1
|
Abelin JG, Cox AL. Innovations Toward Immunopeptidomics. Mol Cell Proteomics 2024; 23:100823. [PMID: 39095021 PMCID: PMC11419911 DOI: 10.1016/j.mcpro.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
Collapse
Affiliation(s)
| | - Andrea L Cox
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA; Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jiang M, Yang J, Yang L, Wang L, Wang T, Han S, Cheng Y, Chen Z, Su Y, Zhang L, Yang F, Chen SA, Zhang J, Xiong H, Wang L, Zhang Z, Ma L, Luo X, Xing Q. An association study of HLA with levofloxacin-induced severe cutaneous adverse drug reactions in Han Chinese. iScience 2023; 26:107391. [PMID: 37554438 PMCID: PMC10404721 DOI: 10.1016/j.isci.2023.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Levofloxacin-induced severe cutaneous adverse drug reactions (LEV-SCARs) remain unexplored. An association study of human leukocyte antigen (HLA) alleles with LEV-SCARs among 12 patients, 806 healthy subjects, and 100 levofloxacin-tolerant individuals was performed. The carrier frequencies of HLA-B∗13:01 (odds ratio [OR]: 4.50; 95% confidence interval [CI]: 1.15-17.65; p = 0.043), HLA-B∗13:02 (OR: 6.14; 95% CI: 1.73-21.76; p = 0.0072), and serotype B13 (OR: 17.73; 95% CI: 3.61-86.95; p = 4.85 × 10-5) in patients with LEV-SCARs were significantly higher than those of levofloxacin-tolerant individuals. Molecular docking analysis suggested that levofloxacin formed more stable binding models with HLA-B∗13:01 and HLA-B∗13:02 than with non-risk HLA-B∗46:01. Mass spectrometry revealed that nonapeptides bound to HLA-B∗13:02 shifted at several positions after exposure to levofloxacin. Prospective screening for serotype B13 (sensitivity: 83%, specificity: 78%) and alternative drug treatment for carriers may significantly decrease the incidence of LEV-SCARs.
Collapse
Affiliation(s)
- Menglin Jiang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| | - Jin Yang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lina Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Wang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Cheng
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| | - Zihua Chen
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Su
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fanping Yang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sheng-an Chen
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin Zhang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| | - Hao Xiong
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lanting Wang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Zhang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Ma
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqun Luo
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinghe Xing
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Shahbazy M, Ramarathinam SH, Illing PT, Jappe EC, Faridi P, Croft NP, Purcell AW. Benchmarking bioinformatics pipelines in data-independent acquisition mass spectrometry for immunopeptidomics. Mol Cell Proteomics 2023; 22:100515. [PMID: 36796644 PMCID: PMC10060114 DOI: 10.1016/j.mcpro.2023.100515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Immunopeptidomes are the peptide repertoires bound by the molecules encoded by the major histocompatibility complex (MHC) (human leukocyte antigen (HLA) in humans). These HLA-peptide complexes are presented on the cell surface for immune T-cell recognition. Immunopeptidomics denotes the utilization of tandem mass spectrometry (MS/MS) to identify and quantify peptides bound to HLA molecules. Data-independent acquisition (DIA) has emerged as a powerful strategy for quantitative proteomics and deep proteome-wide identification; however, DIA application to immunopeptidomics analyses has so far seen limited use. Further, of the many DIA data processing tools currently available, there is no consensus in the immunopeptidomics community on the most appropriate pipeline(s) for in-depth and accurate HLA peptide identification. Herein, we benchmarked four commonly used spectral library-based DIA pipelines developed for proteomics applications (Skyline, Spectronaut, DIA-NN, and PEAKS) for their ability to perform immunopeptidome quantification. We validated and assessed the capability of each tool to identify and quantify HLA-bound peptides. Generally, DIA-NN and PEAKS provided higher immunopeptidome coverage with more reproducible results. Skyline and Spectronaut conferred more accurate peptide identification with lower experimental false-positive rates. All tools demonstrated reasonable correlations in quantifying precursors of HLA-bound peptides. Our benchmarking study suggests a combined strategy of applying at least two complementary DIA software tools to achieve the greatest degree of confidence and in-depth coverage of immunopeptidome data.
Collapse
Affiliation(s)
- Mohammad Shahbazy
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Emma C Jappe
- Evaxion Biotech, Bredgade 34E, DK-1260 Copenhagen, Denmark
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Zhou XY, Li CX, Zhang JB, Tan JT, -Yang X, Albarmaqi RA, Li YY, Kuang YQ. Association of Human Leukocyte Antigen Alleles and Hypersensitivity of Efavirenz/Nevirapine in HIV-Infected Chinese Patients. AIDS Res Hum Retroviruses 2022; 38:884-889. [PMID: 36226442 DOI: 10.1089/aid.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To examine the association between human leukocyte antigen (HLA) and nevirapine (NVP)- and efavirenz (EFV)-induced cutaneous adverse reactions in human immunodeficiency virus (HIV) patients, we conducted a case-control study at our center consisting of 96 patients. Patients were further assigned based on the occurrence of cutaneous adverse events and the drugs involved. All patients were subjected to next generation sequencing (NGS)-based screening with focus on HLA phenotype, including the presence of HLA-B, HLA-C, and HLA-DRB1. Our data indicated that the HLA-C*01:02:01 allele presence was observed in 47.4% (18/38) of patients in the EFV-hypersensitivity group compared with 18.9% (7/30) in the control group [odds ratio (OR) = 5.837; 95% confidence interval (CI) = 1.727-19.722, p = .005]. In contrast, the occurrence of HLA-DRB1*08:03 was found to be significantly lower in the EFV-hypersensitivity group (4/38, 10.5%) compared with the corresponding control group (12/37, 32.4%) (OR = 0.148; 95% CI = 0.035-0.625, p = .009). In addition, the HLA-DRB1*04:05:01 antigen was expressed more frequently in the NVP-hypersensitivity group (23.8%, 5/21) compared with the control group (10.8%, 4/37) (OR = 7; 95% CI = 1.265-38.793, p = .026). Our data not only revealed a significant association between HLA-C*01:02:01 and EFV-induced cutaneous adverse reactions but may also shed light on defining the treatment for Chinese HIV patients.
Collapse
Affiliation(s)
- Xiao-Yan Zhou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chong-Xi Li
- Department of HIV/AIDS, Third People's Hospital of Kunming City, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Jun-Ting Tan
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi -Yang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rowida A Albarmaqi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Ye Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J, Khan DA, Golden DBK, Shaker M, Stukus DR, Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J. Drug allergy: A 2022 practice parameter update. J Allergy Clin Immunol 2022; 150:1333-1393. [PMID: 36122788 DOI: 10.1016/j.jaci.2022.08.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Affiliation(s)
- David A Khan
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Aleena Banerji
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Roland Solensky
- Corvallis Clinic, Oregon State University/Oregon Health Science University College of Pharmacy, Corvallis, Ore
| | - Andrew A White
- Department of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Derek K Chu
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David B K Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Matthew J Greenhawt
- Food Challenge and Research Unit Section of Allergy and Immunology, Children's Hospital Colorado University of Colorado School of Medicine, Aurora, Colo
| | - Caroline C Horner
- Department of Pediatrics, Division of Allergy Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Dennis Ledford
- Division of Allergy and Immunology, Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla; James A. Haley Veterans Affairs Hospital, Tampa, Fla
| | - Jay A Lieberman
- Division of Allergy and Immunology, The University of Tennessee Health Science Center, Memphis, Tenn
| | - John Oppenheimer
- Division of Allergy, Rutgers New Jersey Medical School, Rutgers, NJ
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - Marcus S Shaker
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio
| | - Dana Wallace
- Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Daly AK. Pharmacogenetics of the cytochromes P450: Selected pharmacological and toxicological aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:49-72. [PMID: 35953163 DOI: 10.1016/bs.apha.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the availability of detailed genomic data on all 57 human cytochrome P450 genes, it is clear that there is substantial variability in gene product activity with functionally significant polymorphisms reported across almost all isoforms. This article is concerned mainly with 13 P450 isoforms of particular relevance to xenobiotic metabolism. After brief review of the extent of polymorphism in each, the relevance of selected P450 isoforms to both adverse drug reaction and disease susceptibility is considered in detail. Bleeding due to warfarin and other coumarin anticoagulants is considered as an example of a type A reaction with idiosyncratic adverse drug reactions affecting the liver and skin as type B. It is clear that CYP2C9 variants contribute significantly to warfarin dose requirement and also risk of bleeding, with a minor contribution from CYP4F2. In the case of idiosyncratic adverse drug reactions, CYP2B6 variants appear relevant to both liver and skin reactions to several drugs with CYP2C9 variants also relevant to phenytoin-related skin rash. The relevance of P450 genotype to disease susceptibility is also considered but detailed genetic studies now suggest that CYP2A6 is the only P450 relevant to risk of lung cancer with alleles associated with low or absent activity clearly protective against disease. Other cytochrome P450 genotypes are generally not predictors for risk of cancer or other complex disease development.
Collapse
Affiliation(s)
- Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
7
|
Deshpande P, Li Y, Thorne M, Palubinsky AM, Phillips EJ, Gibson A. Practical Implementation of Genetics: New Concepts in Immunogenomics to Predict, Prevent, and Diagnose Drug Hypersensitivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1689-1700. [PMID: 35526777 PMCID: PMC9948495 DOI: 10.1016/j.jaip.2022.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Delayed drug hypersensitivities are CD8+ T cell-mediated reactions associated with up to 50% mortality. Human leukocyte antigen (HLA) alleles are known to predispose disease and are specific to drug, reaction, and patient ethnicity. Pretreatment screening is recommended for a handful of the strongest associations to identify and prevent drug use in high-risk patients. However, an incomplete predictive value implicates other HLA-imposed risk factors, and low carriage of many identified HLA-risk alleles combined with the high cost of sequence-based typing has limited economic viability for similar recommendation of screening across drugs and health care systems. For mitigation, an expanding armory of low-cost polymerase chain reaction-based screens is being developed, and HLA-imposed risk factors are being discovered. These include (1) polymorphic variants of metabolic and endoplasmic reticulum aminopeptidase enzymes toward multiallelic screening with increased predictivity; (2) regulation by immune checkpoint inhibitors, enabling detolerized animal models of human disease; and (3) immunodominant T cell receptors (TCR) on clonally expanded CD8+ T cells. For the latter, HLA risk-restricted TCR provides immunogenomic strategies and samples from a single patient to identify novel HLA-risk associations in underserved minority populations, tissue-relevant effector biomarkers toward earlier diagnosis and treatment, and HLA-TCR-presented immunogenic structures to aid future drug development.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Yueran Li
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Michael Thorne
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | | | - Elizabeth J Phillips
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia,Vanderbilt University Medical Centre (VUMC), Nashville, TN, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
Koomdee N, Kloypan C, Jinda P, Rachanakul J, Jantararoungtong T, Sukprasong R, Prommas S, Nuntharadthanaphong N, Puangpetch A, Ershadian M, John S, Biswas M, Sukasem C. Evolution of HLA-B Pharmacogenomics and the Importance of PGx Data Integration in Health Care System: A 10 Years Retrospective Study in Thailand. Front Pharmacol 2022; 13:866903. [PMID: 35450046 PMCID: PMC9016335 DOI: 10.3389/fphar.2022.866903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10‐year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011–2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
Collapse
Affiliation(s)
- Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand.,Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
The pockets guide to HLA class I molecules. Biochem Soc Trans 2021; 49:2319-2331. [PMID: 34581761 PMCID: PMC8589423 DOI: 10.1042/bst20210410] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigens (HLA) are cell-surface proteins that present peptides to T cells. These peptides are bound within the peptide binding cleft of HLA, and together as a complex, are recognised by T cells using their specialised T cell receptors. Within the cleft, the peptide residue side chains bind into distinct pockets. These pockets ultimately determine the specificity of peptide binding. As HLAs are the most polymorphic molecules in humans, amino acid variants in each binding pocket influences the peptide repertoire that can be presented on the cell surface. Here, we review each of the 6 HLA binding pockets of HLA class I (HLA-I) molecules. The binding specificity of pockets B and F are strong determinants of peptide binding and have been used to classify HLA into supertypes, a useful tool to predict peptide binding to a given HLA. Over the years, peptide binding prediction has also become more reliable by using binding affinity and mass spectrometry data. Crystal structures of peptide-bound HLA molecules provide a means to interrogate the interactions between binding pockets and peptide residue side chains. We find that most of the bound peptides from these structures conform to binding motifs determined from prediction software and examine outliers to learn how these HLAs are stabilised from a structural perspective.
Collapse
|
10
|
Cornaby C, Schmitz JL, Weimer ET. Next-generation sequencing and clinical histocompatibility testing. Hum Immunol 2021; 82:829-837. [PMID: 34521569 DOI: 10.1016/j.humimm.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
Abstract
Histocompatibility testing is essential for donor identification and risk assessment in solid organ and hematopoietic stem cell transplant. Additionally, it is useful for identifying donor specific alleles for monitoring donor specific antibodies in post-transplant patients. Next-generation sequence (NGS) based human leukocyte antigen (HLA) typing has improved many aspects of histocompatibility testing in hematopoietic stem cell and solid organ transplant. HLA disease association testing and research has also benefited from the advent of NGS technologies. In this review we discuss the current impact and future applications of NGS typing on clinical histocompatibility testing for transplant and non-transplant purposes.
Collapse
Affiliation(s)
- Caleb Cornaby
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA
| | - John L Schmitz
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric T Weimer
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Hertzman RJ, Deshpande P, Gibson A, Phillips EJ. Role of pharmacogenomics in T-cell hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol 2021; 21:327-334. [PMID: 34039850 PMCID: PMC8243836 DOI: 10.1097/aci.0000000000000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW An update of the pharmacogenetic risk factors associated with T-cell-mediated delayed hypersensitivity reactions. RECENT FINDINGS Recent HLA associations relevant to our understanding of immunopathogenesis and clinical practice include HLA-B∗13:01 with co-trimoxazole-induced SCAR, and HLA-A∗32:01 with vancomycin-DRESS, for which an extended HLA class II haplotype is implicated in glycopeptide antibiotic cross-reactivity. Hypoactive variants of ERAP1, an enzyme-trimming peptide prior to HLA loading, are now associated with protection from abacavir-hypersensitivity in HLA-B∗57:01+ patients, and single-cell sequencing has defined the skin-restricted expansion of a single, public and drug-reactive dominant TCR across patients with HLA-B∗15:02-restricted carbamazepine-induced SJS/TEN. More recent strategies for the use of HLA and other risk factors may include risk-stratification, early diagnosis, and diagnosis in addition to screening. SUMMARY HLA is necessary but insufficient as a risk factor for the development of most T-cell-mediated reactions. Newly emerged genetic and ecological risk factors, combined with HLA-restricted response, align with underlying immunopathogenesis and drive towards enhanced strategies to improve positive-predictive and negative-predictive values. With large population-matched cohorts, genetic studies typically focus on populations that have been readily accessible to research studies, but it is now imperative to address similar risk in globally relevant and understudied populations.
Collapse
Affiliation(s)
- Rebecca J Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Association of HLA-B*51:01, HLA-B*55:01, CYP2C9*3, and Phenytoin-Induced Cutaneous Adverse Drug Reactions in the South Indian Tamil Population. J Pers Med 2021; 11:jpm11080737. [PMID: 34442381 PMCID: PMC8400937 DOI: 10.3390/jpm11080737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Phenytoin (PHT) is one of the most commonly reported aromatic anti-epileptic drugs (AEDs) to cause cutaneous adverse reactions (CADRs), particularly severe cutaneous adverse reactions (SCARs). Although human leukocyte antigen (HLA)-B*15:02 is associated with PHT-induced Steven Johnson syndrome/toxic epidermal necrosis (SJS/TEN) in East Asians, the association is much weaker than it is reported for carbamazepine (CBZ). In this study, we investigated the association of pharmacogenetic variants of the HLA B gene and CYP2C9*3 with PHT-CADRs in South Indian epileptic patients. This prospective case-controlled study included 25 PHT-induced CADRs, 30 phenytoin-tolerant patients, and 463 (HLA-B) and 82 (CYP2C9*3) normal-controls from previous studies included for the case and normal-control comparison. Six SCARs cases and 19 mild-moderate reactions were observed among the 25 cases. Pooled data analysis was performed for the HLA B*51:01 and PHT-CADRs associations. The Fisher exact test and multivariate binary logistic regression analysis were used to identify the susceptible alleles associated with PHT-CADRs. Multivariate analysis showed that CYP2C9*3 was significantly associated with overall PHT-CADRs (OR = 12.00, 95% CI 2.759–84.87, p = 003). In subgroup analysis, CYP2C9*3 and HLA B*55:01 were found to be associated with PHT-SCARs (OR = 12.45, 95% CI 1.138–136.2, p = 0.003) and PHT-maculopapular exanthema (MPE) (OR = 4.041, 95% CI 1.125–15.67, p = 0.035), respectively. Pooled data analysis has confirmed the association between HLA B*51:01/PHT-SCARs (OR = 6.273, 95% CI 2.24–16.69, p = <0.001) and HLA B*51:01/PHT-overall CADRs (OR = 2.323, 95% CI 1.22–5.899, p = 0.037). In this study, neither the case nor the control groups had any patients with HLA B*15:02. The risk variables for PHT-SCARs, PHT-overall CADRs, and PHT-MPE were found to be HLA B*51:01, CYP2C9*3, and HLA B*55:01, respectively. These alleles were identified as the risk factors for the first time in the South Indian Tamil population for PHT-CADRs. Further investigation is warranted to establish the clinical relevance of these alleles in this population with larger sample size.
Collapse
|
13
|
Deshpande P, Hertzman RJ, Palubinsky AM, Giles JB, Karnes JH, Gibson A, Phillips EJ. Immunopharmacogenomics: Mechanisms of HLA-Associated Drug Reactions. Clin Pharmacol Ther 2021; 110:607-615. [PMID: 34143437 DOI: 10.1002/cpt.2343] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
The human leukocyte antigen (HLA) system is the most polymorphic in the human genome that has been associated with protection and predisposition to a broad array of infectious, autoimmune, and malignant diseases. More recently over the last two decades, HLA class I alleles have been strongly associated with T-cell-mediated drug hypersensitivity reactions. In the case of abacavir hypersensitivity and HLA-B*57:01, the 100% negative predictive value and low number needed to test to prevent a single case has led to a durable and effective global preprescription screening strategy. However, HLA associations are still undefined for most drugs clinically associated with different delayed drug hypersensitivity phenotypes, and an HLA association relevant to one population is not generalizable across ethnicities. Furthermore, while a specific risk HLA allele is necessary for drug-induced T-cell activation, it is not sufficient. The low and incomplete positive predictive value has hindered efforts at clinical implementation for many drugs but has provided the impetus to understand the mechanisms of HLA class I restricted T-cell-mediated drug hypersensitivity reactions. Current research has focused on defining the contribution of additional elements of the adaptive immune response and other genetic and ecologic risk factors that contribute to drug hypersensitivity risk. In this review we focus on new insights into immunological, pharmacological, and genetic mechanisms underpinning HLA-associated drug reactions and the implications for future translation into clinical care.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Rebecca J Hertzman
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Jason B Giles
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
| | - Jason H Karnes
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA.,Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia.,Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Delabeling Delayed Drug Hypersensitivity: How Far Can You Safely Go? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2878-2895.e6. [PMID: 33039012 DOI: 10.1016/j.jaip.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Delayed immune-mediated adverse drug reactions (IM-ADRs) are defined as reactions occurring more than 6 hours after dosing. They include heterogeneous clinical phenotypes that are typically T-cell-mediated reactions with distinct mechanisms across a wide spectrum of severity from benign exanthems through to life-threatening cutaneous or organ-specific diseases. For mild reactions such as benign exanthem, considerations for delabeling are similar to immediate reactions and may include a graded or single-dose drug challenge with or without preceding skin or patch testing. Evaluation of challenging cases such as the patient who is on multiple drugs at the time a severe delayed IM-ADR occurs should prioritize clinical ascertainment of the most likely phenotype and implicated drug(s). Although not widely available and validated, procedures such as patch testing, delayed intradermal skin testing, and laboratory-based functional drug assays or genetic (human leukocyte antigen) testing may provide valuable information to further help risk stratify patients and identify the likely implicated and/or cross-reactive drug(s). The decision to use a drug challenge as a diagnostic or delabeling tool in a patient with a severe delayed IM-ADR should weigh the risk-benefit ratio, balancing the severity and priority for the treatment of the underlying, and the availability of alternative efficacious and safe treatments.
Collapse
|
15
|
Abstract
Psoriasis is a chronic inflammatory skin condition with regional and ethnic differences in its prevalence and clinical manifestations. Human leukocyte antigen (HLA)-Cw6 is the disease allele conferring the greatest risk to psoriasis, but its prevalence is lower in Asian individuals. Recent studies have found associations between HLA-Cw1 and some Asian populations with psoriasis, especially Southern Chinese. HLA-Cw6 was associated with type I early-onset psoriasis, guttate psoriasis, Koebner phenomenon, and better response to methotrexate, interleukin (IL)-12/23, IL-17, and IL-23 targeting drugs. In contrast, HLA-Cw1 positivity has been associated with erythrodermic psoriasis, pustular psoriasis, and the axial type of psoriatic arthritis. Furthermore, HLA-Cw1 was more frequently associated with high-need patients who did not respond to conventional therapies. No known trigger factor nor autoantigen has been identified for HLA-Cw1 positivity. However, HLA-Cw1 has been linked to some viral agents. For example, cytotoxic T lymphocytes recognize multiple cytomegalovirus pp65-derived epitopes presented by HLA alleles, including HLA-C*01:02. In addition, cytomegalovirus can lead to severe exacerbation of psoriatic skin disease. The proposed interaction between viral infection, HLA-Cw1, and psoriasis is through the killer cell immunoglobulin-like receptors of natural killer cells. Given the diverse nature of psoriasis pathogenesis and the difference in HLA-Cw prevalence in different racial groups, more studies are needed to confirm the role of HLA-Cw1 in psoriasis.
Collapse
|
16
|
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front Genet 2021; 12:641905. [PMID: 33936169 PMCID: PMC8085493 DOI: 10.3389/fgene.2021.641905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rebecca J. Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Amy M. Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
17
|
Krebs K, Bovijn J, Zheng N, Lepamets M, Censin JC, Jürgenson T, Särg D, Abner E, Laisk T, Luo Y, Skotte L, Geller F, Feenstra B, Wang W, Auton A, Raychaudhuri S, Esko T, Metspalu A, Laur S, Roden DM, Wei WQ, Holmes MV, Lindgren CM, Phillips EJ, Mägi R, Milani L, Fadista J. Genome-wide Study Identifies Association between HLA-B ∗55:01 and Self-Reported Penicillin Allergy. Am J Hum Genet 2020; 107:612-621. [PMID: 32888428 PMCID: PMC7536643 DOI: 10.1016/j.ajhg.2020.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B∗55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 × 10-31) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 × 10-47). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B∗55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.
Collapse
Affiliation(s)
- Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jonas Bovijn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Neil Zheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maarja Lepamets
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jenny C Censin
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Tuuli Jürgenson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Dage Särg
- Institute of Computer Science, University of Tartu, Tartu 51009, Estonia
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Yang Luo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Wei Wang
- 23andMe, Inc., Sunnyvale, CA 94086, USA
| | | | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Sven Laur
- Institute of Computer Science, University of Tartu, Tartu 51009, Estonia; STACC, Tartu 51009, Estonia
| | - Dan M Roden
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, TN 37232, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael V Holmes
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 7LE, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 7LE, UK; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, TN 37232, USA; Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen 2300, Denmark; Department of Clinical Sciences, Lund University Diabetes Centre, 214 28 Malmö, Sweden; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
18
|
|
19
|
Kuijper E, French L, Tensen C, Vermeer M, Bouwes Bavinck J. Clinical and pathogenic aspects of the severe cutaneous adverse reaction epidermal necrolysis (EN). J Eur Acad Dermatol Venereol 2020; 34:1957-1971. [PMID: 32415695 PMCID: PMC7496676 DOI: 10.1111/jdv.16339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The severe cutaneous adverse reaction epidermal necrolysis (EN) which includes toxic epidermal necrolysis and the milder Stevens-Johnson syndrome is characterized by epidermal loss due to massive keratinocyte apoptosis and/or necroptosis. EN is often caused by a drug mediating a specific TCR-HLA interaction via the (pro)hapten, pharmacological interaction or altered peptide loading mechanism involving a self-peptide presented by keratinocytes. (Memory) CD8 + T cells are activated and exhibit cytotoxicity against keratinocytes via the perforin/granzyme B and granulysin pathway and Fas/FasL interaction. Alternatively drug-induced annexin release by CD14 + monocytes can induce formyl peptide receptor 1 death of keratinocytes by necroptosis. Subsequent keratinocyte death stimulates local inflammation, activating other immune cells producing pro-inflammatory molecules and downregulating regulatory T cells. Widespread epidermal necrolysis and inflammation can induce life-threatening systemic effects, leading to high mortality rates. Research into genetic susceptibility aims to identify risk factors for eventual prevention of EN. Specific HLA class I alleles show the strongest association with EN, but risk variants have also been identified in genes involved in drug metabolism, cellular drug uptake, peptide presentation and function of CD8 + T cells and other immune cells involved in cytotoxic responses. After the acute phase of EN, long-term symptoms can remain or arise mainly affecting the skin and eyes. Mucosal sequelae are characterized by occlusions and strictures due to adherence of denuded surfaces and fibrosis following mucosal inflammation. In addition, systemic pathology can cause acute and chronic hepatic and renal symptoms. EN has a large psychological impact and strongly affects health-related quality of life among EN survivors.
Collapse
Affiliation(s)
- E.C. Kuijper
- Department of DermatologyLeiden University Medical CentreLeidenThe Netherlands
| | - L.E. French
- Department of Dermatology and AllergyUniversity HospitalLMU MunichMunichGermany
| | - C.P. Tensen
- Department of DermatologyLeiden University Medical CentreLeidenThe Netherlands
| | - M.H. Vermeer
- Department of DermatologyLeiden University Medical CentreLeidenThe Netherlands
| | - J.N. Bouwes Bavinck
- Department of DermatologyLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
20
|
Pillaye JN, Marakalala MJ, Khumalo N, Spearman W, Ndlovu H. Mechanistic insights into antiretroviral drug-induced liver injury. Pharmacol Res Perspect 2020; 8:e00598. [PMID: 32643320 PMCID: PMC7344109 DOI: 10.1002/prp2.598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
All classes of antiretroviral therapy (ART) have been implicated to induce adverse drug reactions such drug-induced liver injury (DILI) and immune-mediated adverse reactions in Human Immunodeficiency Virus (HIV) infected individuals. Patients that develop adverse drug reactions tend to have prolonged stays in hospital and may require to change to alternative regimens if reactions persist upon rechallenge or if rechallenge is contraindicated due to severity of the adverse reaction. Diagnosis of DILI remains a huge obstacle that delays timely interventions, since it is still based largely on exclusion of other causes. There is an urgent need to develop robust diagnostic and predictive biomarkers that could be used alongside the available tools (biopsy, imaging, and serological tests for liver enzymes) to give a specific diagnosis of DILI. Crucial to this is also achieving consensus in the definition of DILI so that robust studies can be undertaken. Importantly, it is crucial that we gain deeper insights into the mechanism of DILI so that patients can receive appropriate management. In general, it has been demonstrated that the mechanism of ART-induced liver injury is driven by four main mechanisms: mitochondrial toxicity, metabolic host-mediated injury, immune reconstitution, and hypersensitivity reactions. The focus of this review is to discuss the type and phenotypes of DILI that are caused by the first line ART regimens. Furthermore, we will summarize recent studies that have elucidated the cellular and molecular mechanisms of DILI both in vivo and in vitro.
Collapse
Affiliation(s)
- Jamie N. Pillaye
- Division of Chemical and System BiologyDepartment of Integrative Biomedical SciencesFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Mohlopheni J. Marakalala
- Africa Health Research InstituteDurbanKwaZulu NatalSouth Africa
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Nonhlanhla Khumalo
- Hair and Skin Research LabDivision of DermatologyDepartment of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
| | - Wendy Spearman
- Division of HepatologyDepartment of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Division of Chemical and System BiologyDepartment of Integrative Biomedical SciencesFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
21
|
Sukasem C, Pratoomwun J, Satapornpong P, Klaewsongkram J, Rerkpattanapipat T, Rerknimitr P, Lertpichitkul P, Puangpetch A, Nakkam N, Konyoung P, Khunarkornsiri U, Disphanurat W, Srisuttiyakorn C, Pattanacheewapull O, Kanjanawart S, Kongpan T, Chumworathayi P, Saksit N, Bruminhent J, Tassaneeyakul W, Chantratita W, Pirmohamed M. Genetic Association of Co-Trimoxazole-Induced Severe Cutaneous Adverse Reactions Is Phenotype-Specific: HLA Class I Genotypes and Haplotypes. Clin Pharmacol Ther 2020; 108:1078-1089. [PMID: 32452529 DOI: 10.1002/cpt.1915] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Co-trimoxazole (CTX) causes various forms of severe cutaneous adverse reactions (SCARs). This case-control study was conducted to investigate the involvement between genetic variants of human leukocyte antigen (HLA) and CYP2C9 in CTX-induced SCARs, including Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) in Thai patients. Thirty cases of CTX-induced SCARs were enrolled and compared with 91 CTX-tolerant controls and 150 people from the general Thai population. Cases comprised 18 SJS/TEN and 12 DRESS patients. This study demonstrated that genetic association of CTX-induced SCARs was phenotype-specific. HLA-B*15:02 and HLA-C*08:01 alleles were significantly associated with CTX-induced SJS/TEN, whereas the HLA-B*13:01 allele was significantly associated with CTX-induced DRESS. In addition, a significant higher frequency of HLA-A*11:01-B*15:02 and HLA-B*13:01-C*03:04 haplotypes were detected in the group of CTX-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and DRESS cases, respectively. Genetic association of CTX-induced SCARs is phenotype-specific. Interestingly, these association was observed only in HIV-infected patients but not in non-HIV-infected patients.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Division of General Pharmacy Practice, Department of Pharmaceutical Care, Faculty of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Jettanong Klaewsongkram
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand.,King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ticha Rerkpattanapipat
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pawinee Rerknimitr
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Pattamon Lertpichitkul
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Wareeporn Disphanurat
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Chutika Srisuttiyakorn
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | | | | - Thachanan Kongpan
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Pansu Chumworathayi
- Pharmacy Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand
| | - Niwat Saksit
- School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Wasun Chantratita
- Genomic Medicine Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, The Royal Liverpool, Broadgreen University Hospitals NHS Trust, MRC Centre for Drug Safety Science, Liverpool Health Partners, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Mayorga C, Fernandez TD, Montañez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy 2019; 74:2368-2381. [PMID: 31557314 DOI: 10.1111/all.14061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Drug hypersensitivity reactions (DHRs) are nowadays the third cause of allergy after rhinitis and asthma with a significant increase in prevalence in both adults and paediatric population with new drugs included as culprit. For this, DHRs represent not only a health problem but also a significant financial burden for affected individuals and health systems. Mislabelling DHRs is showing to be a relevant problem for both, false label of drug allergic and false label of nonallergic. All this reinforces the need to improve accurate diagnostic approaches that allow an appropriate management. Moreover, there is a need for training both, nonallergist stakeholders and patients to improve the reaction identification and therefore decrease the mislabelling. The use of allergy cards has shown to be relevant to avoid the induction of DHRs due to the prescription of wrong medication. Recent developments over the last 2 years and highlights about risk factors, diagnostic approaches, mechanisms involved as well as prevention actions, and management have been reviewed. In these papers, it has been outlined the need for correct diagnosis and de-labelling of patients previously false-reported as allergic, which will improve the management and treatment of patients with DHRs.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Maria Isabel Montañez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Esther Moreno
- Allergy Unit Hospital Universitario de Salamanca‐ARADyAL IBSAL Salamanca Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Universidad de Málaga Málaga Spain
| |
Collapse
|
23
|
Redwood A, Trubiano J, Phillips EJ. Prevention and Diagnosis of Severe T-Cell-Mediated Adverse Drug Reactions: Are We There Yet? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:228-230. [PMID: 30598178 DOI: 10.1016/j.jaip.2018.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Alec Redwood
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Jason Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Australia
| | - Elizabeth J Phillips
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Immune-mediated adverse drug reactions (IM-ADRs) are many times more common in HIV-infected patients. Usual offending drugs include antiretroviral and antiinfectives, but the burden of specific drug IM-ADRs is population-specific; changing as new and fixed dose combinations enter the market, and drug-resistance patterns demand. This review considers recent literature on epidemiology, mechanisms, clinical management and prevention of IM-ADRs amongst persons living with HIV/AIDS. RECENT FINDINGS Epidemiological studies continue to describe high rates of delayed hypersensitivity to known offenders, as well as similar reactions in preexposure prophylaxis. IM-ADRs to oral and injectable integrase strand transfer inhibitors are reported with expanding use. The clinical spectrum and management of IM-ADRs occurring in HIV-infected populations is similar to uninfected; with exceptions such as a recently described severe delayed efavirenz DILI with high mortality. Furthermore, the context can be unique, such as the lower than expected mortality in a Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) cohort from a HIV/TB high burden setting. Programmatic data showing the near complete elimination of Abacavir drug hypersensitivity syndrome following implementation of HLA-B57:01 screening is a stellar example of how prevention is possible with mechanistic insight. SUMMARY IM-ADRs remain a challenge in persons living with HIV. The complexities posed by polypharmacy, overlapping drug toxicities, drug interactions, overlap of IM-ADRs with other diseases, limited alternative drugs, and vulnerable patients with advanced immunosuppression with high mortality, necessitate increased use of drug provocation testing, treat-through and desensitization strategies. There is an urgent need for improved diagnostics and predictive biomarkers for prevention, or to guide treat-through, rechallenge and desensitization approaches.
Collapse
Affiliation(s)
- Jonny Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Rannakoe J. Lehloenya
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Hu K, Xiang Q, Wang Z, Mu GY, Zhang Z, Ma LY, Xie QF, Chen SQ, Zhou S, Zhang XD, Cui YM. Associations between human leukocyte antigen polymorphisms and hypersensitivity to antiretroviral therapy in patients with human immunodeficiency virus: a meta-analysis. BMC Infect Dis 2019; 19:583. [PMID: 31277607 PMCID: PMC6612203 DOI: 10.1186/s12879-019-4227-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA) alleles are implicated in drug-induced hypersensitivity, including by nevirapine and abacavir. The purpose of this meta-analysis was to evaluate the relationship between HLA polymorphisms and hypersensitivity to antiretroviral therapy in human immunodeficiency virus (HIV)-infected patients. METHODS We conducted a systematic search of PubMed, Embase, Web of Science, and the Cochrane Library for studies that evaluated the associations of HLA polymorphisms with antiretroviral therapy-induced hypersensitivity published in April 2019. The summary odds ratios (ORs) with 95% confidence intervals (CIs) were considered as estimates of the effect. RESULTS The meta-analysis included 17 studies that assessed a total of 4273 patients. First, carriers of HLA-A *24 were associated with an increased risk of hypersensitivity among patients with HIV who received antiretroviral therapy (OR: 12.12; P = 0.018). Second, five SNPs of HLA-B genotypes, including *18 (OR: 1.63; P = 0.028), *35 (OR: 2.31; P = 0.002), *39 (OR: 11.85; P = 0.040), *51 (OR: 1.66; P = 0.028), and *81 (OR: 8.11; P = 0.021), were associated with an increased risk of hypersensitivity. Conversely, carriers of HLA-B *15 were associated with a reduced risk of hypersensitivity (OR: 0.43; P < 0.001). Third, HLA-C *04 was associated with an increased risk of hypersensitivity (OR: 3.09; P < 0.001), whereas a lower risk for hypersensitivity was observed in patients who were carriers of HLA-C *02 (OR: 0.22; P = 0.030), *03 (OR: 0.53; P = 0.049), and *07 (OR: 0.61; P = 0.044). Finally, carriers of HLA-DRB1 *05 (OR: 0.18; P = 0.006) and *15 (OR: 0.23; P = 0.013) were associated with a reduced risk of hypersensitivity among patients receiving antiretroviral therapy. CONCLUSIONS The findings of this meta-analysis indicated patients carrying HLA-A *24, HLA-B *18, *35, *39, *51, *81, HLA-C *04 were associated with a higher risk of hypersensitivity. Conversely, subjects carrying HLA-B *15, HLA-C *02, *03, *07, HLA-DRB1 *05, *15 were associated with a reduced risk of hypersensitivity.
Collapse
Affiliation(s)
- Kun Hu
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Peking University Health Science Center, 38# Xueyuan Road, Haidian District, Beijing, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Qiu-Fen Xie
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Shu-Qing Chen
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Xiao-Dan Zhang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China.
| |
Collapse
|
26
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Cai M, Huang H, Ran D, Zheng X, Wen L, Zhu Z, Liu L, Zhang C, Hong X, Hong J, Wu W, Ma J, Wu M, Qian D, Sheng Y, Zhang X. HLA-C*01:02 and HLA-A*02:07 Confer Risk Specific for Psoriatic Patients in Southern China. J Invest Dermatol 2019; 139:2045-2048.e4. [PMID: 30878674 DOI: 10.1016/j.jid.2019.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Minglong Cai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Major Autoimmune Diseases, Anhui Province, Hefei, China
| | - He Huang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Major Autoimmune Diseases, Anhui Province, Hefei, China
| | - Delin Ran
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Leilei Wen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Lu Liu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Chuanliang Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Xiaojie Hong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Jiaqi Hong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Wenjuan Wu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Jie Ma
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Mingshun Wu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Danfeng Qian
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Yujun Sheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Major Autoimmune Diseases, Anhui Province, Hefei, China.
| | - Xuejun Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Major Autoimmune Diseases, Anhui Province, Hefei, China.
| |
Collapse
|
28
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
29
|
Karnes JH, Miller MA, White KD, Konvinse KC, Pavlos RK, Redwood AJ, Peter JG, Lehloenya R, Mallal SA, Phillips EJ. Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions. Annu Rev Pharmacol Toxicol 2018; 59:463-486. [PMID: 30134124 DOI: 10.1146/annurev-pharmtox-010818-021818] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) are a significant health care burden. Immune-mediated adverse drug reactions (IM-ADRs) are responsible for one-fifth of ADRs but contribute a disproportionately high amount of that burden due to their severity. Variation in human leukocyte antigen ( HLA) genes has emerged as a potential preprescription screening strategy for the prevention of previously unpredictable IM-ADRs. Immunopharmacogenomics combines the disciplines of immunogenomics and pharmacogenomics and focuses on the effects of immune-specific variation on drug disposition and IM-ADRs. In this review, we present the latest evidence for HLA associations with IM-ADRs, ongoing research into biological mechanisms of IM-ADRs, and the translation of clinical actionable biomarkers for IM-ADRs, with a focus on T cell-mediated ADRs.
Collapse
Affiliation(s)
- Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA.,Sarver Heart Center, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.,Division of Pharmacogenomics, Center for Applied Genetics and Genomic Medicine (TCAG2M), Tucson, Arizona 85721, USA
| | - Matthew A Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA
| | - Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - Katherine C Konvinse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rebecca K Pavlos
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, Western Australia 6008, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jonathan G Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rannakoe Lehloenya
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Simon A Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
30
|
Genetic and nongenetic factors that may predispose individuals to allergic drug reactions. Curr Opin Allergy Clin Immunol 2018; 18:325-332. [DOI: 10.1097/aci.0000000000000459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex. Int J Mol Sci 2018; 19:ijms19061660. [PMID: 29867033 PMCID: PMC6032195 DOI: 10.3390/ijms19061660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023] Open
Abstract
Human leukocyte antigen (HLA)-DRB1*01:01 has been shown to be involved in nevirapine-induced hepatic hypersensitivity reactions. In the present study, in silico docking simulations and molecular dynamics simulations were performed to predict the interaction mode of nevirapine with the peptide binding groove of HLA-DRB1*01:01 and its possible effect on the position and orientation of the ligand peptide derived from hemagglutinin (HA). In silico analyses suggested that nevirapine interacts with HLA-DRB1*01:01 around the P4 pocket within the peptide binding groove and the HA peptide stably binds on top of nevirapine at the groove. The analyses also showed that binding of nevirapine at the groove will significantly change the inter-helical distances of the groove. An in vitro competitive assay showed that nevirapine (1000 μM) increases the binding of the HA peptide to HLA-DRB1*01:01 in an allele-specific manner. These results indicate that nevirapine might interact directly with the P4 pocket and modifies its structure, which could change the orientation of loaded peptides and the conformation of HLA-DRB1*01:01; these changes could be distinctively recognized by T-cell receptors. Through this molecular mechanism, nevirapine might stimulate the immune system, resulting in hepatic hypersensitivity reactions.
Collapse
|
32
|
Corsini E, Casula M, Tragni E, Galbiati V, Pallardy M. Tools to investigate and avoid drug-hypersensitivity in drug development. Expert Opin Drug Discov 2018; 13:425-433. [PMID: 29405076 DOI: 10.1080/17460441.2018.1437141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Drug hypersensitivity reactions (DHRs) are common adverse effects of pharmaceuticals that clinically resemble allergies, and which are becoming an important burden to healthcare systems. Alongside accurate diagnostic techniques, tools which can predict potential drug-inducing hypersensitivity reactions in the pre-clinical phase are critical. Despite the important adverse reactions linked to immune-mediated hypersensitivity, at present, there are no validated or required in vivo or in vitro methods to screen the sensitizing potential of drugs and their metabolites in the pre-clinical phase. Areas covered: Enhanced prediction in preclinical safety evaluation is extremely important. The purpose of this review is to assess the state of the art of tools available to assess the allergenic potential of drugs and to highlight our current understanding of the molecular mechanisms underlying inappropriate immune activation. Expert opinion: The knowledge that allergenic drugs share common mechanisms of immune cell activation with chemical allergens, and of the definition of the mechanistic pathway to adverse outcomes, can enhance targeting toxicity testing in drug development and hazard assessment of hypersensitivity. Additional efforts and extensive resources are necessary to improve preclinical testing methodologies, including optimization, better design and interpretation of data.
Collapse
Affiliation(s)
- Emanuela Corsini
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Manuela Casula
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Elena Tragni
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Valentina Galbiati
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Marc Pallardy
- c Inflammation, Chemokines and Immunopathology , INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
33
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
34
|
Redwood AJ, Pavlos RK, White KD, Phillips EJ. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2018; 91:3-16. [PMID: 29171940 PMCID: PMC5743596 DOI: 10.1111/tan.13183] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADR) can be broadly categorised as either on-target or off-target. On-target ADRs arise as a direct consequence of the pharmacological properties of the drug and are therefore predictable and dose-dependent. On-target ADRs comprise the majority (>80%) of ADRs, relate to the drug's interaction with its known pharmacological target and are a result of a complex interplay of genetic and ecologic factors. In contrast, off-target ADRs, including immune-mediated ADRs (IM-ADRs), are due to unintended pharmacological interactions such as inadvertent ligation of host cell receptors or non-pharmacological interactions mediated through an adaptive immune response. IM-ADRs can be classified according to the primary immune cell involved and include B-cell-mediated (Gell-Coombs type I-III reactions) and T-cell-mediated (Gell-Coombs type IV or delayed hypersensitivity) reactions. IM-ADRs mediated by T cells are associated with phenotypically distinct clinical diagnoses and can vary from a mild delayed rash to a life-threatening cutaneous, systemic or organ disease, such as Stephen Johnson syndrome/toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms and drug-induced liver disease. T-cell-mediated ADRs are strongly linked to the carriage of particular HLA risk alleles which are in the case of abacavir hypersensitivity and HLA-B*57:01 has led to translation into the clinic as a routine screening test. In this review, we will discuss the immunogenetics and pathogenesis of IM-ADRs and how HLA associations inform both pre-drug screening strategies and mechanistic understanding.
Collapse
Affiliation(s)
- Alec J. Redwood
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Rebecca K. Pavlos
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Katie D. White
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine
| |
Collapse
|