1
|
Chen YH, Wu JX, Yang SF, Wu YC, Hsiao YH. Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells. Int J Mol Sci 2024; 25:7915. [PMID: 39063157 PMCID: PMC11277542 DOI: 10.3390/ijms25147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Chia Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
2
|
Tuesley KM, Spilsbury K, Webb PM, Pearson SA, Donovan P, Coory MD, Steer CB, Stewart LM, Pandeya N, Protani MM, Dixon-Suen S, Marquart-Wilson L, Jordan SJ. Use of an emulated trial to investigate the association between use of nitrogen-based bisphosphonates and risk of epithelial ovarian cancer. Int J Epidemiol 2024; 53:dyae108. [PMID: 39133937 PMCID: PMC11319644 DOI: 10.1093/ije/dyae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the eighth most common cancer in women, with poor survival outcomes. Observational evidence suggests that nitrogen-based bisphosphonate (NBB) use may be associated with reduced risk of EOC, particularly the endometrioid and serous histotypes; however, confounding by indication is a concern. An alternative approach to investigate the chemo-preventive potential of NBBs is to emulate a target trial by identifying all women who initiate use of NBBs and investigate the risk of EOC for continued users compared with discontinued users. METHODS Using population-based linked data, we identified all Australian women aged over 50 years who first used NBBs over 2004-12. We used the year after first use to define treatment for each woman as either continued or discontinued use. We emulated randomization using stabilized inverse probability weights to balance the treatment groups using covariates including age, comorbidities and socioeconomic status. We followed women from treatment assignment until EOC diagnosis, death or 31 December 2013. We assessed the risk of EOC (overall and by histotype) using flexible parametric time-to-event models allowing for time-varying effects, and produced time-varying coefficients. RESULTS Of the 313 383 women in the study, 472 were diagnosed with EOC during follow-up (261 serous EOC), with an average age at diagnosis of 72 years. Continued use of NBBs was associated with reduced risk of EOC overall (HR = 0.87, 95% CI: 0.69, 1.10), and serous EOC (HR = 0.71, 95% CI: 0.53, 0.96), compared with discontinued treatment, with estimates remaining constant over the 9-year follow-up. CONCLUSIONS Results from our emulated trial suggest that in women who initiated NBB treatment, those who continued use had 13% and 29% lower hazards of being diagnosed with EOC overall and serous EOC, respectively, compared with women who discontinued use.
Collapse
Affiliation(s)
- Karen M Tuesley
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katrina Spilsbury
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Penelope M Webb
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sallie-Anne Pearson
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
- Centre of Research Excellence in Medicines Intelligence, University of New South Wales, Sydney, NSW, Australia
| | - Peter Donovan
- Clinical Pharmacology Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Michael D Coory
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher B Steer
- Border Medical Oncology, Albury-Wodonga Regional Cancer Centre, Albury, NSW, Australia
- University of NSW Rural Clinical School, Albury Campus, Albury, NSW, Australia
| | - Louise M Stewart
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | - Nirmala Pandeya
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Melinda M Protani
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Suzanne Dixon-Suen
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Louise Marquart-Wilson
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Clinical Malaria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Susan J Jordan
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Cavalluzzi MM, Viale M, Rotondo NP, Ferraro V, Lentini G. Drug Repositioning for Ovarian Cancer Treatment: An Update. Anticancer Agents Med Chem 2024; 24:637-647. [PMID: 38367265 DOI: 10.2174/0118715206282904240122063914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.
Collapse
Affiliation(s)
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Valeria Ferraro
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Thompson J, Wang Y, Dreischulte T, Barreiro O, Gonzalez RJ, Hanč P, Matysiak C, Neely HR, Rottenkolber M, Haskell T, Endres S, von Andrian UH. Association between bisphosphonate use and COVID-19 related outcomes. eLife 2023; 12:e79548. [PMID: 37534876 PMCID: PMC10691801 DOI: 10.7554/elife.79548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background Although there are several efficacious vaccines against COVID-19, vaccination rates in many regions around the world remain insufficient to prevent continued high disease burden and emergence of viral variants. Repurposing of existing therapeutics that prevent or mitigate severe COVID-19 could help to address these challenges. The objective of this study was to determine whether prior use of bisphosphonates is associated with reduced incidence and/or severity of COVID-19. Methods A retrospective cohort study utilizing payer-complete health insurance claims data from 8,239,790 patients with continuous medical and prescription insurance January 1, 2019 to June 30, 2020 was performed. The primary exposure of interest was use of any bisphosphonate from January 1, 2019 to February 29, 2020. Bisphosphonate users were identified as patients having at least one bisphosphonate claim during this period, who were then 1:1 propensity score-matched to bisphosphonate non-users by age, gender, insurance type, primary-care-provider visit in 2019, and comorbidity burden. Main outcomes of interest included: (a) any testing for SARS-CoV-2 infection; (b) COVID-19 diagnosis; and (c) hospitalization with a COVID-19 diagnosis between March 1, 2020 and June 30, 2020. Multiple sensitivity analyses were also performed to assess core study outcomes amongst more restrictive matches between BP users/non-users, as well as assessing the relationship between BP-use and other respiratory infections (pneumonia, acute bronchitis) both during the same study period as well as before the COVID outbreak. Results A total of 7,906,603 patients for whom continuous medical and prescription insurance information was available were selected. A total of 450,366 bisphosphonate users were identified and 1:1 propensity score-matched to bisphosphonate non-users. Bisphosphonate users had lower odds ratios (OR) of testing for SARS-CoV-2 infection (OR = 0.22; 95%CI:0.21-0.23; p<0.001), COVID-19 diagnosis (OR = 0.23; 95%CI:0.22-0.24; p<0.001), and COVID-19-related hospitalization (OR = 0.26; 95%CI:0.24-0.29; p<0.001). Sensitivity analyses yielded results consistent with the primary analysis. Bisphosphonate-use was also associated with decreased odds of acute bronchitis (OR = 0.23; 95%CI:0.22-0.23; p<0.001) or pneumonia (OR = 0.32; 95%CI:0.31-0.34; p<0.001) in 2019, suggesting that bisphosphonates may protect against respiratory infections by a variety of pathogens, including but not limited to SARS-CoV-2. Conclusions Prior bisphosphonate-use was associated with dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations. Prospective clinical trials will be required to establish a causal role for bisphosphonate-use in COVID-19-related outcomes. Funding This study was supported by NIH grants, AR068383 and AI155865, a grant from MassCPR (to UHvA) and a CRI Irvington postdoctoral fellowship, CRI2453 (to PH).
Collapse
Affiliation(s)
| | - Yidi Wang
- Dept. of Immunology, Harvard Medical SchoolBostonUnited States
| | - Tobias Dreischulte
- Institute of General Practice and Family Medicine, University Hospital of Ludwig Maximilians-University MunichMunichGermany
| | - Olga Barreiro
- Dept. of Immunology, Harvard Medical SchoolBostonUnited States
| | | | - Pavel Hanč
- Dept. of Immunology, Harvard Medical SchoolBostonUnited States
| | | | - Harold R Neely
- Dept. of Immunology, Harvard Medical SchoolBostonUnited States
| | - Marietta Rottenkolber
- Institute of General Practice and Family Medicine, University Hospital of Ludwig Maximilians-University MunichMunichGermany
| | | | - Stefan Endres
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, University Hospital, LMU Munich, GermanyMunichGermany
| | | |
Collapse
|
5
|
Ivermectin Augments the Anti-Cancer Activity of Pitavastatin in Ovarian Cancer Cells. Diseases 2023; 11:diseases11010049. [PMID: 36975598 PMCID: PMC10047003 DOI: 10.3390/diseases11010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
We have previously shown that pitavastatin has the potential to be used to treat ovarian cancer, although relatively high doses are likely to be necessary. One solution to this problem is to identify drugs that are synergistic with pitavastatin, thereby reducing the dose that is necessary to have a therapeutic effect. Here, we tested combinations of pitavastatin with the anti-parasitic drug ivermectin in six ovarian cancer cell lines. When tested on its own, ivermectin inhibited the growth of the cells but only with modest potency (IC50 = 10–20 µM). When the drugs were combined and assessed in cell growth assays, ivermectin showed synergy with pitavastatin in 3 cell lines and this was most evident in COV-318 cells (combination index ~ 0.6). Ivermectin potentiated the reduction in COV-318 cell viability caused by pitavastatin by 20–25% as well as potentiating apoptosis induced by pitavastatin, assessed by activation of caspase-3/7 (2–4 fold) and annexin-labelling (3–5 fold). These data suggest that ivermectin may be useful in the treatment of ovarian cancer when combined with pitavastatin, but methods to achieve an adequate ivermectin concentration in tumour tissue will be necessary.
Collapse
|
6
|
Xia L, Ding S, Wang X, Zhang X, Zhu L, Zhang H, Li H. Advances in ovarian cancer treatment using a combination of statins with other drugs. Front Pharmacol 2023; 13:1048484. [PMID: 36686716 PMCID: PMC9845598 DOI: 10.3389/fphar.2022.1048484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
New anti-cancer drugs are constantly being developed, especially targeted drugs. Although these drugs have achieved significant clinical efficacy, they do not play a significant role in ovarian cancer. Moreover, the research cycle and costs of such drugs are often huge. The repositioning of conventional drugs has gradually become a concern. Statins, as traditional lipid-lowering drugs, play a role mainly by inhibiting HMGCR. In recent years, epidemiological studies and in vitro experiments have confirmed its anti-cancer effect, especially the effect of anti-ovarian cancer. The mutation rate of TP53 in ovarian cancer is as high as 95%, while HMGCR is often highly expressed in TP53 mutant tumors. However, the effect of prospective clinical trials is not ideal. This result seems understandable considering that it seems unrealistic for a lipid-lowering drug to completely inhibit tumor growth. Therefore, statins play more synergistic roles in the treatment of ovarian cancer. Because ovarian cancer is a highly heterogeneous tumor, it may be a good choice to deeply understand the mechanism of statins in the treatment of ovarian cancer and achieve precise treatment by combining it with other drugs.
Collapse
Affiliation(s)
- Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shichao Ding
- Department of Internal Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China,*Correspondence: Hairong Zhang, ; Huirong Li,
| | - Huirong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China,*Correspondence: Hairong Zhang, ; Huirong Li,
| |
Collapse
|
7
|
Tuesley KM, Webb PM, Protani MM, Spilsbury K, Pearson SA, Coory MD, Donovan P, Steer C, Stewart LM, Pandeya N, Jordan SJ. Nitrogen-Based Bisphosphonate Use and Ovarian Cancer Risk in Women Aged 50 Years and Older. J Natl Cancer Inst 2022; 114:878-884. [PMID: 35262727 PMCID: PMC9194625 DOI: 10.1093/jnci/djac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There are few readily modifiable risk factors for epithelial ovarian cancer; pre-clinical studies suggest bisphosphonates could have chemo-preventive actions. Our study aimed to assess the association between use of nitrogen-based bisphosphonate medicine and risk of epithelial ovarian cancer, overall and by histotype. METHODS We conducted a case-control study nested within a large linked administrative dataset including all Australian women enrolled for Medicare, Australia's universal health insurance scheme, between July 2002 and December 2013. We included all women with epithelial ovarian cancer diagnosed at age 50 years and older between 1st July 2004 and 31st December 2013 (n = 9,367) and randomly selected up to five controls per case, individually matched to cases by age, state of residence, area-level socioeconomic status, and remoteness of residence category (n = 46,830). We used prescription records to ascertain use of nitrogen-based bisphosphonates (ever use and duration of use), raloxifene and other osteoporosis medicines (non-nitrogen-based bisphosphonates, strontium and denosumab). We calculated adjusted odds ratios (OR) and 95% confidence intervals (CI) using conditional logistic regression. RESULTS Ever use of nitrogen-based bisphosphonates was associated with a reduced risk of epithelial ovarian cancer compared to non-use (OR = 0.81, 95%CI : 0.75-0.88). There was a reduced risk of both endometrioid (OR = 0.51, 95%CI : 0.33-0.79) and serous histotypes (OR = 0.84, 95%CI : 0.75-0.93), but no association with the mucinous or clear cell histotypes. CONCLUSION Use of nitrogen-based bisphosphonates was associated with a reduced risk of endometrioid and serous ovarian cancer. This suggests the potential for use for prevention, although validation of our findings is required.
Collapse
Affiliation(s)
- Karen M Tuesley
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia.,Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Penelope M Webb
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia.,Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Melinda M Protani
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Katrina Spilsbury
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, Australia
| | | | - Michael D Coory
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Peter Donovan
- Clinical Pharmacology Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Christopher Steer
- Border Medical Oncology, Albury-Wodonga Regional Cancer Centre, Albury, Australia.,University of NSW Rural Clinical School, Albury Campus, Albury, New South Wales, Australia
| | - Louise M Stewart
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Nirmala Pandeya
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia.,Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susan J Jordan
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia.,Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
8
|
Jawad M, Ibrahim S, Kumar M, Burgert C, Li WW, Richardson A. Identification of foods that affect the anti‑cancer activity of pitavastatin in cells. Oncol Lett 2022; 23:73. [DOI: 10.3892/ol.2022.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mohammed Jawad
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| | - Suad Ibrahim
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| | - Mayur Kumar
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| | - Charlie Burgert
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| | - Wen-Wu Li
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| | - Alan Richardson
- The Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke‑on‑Trent, Staffordshire ST4 7QB, UK
| |
Collapse
|
9
|
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB, Romero C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021; 10:77. [PMID: 35052757 PMCID: PMC8772950 DOI: 10.3390/biomedicines10010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Allison N. Fredes
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Daniela B. Vera
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
10
|
In Vitro Studies on the Influence of Meloxicam on Cytotoxic Activity Induced by Risedronate Sodium in Canine (D-17) and Human (U-2 OS) Osteosarcoma Cell Lines. Animals (Basel) 2021; 11:ani11113135. [PMID: 34827867 PMCID: PMC8614298 DOI: 10.3390/ani11113135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The aim of this in vitro study was to reveal the pharmacological interactions between meloxicam and risedronate sodium, used jointly to induce a cytotoxic effect in canine (D-17) and human (U-2 OS) osteosarcoma cell lines. Meloxicam, a non-steroidal anti-inflammatory drug, is capable of intensifying the cytotoxic activity of risedronate sodium routinely used in bone tissue metabolic diseases. The cell cultures were incubated, tested, and evaluated according to standard protocols. The study demonstrated a greater susceptibility of canine osteosarcoma cells in vitro to the investigated drug combination than the human. In both cases, meloxicam alone showed low cytotoxic activity against the tested cell lines, but the two compounds combined were synergic. Abstract The study describes the cytotoxic effect against human and canine osteosarcoma (U-2 OS and D-17) cell lines induced by risedronate sodium and meloxicam per se and in combination. Both cell lines were prepared according to standard procedures for cell cultures studies. The cell viability was estimated in both cell lines treated with chosen concentrations of risedronate sodium and meloxicam. The apoptosis assessment was carried out using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. EC50 values, computed for risedronate sodium and meloxicam cytotoxicity, showed comparable effects against the canine OS cell line in similar concentration of both drugs. In case of human OS, the stronger cytotoxic effect of risedronate sodium was proved. The EC50 values for meloxicam in both cell lines were, statistically, significantly different (* p < 0.05). Moreover, the cytotoxic effect of a combined administration of meloxicam and risedronate sodium in doses 100 µg/mL, compared with the negative control showed statistically significant differences. The human OS cell line was more resistant to both compounds than the canine OS cell line. The apoptotic effect in canine and human osteosarcoma triggered by risedronate sodium and meloxicam was statistically significant (p < 0.05). The cytotoxic effect induced with 100 µg/mL of risedronate sodium proved statistically significant differences between both tested cell lines compared to negative control. The results obtained with 10 and 100 µg/mL of meloxicam were not statistically significant. The study showed the synergic mechanism of action of risedronate sodium and meloxicam, but the concentrations used in vitro will not be possible to achieve in in vivo. Therefore, our results serve as basis only to design future studies on the tissue level.
Collapse
|
11
|
Chen YH, Huang YC, Yang SF, Yen HH, Tsai HD, Hsieh MC, Hsiao YH. Pitavastatin and metformin synergistically activate apoptosis and autophagy in pancreatic cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1491-1503. [PMID: 33886150 DOI: 10.1002/tox.23146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths globally. Metformin is the standard first-line of treatment for hyperglycemia in Type 2 diabetes, whereas pitavastatin is a cholesterol-lowering drug used to prevent cardiovascular diseases. Both these agents evidently exert anticancer effects on pancreatic cancer; however, it remains unclear whether cotreatment using them has additive or synergistic anticancer effects on pancreatic cancer. Thus, we herein used the ASPC-1 and PANC-1 cells and treated them with metformin and/or pitavastatin. We performed the cell viability assay, transwell migration assay, and cell cycle analysis using flow cytometry. Western blotting was used to determine protein levels. We found that cotreatment with metformin (30 mM) and pitavastatin (10 μM) significantly reduced cell viability; caused G0/G1 cell cycle arrest; upregulated the expression levels of Bax, PCNA, cleaved PARP-1, cleaved caspase-3, LC3 II, and p27 Kip1 /p21Cip1 ; and inhibited cell migration. The combination index value for cell viability indicated a synergistic interaction between metformin and pitavastatin. Moreover, cotreating the cells with metformin (30 mM) and pitavastatin (10 μM) could preserve mitochondrial function, activate AMPK, and inhibit PI3K/mTOR than treatment with metformin or pitavastatin alone. These findings clearly indicated that metformin plus pitavastatin had a synergistic anticancer effect on pancreatic cancer cells, potentially caused due to the activation of AMPK and inhibition of PI3K/mTOR signaling. Altogether, our results provide that use of metformin plus pitavastatin maybe serve as a chemotherapeutic agent for human pancreatic cancer in future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Chih Huang
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsu-Heng Yen
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Horng-Der Tsai
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Chia Hsieh
- Intelligent Diabetes Metabolism and Exercise Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
12
|
Pitavastatin stimulates retinal angiogenesis via HMG-CoA reductase-independent activation of RhoA-mediated pathways and focal adhesion. Graefes Arch Clin Exp Ophthalmol 2021; 259:2707-2716. [PMID: 34328550 DOI: 10.1007/s00417-021-05328-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/13/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive angiogenesis of the retina is a key component of irreversible causes of blindness in many ocular diseases. Pitavastatin is a cholesterol-lowering drug used to reduce the risk of cardiovascular diseases. Various studies have shown the effects of pitavastatin on angiogenesis but the conclusions are contradictory. The effects of pitavastatin on retinal angiogenesis have not been revealed. This study investigated the effects of pitavastatin at clinically relevant concentrations on retinal angiogenesis and its underlying mechanisms using retinal microvascular endothelial cells (RMECs). METHODS The effects of pitavastatin on retinal angiogenesis were determined using in vitro model of retinal angiogenesis, endothelial cell migration, adhesion, proliferation, and apoptosis assays. The mechanism studies were conducted using immunoblotting and stress fiber staining. RESULTS Pitavastatin stimulated capillary network formation of RMECs in a similar manner as vascular endothelial growth factor (VEGF) and lipopolysaccharide (LPS). Pitavastatin also increased RMEC migration, adhesion to Matrigel, growth, and survival. The combination of pitavastatin with VEGF or LPS was more effective than VEGF or LPS alone in stimulating biological activities of RMECs, suggesting that pitavastatin can enhance the stimulatory effects of VEGF and LPS on retinal angiogenesis. Pitavastatin acted on RMECs in a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-independent manner. In contrast, pitavastatin activated pro-angiogenic microenvironment via promoting the secretion of VEGF and stimulated retinal angiogenesis via multiple mechanisms including activation of RhoA-mediated pathways, induction of focal adhesion complex formation, and activation of ERK pathway. CONCLUSION Our work provides a preclinical evidence on the pro-angiogenic effect of pitavastatin in retina via multiple mechanisms that are irrelevant to mevalonate pathway.
Collapse
|
13
|
Manzano-León N, Garcia-Lopez P. Statins as adjuvants in the treatment of ovarian cancer: Controversy and misunderstanding. Eur J Pharmacol 2021; 896:173915. [PMID: 33513335 DOI: 10.1016/j.ejphar.2021.173915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/06/2020] [Accepted: 01/22/2021] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is frequently detected in advanced stages when the chances of survival are very low. Although chemotherapy is the treatment of choice, it is often rapidly compromised by the development of chemoresistance in patients. There are few pharmacological alternatives for managing chemoresistant ovarian cancer and statins have been suggested as an alternative, but their use is considered controversial. We present an overview of the most relevant epidemiological, in vitro and in vivo studies on the effects of statins in mono- or polytherapy for ovarian cancer. We conclude that the negative or inconclusive results of some epidemiological studies on statin-based cancer treatment are probably due, in large part, to the low doses given to patients, equivalent to those prescribed for hypercholesterolemia. Higher concentrations are well tolerated in animal models and by most patients in clinical trials. Future research is necessary to explore this possibility.
Collapse
Affiliation(s)
- Natalia Manzano-León
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI, C.P. 14080, CDMX, Mexico.
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI, C.P. 14080, CDMX, Mexico.
| |
Collapse
|
14
|
Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res 2020; 26:5791-5800. [PMID: 32887721 DOI: 10.1158/1078-0432.ccr-20-1967] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed cholesterol-lowering drugs that inhibit HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate metabolic pathway. Multiple lines of evidence indicate that certain cancers depend on the mevalonate pathway for growth and survival, and, therefore, are vulnerable to statin therapy. However, these immediately available, well-tolerated, and inexpensive drugs have yet to be successfully repurposed and integrated into cancer patient care. In this review, we highlight recent advances and outline important considerations for advancing statins to clinical trials in oncology.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jenna E van Leeuwen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mohamad Elbaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Branchard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Göbel A, Zinna VM, Dell'Endice S, Jaschke N, Kuhlmann JD, Wimberger P, Rachner TD. Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer. BMC Cancer 2020; 20:703. [PMID: 32727400 PMCID: PMC7388525 DOI: 10.1186/s12885-020-07164-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stefania Dell'Endice
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nikolai Jaschke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Dominik Kuhlmann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Chen YH, Chen YC, Lin CC, Hsieh YP, Hsu CS, Hsieh MC. Synergistic Anticancer Effects of Gemcitabine with Pitavastatin on Pancreatic Cancer Cell Line MIA PaCa-2 in vitro and in vivo. Cancer Manag Res 2020; 12:4645-4665. [PMID: 32606957 PMCID: PMC7306478 DOI: 10.2147/cmar.s247876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with an overall 5-year survival rate of 9.3%, and this malignancy is expected to become the second leading cause of cancer-related death by 2030. Gemcitabine resistance develops within weeks of PDAC patient’s chemotherapeutic initiation. Statins, including pitavastatin, have been indicated to have anticancer effects in numerous human cancer cell lines. Thus, in this study, we hypothesized that a combination of gemcitabine and pitavastatin may have a greater anticancer effect than gemcitabine alone on the human pancreatic carcinoma cell line MIA PaCa-2. Methods The anticancer effects of gemcitabine with pitavastatin were evaluated using human MIA PaCa-2 cell line in vitro and in vivo Balb/c murine xenograft tumor model. Cell viability was assessed with CCK-8, and cell migration was stained by crystal violet. Cell cycle distribution, apoptosis and mitochondrial membrane potential were examined by flow cytometry. Activation of drug transporters (hENTs, hCNTs), intracellular drug activating (dCK) and inhibition of inactivating enzymes (RRMs) pathways were assessed by Western blotting analysis. Molecular mechanisms and signaling pathways of apoptosis, necrosis and autophagy also were assessed by Western blotting. Results We observed that gemcitabine and pitavastatin synergistically suppressed the proliferation of MIA PaCa-2 cells through causing sub-G1 and S phase cell cycle arrest. Activation of apoptosis/necrosis was confirmed by annexin V/propidium iodide double staining, which showed increasing levels of active caspase 3, cleaved poly(ADP-ribose) polymerase and the RIP1–RIP3–MLKL complex. Moreover, gemcitabine–pitavastatin-mediated S phase arrest downregulated cyclin A2/CDK2 and upregulated p21/p27 in MIA PaCa-2 cells. Furthermore, this combination improved drug cellular metabolism pathway, mitochondria function and activated autophagy as part of the cell death mechanism. In vivo, gemcitabine-pitavastatin effectively inhibited tumor growth in a nude mouse mode of Mia PaCa-2 xenografts without observed adverse effect. Conclusion Combined gemcitabine–pitavastatin may be an effective novel treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chun Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan.,Department of Health and Nutrition, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Peng Hsieh
- Division of General Internal Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Chia Hsieh
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Intelligent Diabetes Metabolism and Exercise Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Chiarella E, Codispoti B, Aloisio A, Cosentino EG, Scicchitano S, Montalcini Y, Lico D, Morrone G, Mesuraca M, Bond HM. Zoledronic acid inhibits the growth of leukemic MLL-AF9 transformed hematopoietic cells. Heliyon 2020; 6:e04020. [PMID: 32529062 PMCID: PMC7283156 DOI: 10.1016/j.heliyon.2020.e04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
A leukemic in vitro model produced by transducing Cord Blood derived-hematopoietic CD34+ cells with the MLL-AF9 translocation resulting in the oncogenic fusion protein, is used to assess for sensitivity to Zoledronic acid. These cells are practically immortalized and are of myeloid origin. Proliferation, clonogenic and stromal co-culture assays showed that the MLL-AF9 cells were considerably more sensitive to Zoledronic acid than normal hematopoietic CD34+ cells or MS-5 stromal cells. The MLL-AF9 cells were notably more inhibited by Zoledronic acid when cultured as colonies in 3 dimensions, requiring cell-cell contacts compared to suspension expansion cultures. This is coherent with the mechanism of action of Zoledronic acid inhibiting farnesyl diphosphate synthase which results in a block in prenylation of GTPases such that their role in the membrane is compromised for cell-cell contacts. Zoledronic acid can be proposed to target the MLL-AF9 leukemic stem cells before they emerge from the hematopoietic niche, which being in proximity to bone osteoclasts where Zoledronic acid is sequestered can be predicted to result in sufficient levels to result in an anti-leukemic action.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Bruna Codispoti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.,Tecnologica Research Institute-Marrelli Health, 88900 Crotone, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Emanuela G Cosentino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.,Exiris S.r.l., 00128 Roma, Italy
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Daniela Lico
- Department of Obstetrics & Ginecology, University Magna Græcia, 88100 Catanzaro, Italy
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Alexandrova E, Pecoraro G, Sellitto A, Melone V, Ferravante C, Rocco T, Guacci A, Giurato G, Nassa G, Rizzo F, Weisz A, Tarallo R. An Overview of Candidate Therapeutic Target Genes in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061470. [PMID: 32512900 PMCID: PMC7352306 DOI: 10.3390/cancers12061470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer (OC) shows the highest mortality rate among gynecological malignancies and, because of the absence of specific symptoms, it is frequently diagnosed at an advanced stage, mainly due to the lack of specific and early biomarkers, such as those based on cancer molecular signature identification. Indeed, although significant progress has been made toward improving the clinical outcome of other cancers, rates of mortality for OC are essentially unchanged since 1980, suggesting the need of new approaches to identify and characterize the molecular mechanisms underlying pathogenesis and progression of these malignancies. In addition, due to the low response rate and the high frequency of resistance to current treatments, emerging therapeutic strategies against OC focus on targeting single factors and pathways specifically involved in tumor growth and metastasis. To date, loss-of-function screenings are extensively applied to identify key drug targets in cancer, seeking for more effective, disease-tailored treatments to overcome lack of response or resistance to current therapies. We review here the information relative to essential genes and functional pathways recently discovered in OC, often strictly interconnected with each other and representing promising biomarkers and molecular targets to treat these malignancies.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Teresa Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Anna Guacci
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- CRGS-Genome Research Center for Health, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
- Correspondence: (A.W.); (R.T.); Tel.: +39-089-965043 (A.W.); +39-089-965067 (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Correspondence: (A.W.); (R.T.); Tel.: +39-089-965043 (A.W.); +39-089-965067 (R.T.)
| |
Collapse
|
19
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
20
|
Friggeri L, Hargrove TY, Wawrzak Z, Guengerich FP, Lepesheva GI. Validation of Human Sterol 14α-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. J Med Chem 2019; 62:10391-10401. [PMID: 31663733 PMCID: PMC6881533 DOI: 10.1021/acs.jmedchem.9b01485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sterol 14α-demethylases (CYP51) are the cytochrome P450 enzymes required for biosynthesis of sterols in eukaryotes, the major targets for antifungal agents and prospective targets for treatment of protozoan infections. Human CYP51 could be and, for a while, was considered as a potential target for cholesterol-lowering drugs (the role that is now played by statins, which are also in clinical trials for cancer) but revealed high intrinsic resistance to inhibition. While microbial CYP51 enzymes are often inhibited stoichiometrically and functionally irreversibly, no strong inhibitors have been identified for human CYP51. In this study, we used comparative structure/functional analysis of CYP51 orthologs from different biological kingdoms and employed site-directed mutagenesis to elucidate the molecular basis for the resistance of the human enzyme to inhibition and also designed, synthesized, and characterized new compounds. Two of them inhibit human CYP51 functionally irreversibly with their potency approaching the potencies of azole drugs currently used to inhibit microbial CYP51.
Collapse
Affiliation(s)
- Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Tatiana Y. Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
21
|
Screening a library of approved drugs reveals that prednisolone synergizes with pitavastatin to induce ovarian cancer cell death. Sci Rep 2019; 9:9632. [PMID: 31270377 PMCID: PMC6610640 DOI: 10.1038/s41598-019-46102-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
The survival rate for patients with ovarian cancer has changed little in the past three decades since the introduction of platinum-based chemotherapy and new drugs are needed. Statins are drugs used for the treatment and prevention of cardiovascular diseases. Recent work from our laboratory has shown that pitavastatin has potential as a treatment for ovarian cancer if dietary geranylgeraniol is controlled. However, relatively high doses of statins are required to induce apoptosis in cancer cells, increasing the risk of myopathy, the most common adverse effect associated with statins. This makes it desirable to identify drugs which reduce the dose of pitavastatin necessary to treat cancer. A drug-repositioning strategy was employed to identify suitable candidates. Screening a custom library of 100 off-patent drugs for synergistic activity with pitavastatin identified prednisolone as the most prominent hit. Prednisolone potentiated the activity of pitavastatin in several assays measuring the growth, survival or apoptosis in several ovarian cancer cells lines. Prednisolone, alone or in some cases in combination with pitavastatin, reduced the expression of genes encoding enzymes in the mevalonate pathway, providing a mechanistic explanation for the synergy.
Collapse
|
22
|
Klochkov SG, Neganova ME, Yarla NS, Parvathaneni M, Sharma B, Tarasov VV, Barreto G, Bachurin SO, Ashraf GM, Aliev G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol 2019; 56:128-134. [DOI: 10.1016/j.semcancer.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
23
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Palko-Łabuz A, Środa-Pomianek K, Wesołowska O, Kostrzewa-Susłow E, Uryga A, Michalak K. MDR reversal and pro-apoptotic effects of statins and statins combined with flavonoids in colon cancer cells. Biomed Pharmacother 2018; 109:1511-1522. [PMID: 30551403 DOI: 10.1016/j.biopha.2018.10.169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
The resistance of cancer cells to a variety of structurally non-related cytotoxic drugs is known as multidrug resistance phenomenon (MDR). In cellular membranes an activity of MDR transporters such as P-glycoprotein (ABCB1) is affected by their lipid environment. Many various compounds have been examined for their ability to restore drug-sensitivity of resistant cancer cells. Statins, inhibitors of the key enzyme of mevalonate pathway HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase are drugs commonly prescribed in order to reduce serum level of cholesterol and to diminish the risk of cardiovascular disease. Statins as drugs that influence lipid composition of cell membrane and in that way they also exert influence on lipid bilayer properties appear to be good candidates as MDR modulators. In this work it was shown that statins - mevastatin and simvastatin exert antiproliferative, pro-apoptotic and reversing drug resistance effect in human colon adenocarcinoma cell line LoVo and its drug-resistant subline LoVo/Dx. A hypothesis was also checked whether flavones, which as it is well known are able to influence the biosynthesis of cholesterol, may change the anticancer activity of statins. Our investigations have revealed that combined use of statins and studied flavonoids results in enhanced cell growth inhibition and apoptosis and lower cancer cell proliferation as compared to the application only statins alone. Moreover, in drug resistant LoVo/Dx cells a stronger decrease of resistance to doxorubicine was observed in the presence of statins in combination with flavones as compared to the effect observed for statins only.
Collapse
Affiliation(s)
- Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland.
| | - Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wroclaw, Poland
| | - Anna Uryga
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| |
Collapse
|
25
|
Shahruzaman SH, Fakurazi S, Maniam S. Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 2018; 10:2325-2335. [PMID: 30104901 PMCID: PMC6074761 DOI: 10.2147/cmar.s167424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
Collapse
Affiliation(s)
- Shazwin Hani Shahruzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
26
|
Abdullah MI, de Wolf E, Jawad MJ, Richardson A. The poor design of clinical trials of statins in oncology may explain their failure - Lessons for drug repurposing. Cancer Treat Rev 2018; 69:84-89. [PMID: 29936313 DOI: 10.1016/j.ctrv.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/27/2023]
Abstract
Statins are widely used to treat hypercholesterolaemia. However, by inhibiting the production of mevalonate, they also reduce the production of several isoprenoids that are necessary for the function of small GTPase oncogenes such as Ras. As such, statins offer an attractive way to inhibit an "undruggable" target, suggesting that they may be usefully repurposed to treat cancer. However, despite numerous studies, there is still no consensus whether statins are useful in the oncology arena. Numerous preclinical studies have provided evidence justifying the evaluation of statins in cancer patients. Some retrospective studies of patients taking statins to control cholesterol have identified a reduced risk of cancer mortality. However, prospective clinical studies have mostly not been successful. We believe that this has occurred because many of the prospective clinical trials have been poorly designed. Many of these trials have failed to take into account some or all of the factors identified in preclinical studies that are likely to be necessary for statins to be efficacious. We suggest an improved trial design which takes these factors into account. Importantly, we suggest that the design of clinical trials of drugs which are being considered for repurposing should not assume it is appropriate to use them in the same way as they are used in their original indication. Rather, such trials deserve to be informed by preclinical studies that are comparable to those for any novel drug.
Collapse
Affiliation(s)
- Marwan I Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Elizabeth de Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Mohammed J Jawad
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom; School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|