1
|
Shi L, Ghezzi L, Fenoglio C, Pietroboni AM, Galimberti D, Pace F, Hardy TA, Piccio L, Don AS. CSF sphingolipids are correlated with neuroinflammatory cytokines and differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. J Neurol Neurosurg Psychiatry 2024; 96:54-67. [PMID: 38844340 PMCID: PMC11672031 DOI: 10.1136/jnnp-2024-333774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND There is a need for biomarkers of disease progression and therapeutic response in multiple sclerosis (MS). This study aimed to identify cerebrospinal fluid (CSF) lipids that differentiate MS from other neuroinflammatory conditions and correlate with Expanded Disability Status Scale (EDSS) scores, gadolinium-enhancing lesions or inflammatory mediators. METHODS Lipids and inflammatory cytokines/chemokines were quantified with liquid chromatography-tandem mass spectrometry and multiplex ELISA, respectively, in CSF from people with untreated MS, neuromyelitis optica spectrum disorder (NMOSD), other inflammatory neurological diseases and non-inflammatory neurological diseases (NIND). Analytes were compared between groups using analysis of variance, and correlations were assessed with Pearson's analysis. RESULTS Twenty-five sphingolipids and four lysophosphatidylcholines were significantly higher in NMOSD compared with MS and NIND cases, whereas no lipids differed significantly between MS and NIND. A combination of three sphingolipids differentiated NMOSD from MS with the area under the curve of 0.92 in random forest models. Ninety-four lipids, including those that differentiated NMOSD from MS, were positively correlated with macrophage migration inhibitory factor (MIF) and 37 lipids were positively correlated with CSF protein in two independent MS cohorts. EDSS was inversely correlated with cholesterol ester CE(16:0) in both MS cohorts. In contrast, MIF and soluble triggering receptor expressed on myeloid cells 2 were positively associated with EDSS. CONCLUSIONS CSF sphingolipids are positively correlated with markers of neuroinflammation and differentiate NMOSD from MS. The inverse correlation between EDSS and CE(16:0) levels may reflect poor clearance of cholesterol released during myelin break-down and warrants further investigation as a biomarker of therapeutic response.
Collapse
Affiliation(s)
- Lisa Shi
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Pace
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
- Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Todd A Hardy
- Concord Hospital, Department of Neurology, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Piccio
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Anthony S Don
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Capodivento G, Camera M, Liessi N, Trada A, Debellis D, Schenone A, Armirotti A, Visigalli D, Nobbio L. Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A. Int J Mol Sci 2024; 25:11244. [PMID: 39457026 PMCID: PMC11508568 DOI: 10.3390/ijms252011244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Findings accumulated over time show that neurophysiological, neuropathological, and molecular alterations are present in CMT1A and support the dysmyelinating rather than demyelinating nature of this neuropathy. Moreover, uniform slowing of nerve conduction velocity is already manifest in CMT1A children and does not improve throughout their life. This evidence and our previous studies displaying aberrant myelin composition and structure in adult CMT1A rats prompt us to hypothesize a myelin and axon developmental defect in the CMT1A peripheral nervous system. Peripheral myelination begins during the early stages of development in mammals and, during this process, chemical and structural features of myelinated fibers (MFs) evolve towards a mature phenotype; deficiencies within this self-modulating circuit can cause its blockage. Therefore, to shed light on pathophysiological mechanisms that occur during development, and to investigate the relationship among axonal, myelin, and lipidome deficiencies in CMT1A, we extensively analyzed the evolution of both myelin lipid profile and MF structure in WT and CMT1A rats. Lipidomic analysis revealed a delayed maturation of CMT1A myelin already detectable at P10 characterized by a deprivation of sphingolipid species such as hexosylceramides and long-chain sphingomyelins, whose concentration physiologically increases in WT, and an increase in lipids typical of unspecialized plasma membranes, including phosphatidylcholines and phosphatidylethanolamines. Consistently, advanced morphometric analysis on more than 130,000 MFs revealed a delay in the evolution of CMT1A axon and myelin geometric parameters, appearing concomitantly with lipid impairment. We here demonstrate that, during normal development, MFs undergo a continuous maturation process in both chemical composition and physical structure, but these processes are delayed in CMT1A.
Collapse
Affiliation(s)
- Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (G.C.); (A.S.)
| | - Mattia Camera
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI), University of Genoa, 16126 Genova, Italy; (M.C.); (A.T.)
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (N.L.); (A.A.)
| | - Anna Trada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI), University of Genoa, 16126 Genova, Italy; (M.C.); (A.T.)
| | - Doriana Debellis
- Electron Microscopy Facility, IIT, Via Morego 30, 16163 Genova, Italy;
| | - Angelo Schenone
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (G.C.); (A.S.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI), University of Genoa, 16126 Genova, Italy; (M.C.); (A.T.)
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (N.L.); (A.A.)
| | - Davide Visigalli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (G.C.); (A.S.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI), University of Genoa, 16126 Genova, Italy; (M.C.); (A.T.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (G.C.); (A.S.)
| |
Collapse
|
3
|
Nukui T, Niimi H, Hayashi T, Dougu N, Yamamoto M, Shibuya R, Matsuda N, Tanaka R, Hirosawa H, Furuta R, Mitsui T, Maesaka H, Takasawa S, Kitajima I, Nakatsuji Y. Increased Cerebrospinal Fluid Adenosine 5'-Triphosphate Levels in Patients with Guillain-Barré Syndrome and Chronic Inflammatory Demyelinating Polyneuropathy. Neurol Res Int 2024; 2024:7229216. [PMID: 38887668 PMCID: PMC11182687 DOI: 10.1155/2024/7229216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Background Extracellular adenosine 5'-triphosphate (ATP) acts as a signaling molecule in the peripheral nerves, regulating myelination after nerve injury. The present study examined whether the cerebrospinal fluid (CSF) ATP levels in patients with Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are related to disease severity. Methods CSF ATP levels in 13 patients with GBS and 18 patients with CIDP were compared with those in a control group of 16 patients with other neurological diseases (ONDs). In patients with CIDP, CSF ATP levels were compared before and after treatment. The correlations between CSF ATP levels and other factors, including clinical data and CSF protein levels, were also evaluated. Results Median CSF ATP levels were significantly higher in patients with GBS and CIDP than in those with ONDs. When patients with CIDP were classified into two groups depending on their responsiveness to immunotherapy, median CSF ATP levels were significantly higher in good responders than in ONDs. CSF ATP levels tended to decrease after treatment in patients with CIDP. In patients with CIDP, there is a negative correlation between CSF ATP and CSF protein levels. Conclusions CSF ATP levels were increased in patients with GBS and CIDP. In particular, CSF ATP levels tended to decrease following treatment in patients with CIDP. CSF ATP levels may be useful biomarkers for the diagnosis or monitoring of therapeutic effects in patients with GBS and CIDP.
Collapse
Affiliation(s)
- Takamasa Nukui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Mamoru Yamamoto
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryoko Shibuya
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Noriyuki Matsuda
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryo Tanaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Hirosawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Risako Furuta
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Taichi Mitsui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroki Maesaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Syuhei Takasawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
5
|
Guo K, Savelieff MG, Rumora AE, Alakwaa FM, Callaghan BC, Hur J, Feldman EL. Plasma Metabolomics and Lipidomics Differentiate Obese Individuals by Peripheral Neuropathy Status. J Clin Endocrinol Metab 2022; 107:1091-1109. [PMID: 34878536 PMCID: PMC8947234 DOI: 10.1210/clinem/dgab844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Peripheral neuropathy (PN) is a frequent prediabetes and type 2 diabetes (T2D) complication. Multiple clinical studies reveal that obesity and dyslipidemia can also drive PN progression, independent of glycemia, suggesting a complex interplay of specific metabolite and/or lipid species may underlie PN. OBJECTIVE This work aimed to identify the plasma metabolomics and lipidomics signature that underlies PN in an observational study of a sample of individuals with average class 3 obesity. METHODS We performed plasma global metabolomics and targeted lipidomics on obese participants with (n = 44) and without PN (n = 44), matched for glycemic status, vs lean nonneuropathic controls (n = 43). We analyzed data by Wilcoxon, logistic regression, partial least squares-discriminant analysis, and group-lasso to identify differential metabolites and lipids by obesity and PN status. We also conducted subanalysis by prediabetes and T2D status. RESULTS Lean vs obese comparisons, regardless of PN status, identified the most significant differences in gamma-glutamyl and branched-chain amino acid metabolism from metabolomics analysis and triacylglycerols from lipidomics. Stratification by PN status within obese individuals identified differences in polyamine, purine biosynthesis, and benzoate metabolism. Lipidomics found diacylglycerols as the most significant subpathway distinguishing obese individuals by PN status, with additional contributions from phosphatidylcholines, sphingomyelins, ceramides, and dihydroceramides. Stratifying the obese group by glycemic status did not affect discrimination by PN status. CONCLUSION Obesity may be as strong a PN driver as prediabetes or T2D in a sample of individuals with average class 3 obesity, at least by plasma metabolomics and lipidomics profile. Metabolic and complex lipid pathways can differentiate obese individuals with and without PN, independent of glycemic status.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl M Alakwaa
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian C Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence: Eva L. Feldman, MD, PhD, Department of Neurology, University of Michigan 5017 AAT-BSRB, 109 Zina Pitcher Pl, Ann Arbor, MI 48109-0588, USA.
| |
Collapse
|
6
|
Wieske L, Smyth D, Lunn MP, Eftimov F, Teunissen CE. Fluid Biomarkers for Monitoring Structural Changes in Polyneuropathies: Their Use in Clinical Practice and Trials. Neurotherapeutics 2021; 18:2351-2367. [PMID: 34661878 PMCID: PMC8522180 DOI: 10.1007/s13311-021-01136-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Reliable and responsive tools for monitoring disease activity and treatment outcomes in patients with neuropathies are lacking. With the emergence of ultrasensitive blood bioassays, proteins released with nerve damage are potentially useful response biomarkers for many neurological disorders, including polyneuropathies. In this review, we provide an overview of the existing literature focusing on potential applications in polyneuropathy clinical care and trials. Whilst several promising candidates have been identified, no studies have investigated if any of these proteins can serve as response biomarkers of longitudinal disease activity, except for neurofilament light (NfL). For NfL, limited evidence exists supporting a role as a response biomarker in Guillain-Barré syndrome, vasculitic neuropathy, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Most evidence exists for NfL as a response biomarker in hereditary transthyretin-related amyloidosis (hATTR). At the present time, the role of NfL is therefore limited to a supporting clinical tool or exploratory endpoint in trials. Future developments will need to focus on the discovery of additional biomarkers for anatomically specific and other forms of nerve damage using high-throughput technologies and highly sensitive analytical platforms in adequality powered studies of appropriate design. For NfL, a better understanding of cut-off values, the relation to clinical symptoms and long-term disability as well as dynamics in serum on and off treatment is needed to further expand and proceed towards implementation.
Collapse
Affiliation(s)
- Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Duncan Smyth
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Michael P Lunn
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel) 2021; 11:diagnostics11091522. [PMID: 34573864 PMCID: PMC8470638 DOI: 10.3390/diagnostics11091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) diagnostics has emerged as a valid tool for a variety of neurological diseases. However, CSF diagnostics has been playing a subordinate role in the diagnosis of many neurological conditions. Thus, in the multitude of neuromuscular diseases in which motor neurons are affected, a CSF sample is rarely taken routinely. However, CSF diagnostics has the potential to specify the diagnosis and monitor the treatment of neuromuscular disorders. In this review, we therefore focused on a variety of neuromuscular diseases, among them amyotrophic lateral sclerosis (ALS), peripheral neuropathies, and spinal muscular atrophy (SMA), for which CSF diagnostics has emerged as a promising option for determining the disease itself and its progression. We focus on potentially valuable biomarkers among different disorders, such as neurofilaments, cytokines, other proteins, and lipids to determine their suitability, differentiating between different neurological disorders and their potential to determine early disease onset, disease progression, and treatment outcome. We further recommend novel approaches, e.g., the use of mass spectrometry as a promising alternative techniques to standard ELISA assays, potentially enhancing biomarker significance in clinical applications.
Collapse
|
8
|
Capodivento G, De Michelis C, Carpo M, Fancellu R, Schirinzi E, Severi D, Visigalli D, Franciotta D, Manganelli F, Siciliano G, Beronio A, Capello E, Lanteri P, Nobile-Orazio E, Schenone A, Benedetti L, Nobbio L. CSF sphingomyelin: a new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J Neurol Neurosurg Psychiatry 2021; 92:303-310. [PMID: 33093191 PMCID: PMC7892388 DOI: 10.1136/jnnp-2020-324445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To validate sphingomyelin (SM) dosage in the cerebrospinal fluid (CSF) of patients affected by chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and Guillain-Barré syndrome (GBS) as a reliably assessable biomarker. METHODS We prospectively enrolled 184 patients from six Italian referral centres, in whom CSF SM levels were quantified by a fluorescence-based assay optimised and patented in our laboratory. RESULTS We confirmed increased levels of SM in the CSF of patients affected by typical CIDP (n=35), atypical CIDP (n=18) and acute inflammatory demyelinating polyradiculoneuropathy, AIDP (n=12) compared with patients affected by non-demyelinating neurological diseases, used as controls (n=85) (p<0.0001, p=0.0065 and p<0.0001, respectively). In patients with CIDP classified for disease stage, SM was higher in active CIDP compared with both controls and stable CIDP (p<0.0001), applying for a selective tool to treatment tailoring or withdrawal. SM was also increased in AIDP compared with axonal GBS, discerning the demyelinating from axonal variant of the disease. SM did not correlate with CSF protein levels, stratifying patients independently from commonly used CSF indexes, and displaying high specificity to avoid potential misdiagnosis. Finally, SM correlated with the main clinical scores and some neurophysiological parameters in patients with CIDP and AIDP. CONCLUSIONS CSF SM is a diagnostic and staging wet biomarker for acquired demyelinating neuropathies and may effectively improve the management of patients affected by GBS and CIDP.
Collapse
Affiliation(s)
- Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara De Michelis
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Daniele Severi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | | | - Elisabetta Capello
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Lanteri
- Neurophysiology Center, IRCCS Istituto Neurologico Carlo Besta Foundation, Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Institute, Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luana Benedetti
- DINOGMI, University of Genoa, Genoa, Italy.,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy .,UO Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
9
|
Supplementation with the omega-3 long chain polyunsaturated fatty acids: Changes in the concentrations of omega-3 index, fatty acids and molecular phospholipids of people at ultra high risk of developing psychosis. Schizophr Res 2020; 226:52-60. [PMID: 31606244 DOI: 10.1016/j.schres.2019.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023]
Abstract
Omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) are necessary for optimum mental health, with recent studies showing low n-3 LCPUFA in people at ultra-high risk (UHR) of developing psychosis. Furthermore, people at UHR of psychosis had increased erythrocyte sphingomyelin (SM) and reduced phosphatidylethanolamine (PE) concentrations as well as 27 erythrocyte phospholipid species that differed when compared to erythrocytes from age matched people not at UHR of psychosis. The aim of this analysis was to evaluate the effect of n-3 supplementation on the different erythrocyte lipid species (including SM and PE concentrations) in people at UHR of psychosis. Participants were randomly assigned to fish oil (containing 840 mg EPA and 560 mg DHA per day) or placebo (paraffin oil) for 6 months. Fasted blood samples were taken at baseline and post intervention. Mass spectrometry was used to analyse the molecular phospholipids and fatty acid composition of erythrocytes for both groups. The n-3 index was significantly increased from 3.0% to 4.12% after 6 months of receiving n-3 capsules. Fish oil capsules increased the phospholipid molecular species containing n-3 LCPUFA, and concomitant decreases in n-6 LCPUFA species. SM species did not show any significant changes in n-3 LCPUFA group however, three SM species (SM 16:0, SM 18:0, SM 18:1) significantly increased after 6 months of supplementation with placebo. N-3 supplementation for 6 months led to higher n-3 incorporation into erythrocytes, at the expense of n-6 PUFA across all phospholipid classes analyzed and may have prevented the increase in SM seen in the placebo group.
Collapse
|
10
|
Cerebrospinal fluid lipidomic biomarker signatures of demyelination for multiple sclerosis and Guillain-Barré syndrome. Sci Rep 2020; 10:18380. [PMID: 33110173 PMCID: PMC7592055 DOI: 10.1038/s41598-020-75502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Guillain–Barré syndrome (GBS) are demyelinating disorders affecting the central nervous system and peripheral nervous system (PNS), respectively. Cerebrospinal fluid (CSF) is one of the most valuable sources of diagnostic biomarkers in neurological diseases. In the present study high sensitivity shotgun mass spectrometry was used to characterise the CSF lipidome of patients with MS, GBS and controls with non-demyelinating diseases. The quantification of 222 CSF lipid molecular species revealed characteristic changes in the absolute and relative lipid concentrations in MS and GBS compared to the controls. For the GBS group, the fourfold elevation in the total lipid content was a discriminatory and a newly identified feature of PNS demyelination. In contrast, in MS, the accumulation of the myelin-derived cerebrosides represented a specific feature of demyelination. As a common feature of demyelination, we identified upregulated levels of lipid metabolic intermediates. We found strong positive correlation between total protein content and lipid concentrations in both diseases. By exploring the CSF lipidome we demonstrate usefulness of broad-range shotgun lipidomic analysis as a fast and reliable method of biomarker discovery in patients with demyelinating neurological disorders that might be a valuable diagnostic complement to existing examinations.
Collapse
|
11
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
12
|
de Almeida V, Alexandrino GL, Aquino A, Gomes AF, Murgu M, Dobrowolny H, Guest PC, Steiner J, Martins-de-Souza D. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109945. [PMID: 32304808 DOI: 10.1016/j.pnpbp.2020.109945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Atypical antipsychotics are widely used to manage schizophrenia symptoms. However, these drugs can induce deleterious side effects, such as MetS, which are associated with an increased cardiovascular risk to patients. Lipids play a central role in this context, and changes in lipid metabolism have been implicated in schizophrenia's pathobiology. Furthermore, recent evidence suggests that lipidome changes may be related to antipsychotic treatment response. The aim of this study was to evaluate the lipidome changes in blood plasma samples of schizophrenia patients before and after 6 weeks of treatment with either risperidone, olanzapine, or quetiapine. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis showed changes in the levels of ceramides (Cer), glycerophosphatidic acids (PA), glycerophosphocholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), glycerophosphoglycerols (PG), and phosphatidylserines (PS) for all treatments. However, the treatment with risperidone also affected diacylglycerides (DG), ceramide 1-phosphates (CerP), triglycerides (TG), sphingomyelins (SM), and ceramide phosphoinositols (PI-Cer). Moreover, specific lipid profiles were observed that could be used to distinguish poor and good responders to the different antipsychotics. As such, further work in this area may lead to lipid-based biomarkers that could be used to improve the clinical management of schizophrenia patients.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme L Alexandrino
- Gas Chromatography Laboratory, Chemistry Institute, University of Campinas(UNICAMP), Campinas, SP, Brazil
| | - Adriano Aquino
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre F Gomes
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Michael Murgu
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
13
|
Ho WM, Görke AS, Glodny B, Oberacher H, Helbok R, Thomé C, Petr O. Time Course of Metabolomic Alterations in Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2020; 11:589. [PMID: 32655487 PMCID: PMC7324721 DOI: 10.3389/fneur.2020.00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Object: The aim of this study was to investigate metabolite levels in cerebrospinal fluid (CSF) in their time-dependent course after aneurysmal subarachnoid hemorrhage (aSAH) comparing them to patients harboring unruptured intracranial aneurysms. Methods: Eighty CSF samples of 16 patients were analyzed. The study population included patients undergoing endovascular/microsurgical treatment of ruptured intracranial aneurysms (n = 8), which were assessed for 9 days after aSAH. Control samples were collected from the basal cisterns in elective aneurysm surgery (n = 8). The CSF samples were consecutively collected with extraventricular drain (EVD) placement/intraoperatively, 6 h later, and daily thereafter (day 1-9). The endogenous metabolites were analyzed with a targeted quantitative and quality controlled metabolomics approach using the AbsoluteIDQ®p180Kit. Differences inbetween timepoints and compared to the control group were evaluated. Results: Numerous alterations of amino acid (AA) levels were detected within the first hours after bleeding. The highest mean concentrations occurred 1 week after aSAH. AA levels were continuously increasing over time starting 6 h after aSAH. Taurine concentration was highest briefly after aSAH starting to decrease already after 6 h (vs. day 1-9, p = 0.02). The levels of sphingomyelins/ phosphatidylcholines/ lysophosphatidylcholines/mono-unsaturated fatty acid chain were highly elevated on day 0 (compared to other timepoints or controls, p < 0.01) and decreased over the next several days to concentrations comparable to the control group. Carnitine concentrations were decreased after SAH (vs. day 7, p < 0.01), while they recovered within the next day. The Fischer ratio of branched-chain AA to aromatic AA was lowest immediately after SAH and increased in 7 days (p < 0.001). Conclusion: AA levels in CSF increased overtime and often differ from patients without SAH. There was a peak concentration of structural AA within the first 6 h after aneurysm treatment. Time-dependent alterations of CSF metabolites and compounds may elucidate pathophysiological processes after aSAH, providing potential predictors assessed non-invasively by routine lab testing.
Collapse
Affiliation(s)
- Wing Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alice S Görke
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Department of Forensic Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
15
|
Webb-Robertson BJM, Stratton KG, Kyle JE, Kim YM, Bramer LM, Waters KM, Koeller DM, Metz TO. Statistically Driven Metabolite and Lipid Profiling of Patients from the Undiagnosed Diseases Network. Anal Chem 2020; 92:1796-1803. [PMID: 31742994 PMCID: PMC7183858 DOI: 10.1021/acs.analchem.9b03522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advancements in molecular separations coupled with mass spectrometry have enabled metabolome analyses for clinical cohorts. A population of interest for metabolome profiling is patients with rare disease for which abnormal metabolic signatures may yield clues into the genetic basis, as well as mechanistic drivers of the disease and possible treatment options. We undertook the metabolome profiling of a large cohort of patients with mysterious conditions characterized through the Undiagnosed Diseases Network (UDN). Due to the size and enrollment procedures, collection of the metabolomes for UDN patients took place over 2 years. We describe the study designed to adjust for measurements collected over a long time scale and how this enabled statistical analyses to summarize the metabolome of individual patients. We demonstrate the removal of time-based batch effects, overall statistical characteristics of the UDN population, and two case studies of interest that demonstrate the utility of metabolome profiling for rare diseases.
Collapse
Affiliation(s)
- Bobbie-Jo M. Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kelly G. Stratton
- Computing Analytics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lisa M. Bramer
- Computing Analytics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M. Koeller
- Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Lee G, Hasan M, Kwon OS, Jung BH. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice via Metabolomics and Lipidomics. Neuroscience 2019; 416:74-87. [DOI: 10.1016/j.neuroscience.2019.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
17
|
Azizkhanian I, Sheth SA, Iavarone AT, Lee S, Kakarla V, Hinman JD. Plasma Lipid Profiling Identifies Biomarkers of Cerebral Microvascular Disease. Front Neurol 2019; 10:950. [PMID: 31555203 PMCID: PMC6727208 DOI: 10.3389/fneur.2019.00950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Brain-specific sphingolipids (SLs) may serve as effective biomarkers of white matter hyperintensities (WMH). Here, we investigate the efficacy of SLs as a novel fluid-based biomarker to identify WMH reflective of chronic ischemia. Patients presenting to our stroke center for evaluation of acute neurological deficits were enrolled in the Advanced Serum Profiling in Recent Stroke (ASPIRE) study. From this cohort of 202 individuals, 58 patients who underwent an MRI and did not have a clinical stroke event were included in this study. Plasma samples were collected at the time of MRI, and targeted SL profiling was performed by HPLC/tandem mass spectrometry. T2 FLAIR imaging was evaluated for WMH and scored according to the Fazekas scoring (FS) method and manually quantified. Twenty two SLs were definitively identified, consisting of ceramide (Cer) and sphingomyelin (SM) species. Of these, two sphingolipids, SM 38:1 and Cer 34:1, significantly correlated with high FS (r = 0.287, p = 0.029, and r = 0.356, p = 0.006, respectively) and were used in subsequent analysis. SM 38:1 (OR 1.129, 95% CI 1.032, 1.236, p = 0.008) and Cer 34:1 (OR 1.118, 95% CI 1.031, 1.212, p = 0.007), accurately differentiated between FS 0–2 vs. 2.5–6 in regression analysis. A combined lipid score demonstrated fair discrimination in ROC analysis (AUC = 0.729, p = 0.003) and was cross-validated using leave-one-out analysis. Plasma levels of brain-specific SLs may serve as effective biomarkers of subacute white matter disease.
Collapse
Affiliation(s)
- Ida Azizkhanian
- New York Medical College School of Medicine, Valhalla, NY, United States
| | - Sunil A Sheth
- Department of Neurology, UT Health McGovern School of Medicine, Houston, TX, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, United States
| | - Songmi Lee
- Department of Neurology, UT Health McGovern School of Medicine, Houston, TX, United States
| | - Visesha Kakarla
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Jha MK, Lee Y, Russell KA, Yang F, Dastgheyb RM, Deme P, Ament XH, Chen W, Liu Y, Guan Y, Polydefkis MJ, Hoke A, Haughey NJ, Rothstein JD, Morrison BM. Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging. Glia 2019; 68:161-177. [PMID: 31453649 DOI: 10.1002/glia.23710] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Schwann cell (SC)-specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1 f/f mice with myelin protein zero (P0)-Cre mice. P0-Cre+/- , MCT1 f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0-Cre+/- , MCT1 f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin-associated glycoprotein, and increased expression of c-Jun and p75-neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Youngjin Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Katelyn A Russell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raha M Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weiran Chen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Brain Science Institute, Johns Hopkins University, Baltimore, Maryland
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Araque Caballero MÁ, Suárez-Calvet M, Duering M, Franzmeier N, Benzinger T, Fagan AM, Bateman RJ, Jack CR, Levin J, Dichgans M, Jucker M, Karch C, Masters CL, Morris JC, Weiner M, Rossor M, Fox NC, Lee JH, Salloway S, Danek A, Goate A, Yakushev I, Hassenstab J, Schofield PR, Haass C, Ewers M. White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease. Brain 2019; 141:3065-3080. [PMID: 30239611 PMCID: PMC6158739 DOI: 10.1093/brain/awy229] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
White matter alterations are present in the majority of patients with Alzheimer's disease type dementia. However, the spatiotemporal pattern of white matter changes preceding dementia symptoms in Alzheimer's disease remains unclear, largely due to the inherent diagnostic uncertainty in the preclinical phase and increased risk of confounding age-related vascular disease and stroke in late-onset Alzheimer's disease. In early-onset autosomal-dominantly inherited Alzheimer's disease, participants are destined to develop dementia, which provides the opportunity to assess brain changes years before the onset of symptoms, and in the absence of ageing-related vascular disease. Here, we assessed mean diffusivity alterations in the white matter in 64 mutation carriers compared to 45 non-carrier family non-carriers. Using tract-based spatial statistics, we mapped the interaction of mutation status by estimated years from symptom onset on mean diffusivity. For major atlas-derived fibre tracts, we determined the earliest time point at which abnormal mean diffusivity changes in the mutation carriers were detectable. Lastly, we assessed the association between mean diffusivity and cerebrospinal fluid biomarkers of amyloid, tau, phosphorylated-tau, and soluble TREM2, i.e. a marker of microglia activity. Results showed a significant interaction of mutations status by estimated years from symptom onset, i.e. a stronger increase of mean diffusivity, within the posterior parietal and medial frontal white matter in mutation carriers compared with non-carriers. The earliest increase of mean diffusivity was observed in the forceps major, forceps minor and long projecting fibres-many connecting default mode network regions-between 5 to 10 years before estimated symptom onset. Higher mean diffusivity in fibre tracts was associated with lower grey matter volume in the tracts' projection zones. Global mean diffusivity was correlated with lower cerebrospinal fluid levels of amyloid-β1-42 but higher levels of tau, phosphorylated-tau and soluble TREM2. Together, these results suggest that regionally selective white matter degeneration occurs years before the estimated symptom onset. Such white matter alterations are associated with primary Alzheimer's disease pathology and microglia activity in the brain.
Collapse
Affiliation(s)
- Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Marc Suárez-Calvet
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, Tübingen, Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Celeste Karch
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John C Morris
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Weiner
- University of California at San Francisco, San Francisco, CA94143, USA
| | - Martin Rossor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick C Fox
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Barker Street Randwick, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
20
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Kamil K, Yazid MD, Idrus RBH, Das S, Kumar J. Peripheral Demyelinating Diseases: From Biology to Translational Medicine. Front Neurol 2019; 10:87. [PMID: 30941082 PMCID: PMC6433847 DOI: 10.3389/fneur.2019.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
Abstract
Demyelinating diseases represent a spectrum of disorders that impose significant burden on global economy and society. Generally, the prognosis of these diseases is poor and there is no available cure. In recent decades, research has shed some light on the biology and physiology of Schwann cells and its neuroprotective effects in the peripheral nervous system (PNS). Insults to the PNS by various infectious agents, genetic predisposition and immune-related mechanisms jeopardize Schwann cell functions and cause demyelination. To date, there are no effective and reliable biomarkers for PNS-related diseases. Here, we aim to review the following: pathogenesis of various types of peripheral demyelinating diseases such as Guillain-Barre syndrome, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Anti-Myelin Associated Glycoprotein Neuropathy, POEMS syndrome, and Charcot-Marie-Tooth disease; emerging novel biomarkers for peripheral demyelinating diseases, and Schwann cell associated markers for demyelination.
Collapse
Affiliation(s)
- Khidhir Kamil
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Park SJ, Kim JK, Kim HH, Yoon BA, Ji DY, Lee CW, Kim HJ, Kim KH, Shin HY, Park SJ, Lee DY. Integrative metabolomics reveals unique metabolic traits in Guillain-Barré Syndrome and its variants. Sci Rep 2019; 9:1077. [PMID: 30705347 PMCID: PMC6355784 DOI: 10.1038/s41598-018-37572-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is an acute fatal progressive disease caused by autoimmune mechanism mainly affecting peripheral nervous system. Although the syndrome is clinically sub-classified into several variants, specific biomarker and exact pathomechanism of each subtypes are not well elucidated yet. In current study, integrative metabolomic and lipidomic profiles were acquisitioned from cerebrospinal fluid samples of 86 GBS from three variants and 20 disease controls. And the data were systematically compared to our previous result on inflammatory demyelination disorders of central nervous system (IDDs) and healthy controls. Primary metabolite profiles revealed unique metabolic traits in which 9 and 7 compounds were specifically changed in GBS and IDD, respectively. Next, the biomarker panel with 10 primary metabolites showed a fairly good discrimination power among 3 GBS subtypes, healthy controls, and disease controls (AUCs ranged 0.849-0.999). The robustness of the biomarker panel was vigorously validated by multi-step statistical evaluation. Subsequent lipidomics revealed GBS variant-specific alteration where the significant elevations of lyso-phosphatidylcholines and sphingomyelins were unique to AIDP (acute inflammatory demyelinating polyneuropathy) and AMAN (acute motor axonal neuropathy), respectively. And metabolome-wide multivariate correlation analysis identified potential clinical association between GBS disability scale (Hughes score) and CSF lipids (monoacylglycerols, and sphingomyelins). Finally, Bayesian network analysis of covarianced structures of primary metabolites and lipids proposed metabolic hub and potential biochemical linkage associated with the pathology.
Collapse
Affiliation(s)
- Soo Jin Park
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, 49315, Republic of Korea
| | - Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Byeol-A Yoon
- Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, 49315, Republic of Korea
| | - Dong Yoon Ji
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Chang-Wan Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Ho Jin Kim
- The Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, Republic of Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea.
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|