and after gargling the mouthwash twice a day for 5-7 days, oral bacteria were examined using a 16S rDNA approach. Results Alpha diversities at the genus level decreased significantly only for the CHX and Listerine groups. Only for the two groups, oral microbiota before and after gargling were significantly different, but not clearly distinct. Paired analysis eliminated the substantial individual differences and revealed eight bacterial genera (including Prevotella, Fusobacterium, and Selenomonas) with a decreased relative abundance, while Rothia increased after gargling the CHX mouthwash. After gargling Listerine, seven genera (including Parvimonas, Eubacterium, and Selenomonas) showed a decreased relative abundance, and the magnitudes were smaller compared to the CHX group. Fewer bacteria targeted by Listerine were reported to be nitrate-reducing compared to the CHX mouthwash. Discussion In conclusion, short-term gargling of the CHX mouthwash and Listerine altered oral microbiota in our hospitalized patients. The bacterial genera targeted by the CHX mouthwash and Listerine were largely different and the magnitudes of changes were smaller using Listerine. Functional alterations of gargling CHX and Listerine were also different. These findings can be considered for managing oral hygiene of hospitalized patients.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chin Chen
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Cheng-Han Lin
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Jiun-Ling Wang,
| |
Collapse
|
28
|
Moraes MM, Mendes TT, Borges L, Marques AL, Núñez-Espinosa C, Gonçalves DAP, Simões CB, Vieira TS, Ladeira RVP, Lourenço TGB, Ribeiro DV, Hatanaka E, Heller D, Arantes RME. A 7-Week Summer Camp in Antarctica Induces Fluctuations on Human Oral Microbiome, Pro-Inflammatory Markers and Metabolic Hormones Profile. Microorganisms 2023; 11:microorganisms11020339. [PMID: 36838304 PMCID: PMC9960157 DOI: 10.3390/microorganisms11020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/31/2023] Open
Abstract
Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.
Collapse
Affiliation(s)
- Michele M. Moraes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Leandro Borges
- Interdisciplinary Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, SP, Brazil
| | - Alice L. Marques
- Post-Graduation Program in Social Sciences in Development, Culture and Society of the Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Cristian Núñez-Espinosa
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
- Austral Integrative Neurophysiology Group, Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas 6200000, Chile
- Interuniversity Center for Healthy Aging, Punta Arenas 6200000, Chile
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Carolina B. Simões
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Tales S. Vieira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Roberto V. P. Ladeira
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
| | - Talita G. B. Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Danielle V. Ribeiro
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Post-Graduate Studies in Dentistry, Universidade Cruzeiro do Sul, São Paulo 430-0926, SP, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, SP, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Post-Graduate Studies in Dentistry, Universidade Cruzeiro do Sul, São Paulo 430-0926, SP, Brazil
- Department of Periodontology, School of Dentistry, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rosa M. E. Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
- Correspondence: ; Tel.: +55-(31)-999037400
| |
Collapse
|
29
|
Urbizu A, Arnaldo L, Beyer K. Obtaining miRNA from Saliva-Comparison of Sampling and Purification Methods. Int J Mol Sci 2023; 24:ijms24032386. [PMID: 36768706 PMCID: PMC9916721 DOI: 10.3390/ijms24032386] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The use of saliva as a biomarker source has advantages over other biofluids and imaging techniques, and miRNAs are ideal biomarker candidates. They are involved in numerous cellular processes, and their altered expression suggests that miRNAs play a crucial regulatory role in disease development. We wanted to find an easily reproducible and executable miRNA-obtaining methodology suitable for quantification. Three commercial miRNA extraction kits (mirVana, Nucleospin and miRNeasy) and three saliva collectors (50 mL tubes, Salimetrics and Oragene) were tested. Several features, including RNA quality and technical parameters, were evaluated. The expression of five synthetic spike-in controls and seven saliva-miRNAs was analyzed independently and grouped by the collectors and the extraction kits. The combination of Oragene and miRNeasy assured the most sensitive detection of all seven saliva miRNAs. Testing different combinations of saliva collectors and RNA purification kits permitted the establishment of combinations for different uses. The results of our study highlight that optimization of resources for biomarker studies is possible after careful planning of each study.
Collapse
Affiliation(s)
- Aintzane Urbizu
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Laura Arnaldo
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
30
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
The microbial community associated with Parascaris spp. infecting juvenile horses. Parasit Vectors 2022; 15:408. [PMID: 36333754 PMCID: PMC9636743 DOI: 10.1186/s13071-022-05533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Parasitic nematodes, including large roundworms colloquially known as ascarids, affect the health and well-being of livestock animals worldwide. The equine ascarids, Parascaris spp., are important parasites of juvenile horses and the first ascarids to develop widespread anthelmintic resistance. The microbiota has been shown to be an important factor in the fitness of many organisms, including parasitic nematodes, where endosymbiotic Wolbachia have been exploited for treatment of filariasis in humans. Methods This study used short-read 16S rRNA sequences and Illumina sequencing to characterize and compare microbiota of whole worm small intestinal stages and microbiota of male and female intestines and gonads. Diversity metrics including alpha and beta diversity, and the differential abundance analyses DESeq2, ANCOM-BC, corncob, and metagenomeSeq were used for comparisons. Results Alpha and beta diversity of whole worm microbiota did not differ significantly between groups, but Simpson alpha diversity was significantly different between female intestine (FI) and male gonad (MG) (P= 0.0018), and Shannon alpha diversity was significantly different between female and male gonads (P = 0.0130), FI and horse jejunum (HJ) (P = 0.0383), and FI and MG (P= 0.0001). Beta diversity (Fig. 2B) was significantly different between female and male gonads (P = 0.0006), male intestine (MI) and FG (P = 0.0093), and MG and FI (P = 0.0041). When comparing organs, Veillonella was differentially abundant for DESeq2 and ANCOM-BC (p < 0.0001), corncob (P = 0.0008), and metagenomeSeq (P = 0.0118), and Sarcina was differentially abundant across four methods (P < 0.0001). Finally, the microbiota of all individual Parascaris spp. specimens were compared to establish shared microbiota between groups. Conclusions Overall, this study provided important information regarding the Parascaris spp. microbiota and provides a first step towards determining whether the microbiota may be a viable target for future parasite control options. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05533-y.
Collapse
|
32
|
Kumari P, Prakash P, Yadav S, Saran V. Microbiome analysis: An emerging forensic investigative tool. Forensic Sci Int 2022; 340:111462. [PMID: 36155349 DOI: 10.1016/j.forsciint.2022.111462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Microbial diversity's potential has been investigated in medical and therapeutic studies throughout the last few decades. However, its usage in forensics is increasing due to its effectiveness in circumstances when traditional approaches fail to provide a decisive opinion or are insufficient in forming a concrete opinion. The application of human microbiome may serve in detecting the type of stains of saliva and vaginal fluid, as well as in attributing the stains to the individual. Similarly, the microbiome makeup of a soil sample may be utilised to establish geographic origin or to associate humans, animals, or things with a specific area, additionally microorganisms influence the decay process which may be used in depicting the Time Since death. Further in detecting the traces of the amount and concentration of alcohol, narcotics, and other forensically relevant compounds in human body or visceral tissues as they also affect the microbial community within human body. Beside these, there is much more scope of microbiomes to be explored in terms of forensic investigation, this review focuses on multidimensional approaches to human microbiomes from a forensic standpoint, implying the potential of microbiomes as an emerging tool for forensic investigations such as individual variability via skin microbiomes, reconstructing crime scene, and linking evidence to individual.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Poonam Prakash
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
33
|
Kim D, Jeong YJ, Lee Y, Choi J, Park YM, Kwon OC, Ji YW, Ahn SJ, Lee HK, Park MC, Lim JY. Correlation Between Salivary Microbiome of Parotid Glands and Clinical Features in Primary Sjögren's Syndrome and Non-Sjögren's Sicca Subjects. Front Immunol 2022; 13:874285. [PMID: 35603219 PMCID: PMC9114876 DOI: 10.3389/fimmu.2022.874285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated that the oral microbiome in patients with Sjögren’s syndrome (SS) is significantly different from that in healthy individuals. However, the potential role of the oral microbiome in SS pathogenesis has not been determined. In this study, stimulated intraductal saliva samples were collected from the parotid glands (PGs) of 23 SS and nine non-SS subjects through PG lavage and subjected to 16S ribosomal RNA amplicon sequencing. The correlation between the oral microbiome and clinical features, such as biological markers, clinical manifestations, and functional and radiological characteristics was investigated. The salivary microbial composition was examined using bioinformatic analysis to identify potential diagnostic biomarkers for SS. Oral microbial composition was significantly different between the anti-SSA-positive and SSA-negative groups. The microbial diversity in SS subjects was lower than that in non-SS sicca subjects. Furthermore, SS subjects with sialectasis exhibited decreased microbial diversity and Firmicutes abundance. The abundance of Bacteroidetes was positively correlated with the salivary flow rate. Bioinformatics analysis revealed several potential microbial biomarkers for SS at the genus level, such as decreased Lactobacillus abundance or increased Streptococcus abundance. These results suggest that microbiota composition is correlated with the clinical features of SS, especially the ductal structures and salivary flow, and that the oral microbiome is a potential diagnostic biomarker for SS.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yerin Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jihoon Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oh Chan Kwon
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Woo Ji
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 2022; 8:38. [PMID: 35585074 PMCID: PMC9117221 DOI: 10.1038/s41522-022-00279-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Collapse
|
35
|
Cornejo CF, Salgado PA, Molgatini SL, Gliosca LA, Squassi AF. Saliva sampling methods. Cariogenic streptococci count using two different methods of saliva collection in children. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2022; 35:51-57. [PMID: 35700542 DOI: 10.54589/aol.35/1/51] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study is to compare the efficacy of two methods for collecting saliva samples from infants under 2 years of age for cariogenic streptococci (CS) count. Two collection methods were applied in 11 infants. In Method (A), saliva samples were collected by swabbing the inner cheek mucosa and floor of the mouth in figure of eight motions with a sterile cotton swab until it was soaked. In method (B), saliva samples were collected by aspiration of 1 ml of saliva with a sterile plastic syringe on the floor of the mouth, after stimulation with glove. The samples were cultured in modified Gold's broth (MSMG), and on trypticase, yeast extract, sucrose, cystine and bacitracin culture medium (TYSCB). In method (A), the swab with the sample was unloaded in situ on TYSCB and placed in PBS medium for transport. Then, 100 μl of the eluate was seeded in MSMG. In method (B) 100 μl were seeded in TYSCB and 100 μl in MSMG. Both culture media were incubatedundercapnophilicconditions for 48 hours at 37 °C. Colony forming units (CFU/ml) were counted by calibrated operators (kappa = 0.75). The presence of cariogenic streptococci (CS) (Streptococcus mutans-Streptococcus sobrinus) was determined by qPCR in the samples collected by both methods. The CFU/ml counts in MSMG differed significantly between methods (p = 0.021). In TYSCB, the recovery of CFU/ml was higher in method (A), without significant difference (p = 0.705). The molecular technique detected presence of CS, with no difference between collection methods. Collecting saliva samples by swabbing proved more effective in terms of recovery of microorganisms, and did not affect the detection of presence of CS by molecular techniques.
Collapse
Affiliation(s)
- Celina F Cornejo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina.
| | - Pablo A Salgado
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Susana L Molgatini
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Laura A Gliosca
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Aldo F Squassi
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina
| |
Collapse
|
36
|
Yeo LF, Lee SC, Palanisamy UD, Khalid BAK, Ayub Q, Lim SY, Lim YAL, Phipps ME. The Oral, Gut Microbiota and Cardiometabolic Health of Indigenous Orang Asli Communities. Front Cell Infect Microbiol 2022; 12:812345. [PMID: 35531342 PMCID: PMC9074829 DOI: 10.3389/fcimb.2022.812345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The Orang Asli (OA) of Malaysia have been relatively understudied where little is known about their oral and gut microbiomes. As human health is closely intertwined with the human microbiome, this study first assessed the cardiometabolic health in four OA communities ranging from urban, rural to semi-nomadic hunter-gatherers. The urban Temuan suffered from poorer cardiometabolic health while rural OA communities were undergoing epidemiological transition. The oral microbiota of the OA were characterised by sequencing the V4 region of the 16S rRNA gene. The OA oral microbiota were unexpectedly homogenous, with comparably low alpha diversity across all four communities. The rural Jehai and Temiar PP oral microbiota were enriched for uncharacterised bacteria, exhibiting potential for discoveries. This finding also highlights the importance of including under-represented populations in large cohort studies. The Temuan oral microbiota were also elevated in opportunistic pathogens such as Corynebacterium, Prevotella, and Mogibacterium, suggesting possible oral dysbiosis in these urban settlers. The semi-nomadic Jehai gut microbiota had the highest alpha diversity, while urban Temuan exhibited the lowest. Rural OA gut microbiota were distinct from urban-like microbiota and were elevated in bacteria genera such as Prevotella 2, Prevotella 9, Lachnospiraceae ND3007, and Solobacterium. Urban Temuan microbiota were enriched in Odoribacter, Blautia, Parabacetroides, Bacteroides and Ruminococcacecae UCG-013. This study brings to light the current health trend of these indigenous people who have minimal access to healthcare and lays the groundwork for future, in-depth studies in these populations.
Collapse
Affiliation(s)
- Li-Fang Yeo
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - BAK. Khalid
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Qasim Ayub
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Shu Yong Lim
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yvonne AL. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Maude Elvira Phipps
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| |
Collapse
|
37
|
Furuhashi H, Takayasu L, Isshi K, Hara Y, Ono S, Kato M, Sumiyama K, Suda W. Effect of storage temperature and flash-freezing on salivary microbiota profiles based on 16S rRNA-targeted sequencing. Eur J Oral Sci 2022; 130:e12852. [PMID: 35049092 DOI: 10.1111/eos.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
The sample storage environment affects gut microbial profiles as assessed using 16S rRNA sequencing. However, the influence of storage condition on human salivary microbial profiles has not been well characterized. Here, we performed an observational study to assess the robustness of microbiota profiles in three different storage environments (-80°C after flash-freezing, -80°C, and -15°C; all for 14 days) compared to immediate DNA extraction using the MiSeq Illumina platform. Notably, the 16S rRNA V1-V2 region amplicon sequencing revealed no difference in microbiota profiles between the immediate extraction and each of three storage conditions. An almost perfect correlation was shown between the immediate extraction and the -15°C storage group for relative abundance at the genus and operational taxonomic unit levels. The intraindividual UniFrac distances among storage methods were significantly shorter than those of interindividual distances. None of the amount of extracted DNA, the α-diversity indices, or the relative abundance at the phylum/genus/operational taxonomic unit level differed among storage methods. These findings indicate that a storage temperature of -15°C without flash-freezing may be optimal in terms of cost advantage and simplicity in 16S rRNA sequencing-based salivary microbial research.
Collapse
Affiliation(s)
- Hiroto Furuhashi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Lena Takayasu
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kimio Isshi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Hara
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Shingo Ono
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Kato
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuki Sumiyama
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
38
|
Eriksson K, Lundmark A, Delgado LF, Hu YOO, Fei G, Lee L, Fei C, Catrina AI, Jansson L, Andersson AF, Yucel-Lindberg T. Salivary Microbiota and Host-Inflammatory Responses in Periodontitis Affected Individuals With and Without Rheumatoid Arthritis. Front Cell Infect Microbiol 2022; 12:841139. [PMID: 35360114 PMCID: PMC8964114 DOI: 10.3389/fcimb.2022.841139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Periodontitis and rheumatoid arthritis (RA) are two widespread chronic inflammatory diseases with a previously suggested association. The objective of the current study was to compare the oral microbial composition and host´s inflammatory mediator profile of saliva samples obtained from subjects with periodontitis, with and without RA, as well as to predict biomarkers, of bacterial pathogens and/or inflammatory mediators, for classification of samples associated with periodontitis and RA. Methods Salivary samples were obtained from 53 patients with periodontitis and RA and 48 non-RA with chronic periodontitis. The microbial composition was identified using 16S rRNA gene sequencing and compared across periodontitis patients with and without RA. Levels of inflammatory mediators were determined using a multiplex bead assay, compared between the groups and correlated to the microbial profile. The achieved data was analysed using PCoA, DESeq2 and two machine learning algorithms, OPLS-DA and sPLS-DA. Results Differential abundance DESeq2 analyses showed that the four most highly enriched (log2 FC >20) amplicon sequence variants (ASVs) in the non-RA periodontitis group included Alloprevotella sp., Prevotella sp., Haemophilus sp., and Actinomyces sp. whereas Granulicatella sp., Veillonella sp., Megasphaera sp., and Fusobacterium nucleatum were the most highly enriched ASVs (log2 FC >20) in the RA group. OPLS-DA with log2 FC analyses demonstrated that the top ASVs with the highest importance included Vampirovibrio sp. having a positive correlation with non-RA group, and seven ASVs belonging to Sphingomonas insulae, Sphingobium sp., Novosphingobium aromaticivorans, Delftia acidovorans, Aquabacterium spp. and Sphingomonas echinoides with a positive correlation with RA group. Among the detected inflammatory mediators in saliva samples, TWEAK/TNFSF12, IL-35, IFN-α2, pentraxin-3, gp130/sIL6Rb, sIL-6Ra, IL-19 and sTNF-R1 were found to be significantly increased in patients with periodontitis and RA compared to non-RA group with periodontitis. Moreover, correlations between ASVs and inflammatory mediators using sPLS-DA analysis revealed that TWEAK/TNFSF12, pentraxin-3 and IL-19 were positively correlated with the ASVs Sphingobium sp., Acidovorax delafieldii, Novosphingobium sp., and Aquabacterium sp. Conclusion Our results suggest that the combination of microbes and host inflammatory mediators could be more efficient to be used as a predictable biomarker associated with periodontitis and RA, as compared to microbes and inflammatory mediators alone.
Collapse
Affiliation(s)
- Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Luis F. Delgado
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Yue O. O. Hu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Guozhong Fei
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Linkiat Lee
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Carina Fei
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Anca I. Catrina
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Jansson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
- Department of Periodontology, Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Anders F. Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| |
Collapse
|
39
|
Assessing the Iatrogenic Contribution to Contamination During Root Canal Treatment. J Endod 2022; 48:479-486. [DOI: 10.1016/j.joen.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
|
40
|
Abstract
The use of saliva as a diagnostic biofluid has been increasing in recent years, thanks to the identification and validation of new biomarkers and improvements in test accuracy, sensitivity, and precision that enable the development of new noninvasive and cost-effective devices. However, the lack of standardized methods for sample collection, treatment, and storage contribute to the overall variability and lack of reproducibility across analytical evaluations. Furthermore, the instability of salivary biomarkers after sample collection hinders their translation into commercially available technologies for noninvasive monitoring of saliva in home settings. The present review aims to highlight the status of research on the challenges of collecting and using diagnostic salivary samples, emphasizing the methodologies used to preserve relevant proteins, hormones, genomic, and transcriptomic biomarkers during sample handling and analysis.
Collapse
Affiliation(s)
- Luciana d'Amone
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Physics, Tufts University, Medford, Massachusetts 02155, United States.,Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
41
|
Wu Z, Hullings AG, Ghanbari R, Etemadi A, Wan Y, Zhu B, Poustchi H, Fahraji BB, Sakhvidi MJZ, Shi J, Knight R, Malekzadeh R, Sinha R, Vogtmann E. Comparison of fecal and oral collection methods for studies of the human microbiota in two Iranian cohorts. BMC Microbiol 2021; 21:324. [PMID: 34809575 PMCID: PMC8607576 DOI: 10.1186/s12866-021-02387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background To initiate fecal and oral collections in prospective cohort studies for microbial analyses, it is essential to understand how field conditions and geographic differences may impact microbial communities. This study aimed to investigate the impact of fecal and oral sample collection methods and room temperature storage on collection samples for studies of the human microbiota. Results We collected fecal and oral samples from participants in two Iranian cohorts located in rural Yazd (n = 46) and urban Gonbad (n = 38) and investigated room temperature stability over 4 days of fecal (RNAlater and fecal occult blood test [FOBT] cards) and comparability of fecal and oral (OMNIgene ORAL kits and Scope mouthwash) collection methods. We calculated interclass correlation coefficients (ICCs) based on 3 alpha and 4 beta diversity metrics and the relative abundance of 3 phyla. After 4 days at room temperature, fecal stability ICCs and ICCs for Scope mouthwash were generally high for all microbial metrics. Similarly, the fecal comparability ICCs for RNAlater and FOBT cards were high, ranging from 0.63 (95% CI: 0.46, 0.75) for the relative abundance of Firmicutes to 0.93 (95% CI: 0.89, 0.96) for unweighted Unifrac. Comparability ICCs for OMNIgene ORAL and Scope mouthwash were lower than fecal ICCs, ranging from 0.55 (95% CI: 0.36, 0.70) for the Shannon index to 0.79 (95% CI: 0.69, 0.86) for Bray-Curtis. Overall, RNAlater, FOBT cards and Scope mouthwash were stable up to 4 days at room temperature. Samples collected using FOBT cards were generally comparable to RNAlater while the OMNIgene ORAL were less similar to Scope mouthwash. Conclusions As microbiome measures for feces samples collected using RNAlater, FOBT cards and oral samples collected using Scope mouthwash were stable over four days at room temperature, these would be most appropriate for microbial analyses in these populations. However, one collection method should be consistently since each method may induce some differences. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02387-9.
Collapse
Affiliation(s)
- Zeni Wu
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Autumn G Hullings
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunhu Wan
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc., Frederick, MD, USA.,Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bin Zhu
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc., Frederick, MD, USA.,Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Behnam Bagheri Fahraji
- Department of Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran.
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Ahannach S, Delanghe L, Spacova I, Wittouck S, Van Beeck W, De Boeck I, Lebeer S. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience 2021; 24:103306. [PMID: 34765924 PMCID: PMC8571498 DOI: 10.1016/j.isci.2021.103306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Few validated protocols are available for large-scale collection, storage, and analysis of microbiome samples from the vagina, skin, and mouth. To prepare for a large-scale study on the female microbiome by remote self-sampling, we investigated the impact of sample collection, storage, and host DNA depletion on microbiome profiling. Vaginal, skin, and saliva samples were analyzed using 16S rRNA gene amplicon and metagenomic shotgun sequencing, and qPCR. Of the two tested storage buffers, the eNAT buffer could keep the microbial composition stable during various conditions. All three tested host DNA-depletion approaches showed a bias against Gram-negative taxa. However, using the HostZERO Microbial DNA and QIAamp DNA Microbiome kits, samples still clustered according to body site and not by depletion approach. Therefore, our study showed the effectiveness of these methods in depleting host DNA. Yet, a suitable approach is recommended for each habitat studied based on microbial composition. Lysis buffer keeps the microbial composition stable during various storage conditions Host DNA depletion introduces a larger bias toward Gram-negative taxa The HostZERO Microbial DNA kit performed best in human DNA depletion for metagenomics Body site-specific approach based on microbial composition is needed to minimize bias
Collapse
Affiliation(s)
- Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lize Delanghe
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
43
|
Assessing saliva microbiome collection and processing methods. NPJ Biofilms Microbiomes 2021; 7:81. [PMID: 34795298 PMCID: PMC8602330 DOI: 10.1038/s41522-021-00254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
The oral microbiome has been connected with lung health and may be of significance in the progression of SARS-CoV-2 infection. Saliva-based SARS-CoV-2 tests provide the opportunity to leverage stored samples for assessing the oral microbiome. However, these collection kits have not been tested for their accuracy in measuring the oral microbiome. Saliva is highly enriched with human DNA and reducing it prior to shotgun sequencing may increase the depth of bacterial reads. We examined both the effect of saliva collection method and sequence processing on measurement of microbiome depth and diversity by 16S rRNA gene amplicon and shotgun metagenomics. We collected 56 samples from 22 subjects. Each subject provided saliva samples with and without preservative, and a subset provided a second set of samples the following day. 16S rRNA gene (V4) sequencing was performed on all samples, and shotgun metagenomics was performed on a subset of samples collected with preservative with and without human DNA depletion before sequencing. We observed that the beta diversity distances within subjects over time was smaller than between unrelated subjects, and distances within subjects were smaller in samples collected with preservative. Samples collected with preservative had higher alpha diversity measuring both richness and evenness. Human DNA depletion before extraction and shotgun sequencing yielded higher total and relative reads mapping to bacterial sequences. We conclude that collecting saliva with preservative may provide more consistent measures of the oral microbiome and depleting human DNA increases yield of bacterial sequences.
Collapse
|
44
|
Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions. Forensic Sci Int Genet 2021; 56:102627. [PMID: 34742094 DOI: 10.1016/j.fsigen.2021.102627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Over the last few years, advances in massively parallel sequencing technologies (also referred to next generation sequencing) and bioinformatics analysis tools have boosted our knowledge on the human microbiome. Such insights have brought new perspectives and possibilities to apply human microbiome analysis in many areas, particularly in medicine. In the forensic field, the use of microbial DNA obtained from human materials is still in its infancy but has been suggested as a potential alternative in situations when other human (non-microbial) approaches present limitations. More specifically, DNA analysis of a wide variety of microorganisms that live in and on the human body offers promises to answer various forensically relevant questions, such as post-mortem interval estimation, individual identification, and tissue/body fluid identification, among others. However, human microbiome analysis currently faces significant challenges that need to be considered and overcome via future forensically oriented human microbiome research to provide the necessary solutions. In this perspective article, we discuss the most relevant biological, technical and data-related issues and propose future solutions that will pave the way towards the integration of human microbiome analysis in the forensic toolkit.
Collapse
|
45
|
Ren Q, Wei F, Yuan C, Zhu C, Zhang Q, Quan J, Sun X, Zheng S. The effects of removing dead bacteria by propidium monoazide on the profile of salivary microbiome. BMC Oral Health 2021; 21:460. [PMID: 34551743 PMCID: PMC8456568 DOI: 10.1186/s12903-021-01832-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Oral microbiome played an important role in maintaining healthy state and might exhibit certain changes under circumstances of diseases. However, current microbiological research using sequencing techniques did not regard dead bacteria as a separate part, causing findings based on subsequent analyses on dynamic equilibrium and functional pathways of microbes somewhat questionable. Since treatment by propidium monoazide (PMA) was able to remove dead bacteria effectively, it would be worth studying how the sequencing results after PMA treatment differed from those focusing on the whole microbiota. Methods Unstimulated whole saliva samples were obtained from 18 healthy people from 3 age groups (children, adults, and the elderly). After removal of dead bacteria by propidium monoazide (PMA), changes in the profile of salivary microbiome were detected using 16S rRNA sequencing technology, and differences among age groups were compared subsequently. Results Dead bacteria accounted for nearly a half of the whole bacteria flora in saliva, while freezing had little effect on the proportion of deaths. After treatment with PMA, the numbers of OTUs reduced by 4.4–14.2%, while the Shannon diversity indices decreased significantly (P < 0.01). Only 35.2% of positive and 6.1% of negative correlations were found to be shared by the whole microbiota and that with dead bacteria removed. Differences in significantly changed OTUs and functional pathways among different age groups were also observed between the group of PMA and the control. Conclusions It was necessary to take the influence of living state of bacteria into account in analytic studies of salivary microbiome. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01832-5.
Collapse
Affiliation(s)
- Qidi Ren
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.,Department of Preventive Dentistry, Shanghai Jiao Tong University School of Dentistry, Shanghai Ninth People's Hospital, Shanghai, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Junkang Quan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
46
|
Abstract
Measurement of saliva microbes is promoted as a way to detect oral and systemic disease, yet there is a multitude of factors that affect the oral microbiome. The salivary microbiome is influenced by biofilm of shedding (epithelial) and non-shedding (tooth) surfaces. Methods for study of the salivary microbiome are by no means standardized, and differences in sample collection, storage, and processing can all affect results to some degree. Here we describe one method of saliva collection that has been validated for reproducibility. Standard 16S rRNA gene analysis is done using the Human Oral Microbiome Database library which results in analysis that is straightforward. Everything about this procedure except the library synthesis and DNA sequencing itself can easily be done in-house. To gauge the ability of salivary microbial analytics to distinguish between edentulous and dentate oral conditions, differences in the saliva microbiome of subjects with and without teeth were examined. Fifty-two dentate and 49 edentulous subjects provided stimulated saliva samples. 16S rRNA gene sequencing, QIIME-based data processing, and statistical analysis were done using several different analytical approaches to detect differences in the salivary microbiome between the two groups. Bacteria diversity was lower in the edentulous group. Remarkably, all 31 of the most significant differences in taxa were deficits that occurred in the edentulous group. As one might expect, many of these taxa are attributed to dental plaque and gingival sulcus-associated bacteria verifying that the measurement of 16S rRNA genes in the bacteria of the saliva can be used to reproducibly measure expected differences in the oral microbiome that occur with edentulism or other conditions and diseases.
Collapse
|
47
|
Chen XX, Chen W, Liu YL, Lin CX, Li M, Chen WJ, Xie SH, Lin DF, Cao SM. Development and validation of a flexible DNA extraction (PAN) method for liquid biopsy of multiple sample types. J Clin Lab Anal 2021; 35:e23962. [PMID: 34399000 PMCID: PMC8418477 DOI: 10.1002/jcla.23962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Liquid biopsy is gaining increasing popularity in cancer screening and diagnosis. However, there is no relatively mature DNA isolation method or commercial kit available that is compatible with different LB sample types. This study developed a PAN-sample DNA isolation method (PAN method) for liquid biopsy samples. METHODS The PAN method has two key steps, including biosample-specific pretreatments for various LB sample types and high concentration guanidine thiocyanate buffer for lysis and denaturation procedure. Subsequently, the performance of PAN method was validated by a series of molecular analyses. RESULTS The PAN method was used to isolate DNA from multiple sample types related to LB, including plasma, serum, saliva, nasopharyngeal swab, and stool. All purified DNA products showed good quality and high quantity. Comparison of KRAS mutation analysis using DNA purified using PAN method versus QIAamp methods showed similar efficiency. Epstein-Barr virus DNA was detected via Q-PCR using DNA purified from serum, plasma, nasopharyngeal swab, and saliva samples collected from nasopharyngeal carcinoma patients. Similarly, methylation sequencing of swab and saliva samples revealed good coverage of target region and high methylation of HLA-DPB1 gene. Finally, 16S rDNA gene sequencing of saliva, swab, and stool samples successfully defines the relative abundance of microbial communities. CONCLUSIONS This study developed and validated a PAN-sample DNA isolation method that can be used for different LB samples, which can be applied to molecular epidemiological research and other areas.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi-Long Liu
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Can-Xiang Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengmeng Li
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Chen
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Feng Lin
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
48
|
Kim J, Lee M, Baldwin-Hunter B, Solfisburg QS, Lightdale CJ, Korem T, Hur C, Abrams JA. Minimal Associations between Short-Term Dietary Intake and Salivary Microbiome Composition. Microorganisms 2021; 9:microorganisms9081739. [PMID: 34442819 PMCID: PMC8401849 DOI: 10.3390/microorganisms9081739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Increasing evidence points to the esophageal microbiome as an important co-factor in esophageal neoplasia. Esophageal microbiome composition is strongly influenced by the oral microbiome. Salivary microbiome assessment has emerged as a potential non-invasive tool to identify patients at risk for esophageal cancer, but key host and environmental factors that may affect the salivary microbiome have not been well-defined. This study aimed to evaluate the impact of short-term dietary intake on salivary microbiome composition. Methods: Saliva samples were collected from 69 subjects prior to upper endoscopy who completed the Automated Self-Administered 24-Hour (ASA24) Dietary Assessment. Salivary microbiome composition was determined using 16S rRNA amplicon sequencing. Results: There was no significant correlation between alpha diversity and primary measures of short-term dietary intake (total daily calories, fat, fiber, fruit/vegetables, red meat intake, and fasting time). There was no evidence of clustering on beta diversity analyses. Very few taxonomic alterations were found for short-term dietary intake; an increased relative abundance of Neisseria oralis and Lautropia sp. was associated with high fruit and vegetable intake, and an increased relative abundance of a taxon in the family Gemellaceae was associated with increased red meat intake. Conclusions: Short-term dietary intake was associated with only minimal salivary microbiome alterations and does not appear to have a major impact on the potential use of the salivary microbiome as a biomarker for esophageal neoplasia.
Collapse
Affiliation(s)
- Judith Kim
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; (J.K.); (B.B.-H.); (C.J.L.); (C.H.)
| | - Minyi Lee
- School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Brittany Baldwin-Hunter
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; (J.K.); (B.B.-H.); (C.J.L.); (C.H.)
| | - Quinn S. Solfisburg
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Charles J. Lightdale
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; (J.K.); (B.B.-H.); (C.J.L.); (C.H.)
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA;
| | - Chin Hur
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; (J.K.); (B.B.-H.); (C.J.L.); (C.H.)
| | - Julian A. Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; (J.K.); (B.B.-H.); (C.J.L.); (C.H.)
- Correspondence:
| |
Collapse
|
49
|
Doaré E, Héry-Arnaud G, Devauchelle-Pensec V, Alegria GC. Healthy Patients Are Not the Best Controls for Microbiome-Based Clinical Studies: Example of Sjögren's Syndrome in a Systematic Review. Front Immunol 2021; 12:699011. [PMID: 34394092 PMCID: PMC8358393 DOI: 10.3389/fimmu.2021.699011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction It has been hypothesized that gut and oral dysbiosis may contribute to the development of primary Sjögren's syndrome (pSS). The aim of this systematic review was to assemble available data regarding the oral and gut microbiota in pSS and to compare them to data from healthy individuals and patients with dry symptoms without a diagnosis of Sjögren's syndrome or lupus disease to identify dysbiosis and discuss the results. Methodology Using the PRISMA guidelines, we systematically reviewed studies that compared the oral and gut microbiota of Sjögren's patients and controls. The PubMed database and Google Scholar were searched. Results Two-hundred and eighty-nine studies were found, and 18 studies were included: 13 referred to the oral microbiota, 4 referred to the gut microbiota, and 1 referred to both anatomical sites. The most frequent controls were healthy volunteers and patients with sicca symptoms. The most common analysis method used was 16S-targeted metagenomics. The results were mostly heterogeneous, and the results regarding diversity were not always in accordance. Dysbiosis in pSS was not confirmed, and reduced salivary secretion seems to explain more microbial changes than the underlying disease. Conclusion These heterogeneous results might be explained by the lack of a standardized methodology at each step of the process and highlight the need for guidelines. Our review provides evidence that sicca patients seem to be more relevant than healthy subjects as a control group.
Collapse
Affiliation(s)
- Elise Doaré
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Geneviève Héry-Arnaud
- UMR1078, Génétique, Génomique Fonctionnelle Et Biotechnologies, INSERM, Université de Brest, EFS, IBSAM, Brest, France.,Centre Brestois d'Analyse du Microbiote, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France
| | - Valérie Devauchelle-Pensec
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Guillermo Carvajal Alegria
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| |
Collapse
|
50
|
Bellando-Randone S, Russo E, Venerito V, Matucci-Cerinic M, Iannone F, Tangaro S, Amedei A. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J Pers Med 2021; 11:625. [PMID: 34209167 PMCID: PMC8306274 DOI: 10.3390/jpm11070625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The oral microbiome is receiving growing interest from the scientific community, as the mouth is the gateway for numerous potential etiopathogenetic factors in different diseases. In addition, the progression of niches from the mouth to the gut, defined as "oral-gut microbiome axis", affects several pathologies, as rheumatic diseases. Notably, rheumatic disorders (RDs) are conditions causing chronic, often intermittent pain affecting the joints or connective tissue. In this review, we examine evidence which supports a role for the oral microbiome in the etiology and progression of various RDs, including rheumatoid arthritis (RA), Sjogren's syndrome (SS), and systemic lupus erythematosus (SLE). In addition, we address the most recent studies endorsing the oral microbiome as promising diagnostic biomarkers for RDs. Lastly, we introduce the concepts of artificial intelligence (AI), in particular, machine learning (ML) and their general application for understanding the link between oral microbiota and rheumatic diseases, speculating the application of a possible AI approach-based that can be applied to personalized medicine in the future.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Vincenzo Venerito
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Marco Matucci-Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Sabina Tangaro
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70121 Bari, Italy;
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| |
Collapse
|