1
|
Santos JAA, Duay SS. Molecular dynamics of SARS-CoV-2 omicron variants from Philippine isolates against hesperidin as spike protein inhibitor. Biophys Chem 2025; 318:107387. [PMID: 39742696 DOI: 10.1016/j.bpc.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
SARS-CoV-2 remains a global threat with new sublineages posing challenges, particularly in the Philippines. Hesperidin (HD) is being studied as a potential prophylactic for COVID-19. However, the virus's rapid evolution could alter how HD binds to it, affecting its effectiveness. Here, we study the mutation-induced variabilities of HD dynamics and their effects on molecular energetics in SARS-CoV-2 spike receptor complex systems. We considered eight different point mutations present in the Omicron variant. Root-mean-square deviation and binding energy analysis showed that S477N and Omicron did not eject HD throughout the simulation. Hydrogen bond distribution analysis highlighted the involvement of hydrogen bonding in mutant-HD stabilization, especially for S477N and Omicron. Root-mean-square fluctuation analysis revealed evidence of Y505H destabilization on complex systems, while distal-end loop mutations increased loop flexibility for all models bearing the three mutations. Per-residue energy decomposition demonstrated that Q493R substitution increased HD interaction. Free energy landscape and essential dynamics through principal component analysis provided insights into the conformational subspace distribution of mutant model molecular dynamics trajectories. In conclusion, significant mutations contributed to the HD interaction in different ways. S477N has shown significant binding contributions through favorable ligand interaction, while other mutations contribute via conformational modifications, increased affinity due to sidechain mutations, and increased loop flexibility.
Collapse
Affiliation(s)
| | - Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines.
| |
Collapse
|
2
|
Ye T, An Z, Song M, Wei X, Liu L, Zhang X, Zhang H, Liu H, Fang H. Strategies to enhance the hydrolytic activity of Escherichia coli BL21 penicillin G acylase based on heterologous expression and targeted mutagenesis. Colloids Surf B Biointerfaces 2025; 246:114356. [PMID: 39522286 DOI: 10.1016/j.colsurfb.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Penicillin G acylase (PGA) serves as a critical biocatalyst for the hydrolysis of penicillin G, yielding 6-aminopenicillanic acid, a vital precursor for β-lactam semi-synthetic antibiotics. The catalytic efficiency of PGA, however, remains suboptimal in native Escherichia coli strains. To improve this, E. coli BL21 was engineered as a microbial cell factory via heterologous expression and site-directed mutagenesis to enhance PGA activity. The heterologous pga gene from Providencia rettgeri was integrated into E. coli BL21 (DE3) for the biosynthesis of PGA, achieving a PGA activity of 253 ± 2 U/mL after 16 hours of fermentation. The N167 site underwent mutation, producing the sites N167A and N167I. Plasmids carrying these mutations were introduced into E. coli BL21(DE3), and the enzymatic activities were recorded as 293 ± 3 U/mL for the N167A mutant and 238 ± 2 U/mL for the N167I mutant. This study not only introduces a novel approach to enhancing PGA activity but also illustrates the potential for catalytic optimization through targeted modifications of the enzyme's active site.
Collapse
Affiliation(s)
- Tong Ye
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Zhengxu An
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mengge Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lu Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangjun Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haojie Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
3
|
Thongdee P, Nagura Y, Sabishiro H, Phusi N, Sukchit D, Kamsri P, Punkvang A, Suttisintong K, Pungpo P, Kurita N. Elucidating specific interactions for designing novel pyrrolamide derivatives as potential GyrB inhibitors based on ab initio fragment molecular orbital calculations. J Biomol Struct Dyn 2025; 43:1192-1205. [PMID: 38063158 DOI: 10.1080/07391102.2023.2291178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2025]
Abstract
Tuberculosis (TB), the second leading infectious killer, causes serious public health problems worldwide. To develop novel anti-TB agents, many biochemical studies have targeted the subunit B of DNA gyrase (GyrB), which captures a second DNA segment and responses for ATP hydrolysis. Here, we investigated specific interactions between GyrB residues and existing pyrrolamide derivatives at an electronic level using ab initio fragment molecular orbital (FMO) calculations and designed potent inhibitors against GyrB. The evaluated binding affinities between GyrB and pyrrolamides were confirmed to be consistent with the IC50 values obtained from previous experiments. Thus, we employed the most potent pyrrolamide (compound 1) as a lead compound and proposed novel pyrrolamide derivatives. The specific interactions between GyrB and these derivatives were investigated using molecular mechanic optimizations and FMO calculations. The results revealed that our proposed derivatives had strong hydrogen bonds with Asp79 and Arg141 and exhibited electrostatic interactions with Glu56 and Ile84 of GyrB. In addition, the binding affinity between GyrB and compound 1 was enhanced significantly by the replacement at the R3 site of compound 1. The present results may provide structural concepts for the rational design of potent GyrB inhibitors as anti-TB agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Paptawan Thongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Yoshinobu Nagura
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Haruna Sabishiro
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naruedon Phusi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Darunee Sukchit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | | | - Pornpan Pungpo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
4
|
Finke F, Hungerland J, Solov'yov IA, Schuhmann F. Different receptor models show differences in ligand binding strength and location: a computational drug screening for the tick-borne encephalitis virus. Mol Divers 2025; 29:281-292. [PMID: 38739227 PMCID: PMC11785706 DOI: 10.1007/s11030-024-10850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/16/2024] [Indexed: 05/14/2024]
Abstract
The tick-borne encephalitis virus (TBE) is a neurotrophic disease that has spread more rapidly throughout Europe and Asia in the past few years. At the same time, no cure or specific therapy is known to battle the illness apart from vaccination. To find a pharmacologically relevant drug, a computer-aided drug screening was initiated. Such a procedure probes a possible binding of a drug to the RNA Polymerase of TBE. The crystal structure of the receptor, however, includes missing and partially modeled regions, which rendered the structure incomplete and of questionable use for a thorough drug screening procedure. The quality of the receptor model was addressed by studying three putative structures created. We show that the choice of receptor models greatly influences the binding affinity of potential drug molecules and that the binding location could also be significantly impacted. We demonstrate that some drug candidates are unsuitable for one model but show decent results for another. Without any prejudice on the three employed receptor models, the study reveals the imperative need to investigate the receptor structure before drug binding is probed whether experimentally or computationally.
Collapse
Affiliation(s)
- Felicitas Finke
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Jonathan Hungerland
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
- Research Centre for Neurosensory Science, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.
| | - Fabian Schuhmann
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Jaeger-Honz S, Hackett R, Fotler R, Dietrich DR, Schreiber F. Conformation and binding of 12 Microcystin (MC) congeners to PPP1 using molecular dynamics simulations: A potential approach in support of an improved MC risk assessment. Chem Biol Interact 2025; 407:111372. [PMID: 39788475 DOI: 10.1016/j.cbi.2025.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO. Many MC congeners co-occur during bloom events, of which MC-LR is not the most toxic. Indeed, MC congeners differ dramatically in their inherent toxicity, consequently raising question about the reliability of the WHO RA and the derived guidance values. Molecular dynamics (MD) simulation can aid in understanding differences in toxicity, as experimental validation for all known MC congeners is not feasible. Therefore, we present MD simulations of a total of twelve MC congeners, of which eight MC congeners were simulated for the first time. We show that depending on their structure and toxicity class, MCs adapt to different backbone conformations. These backbone conformations are specific to certain MC congeners and can change or shift to other conformations upon binding to PPP1, affecting the stability of the binding. Analysis of the interactions with PPP1 demonstrated that there are frequently occurring patterns for individual MC congeners, and that published PPP interactions could be reproduced. In addition, common but also unique patterns were found for individual MC congeners, suggesting differences in binding behaviour. The MD simulations presented here therefore enhance our understanding of MC congener-specific differences and demonstrated that congener-specific investigations are prerequisite for allowing characterisation of yet untested or even unknown MC congeners, thereby allowing for a novel potential approach in support of an improved RA of microcystins in humans.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Raymund Hackett
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Regina Fotler
- Department of Biology, University of Konstanz, Germany
| | | | - Falk Schreiber
- Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia.
| |
Collapse
|
6
|
Krysenko S, Emani CS, Bäuerle M, Oswald M, Kulik A, Meyners C, Hillemann D, Merker M, Prosser G, Wohlers I, Hausch F, Brötz-Oesterhelt H, Mitulski A, Reiling N, Wohlleben W. GlnA3 Mt is able to glutamylate spermine but it is not essential for the detoxification of spermine in Mycobacterium tuberculosis. J Bacteriol 2025:e0043924. [PMID: 39882905 DOI: 10.1128/jb.00439-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Mycobacterium tuberculosis is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of M. tuberculosis, the pathogen needs strategies to cope with these toxic metabolites. The actinomycete Streptomyces coelicolor, a close relative of M. tuberculosis, makes use of a gamma-glutamylation pathway to functionally neutralize spermine. We therefore considered whether a similar pathway would be functional in M. tuberculosis. In the current study, we demonstrated that M. tuberculosis growth was inhibited by the polyamine spermine. Using in vitro enzymatic assays we determined that GlnA3Mt (Rv1878) possesses genuine gamma-glutamylspermine synthetase catalytic activity. We further showed that purified His-Strep-GlnA3Mt, as well as native GlnA3Mt, prefer spermine as a substrate over putrescine, cadaverine, spermidine, or other monoamines and amino acids, suggesting that GlnA3Mt may play a specific role in the detoxification of the polyamine spermine. However, the deletion of the glnA3 gene in M. tuberculosis did not result in growth inhibition or enhanced sensitivity of M. tuberculosis in the presence of high spermine concentrations. Gene expression analysis of spermine-treated M. tuberculosis revealed no difference in the level of glnA3Mt expression relative to untreated cells, whereas a gene encoding a previously characterized efflux pump (Mmr; rv3065) was significantly upregulated. This suggests that bacterial survival under elevated spermine concentrations can not only be achieved by detoxification of spermine itself but also by mechanisms resulting in decreased spermine levels in the bacteria. IMPORTANCE Upon Mycobacterium tuberculosis infection macrophages synthesize the polyamine spermine, which at elevated concentrations is toxic for M. tuberculosis. Based on our investigations of spermine resistance in the closely related actinomycete Streptomyces coelicolor, we hypothesized that the glutamylspermine synthetase GlnA3 may be responsible for the resistance of M. tuberculosis against toxic spermine. Here we show that GlnA3Mt can indeed covalently modify spermine via glutamylation. However, GlnA3Mt is probably not the only resistance mechanism since a glnA3 null mutant of M. tuberculosis can survive under spermine stress. Gene expression studies suggest that an efflux pump may participate in resistance. Thus a combination of GlnA3Mt and specific efflux pumps acting as putative spermine transporters may constitute an active spermine-detoxification system in M. tuberculosis.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Moritz Bäuerle
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Maria Oswald
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Christian Meyners
- Institute of Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Hessen, Germany
| | - Doris Hillemann
- National Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Gareth Prosser
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Inken Wohlers
- Data Science, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Felix Hausch
- Institute of Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Hessen, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Agnieszka Mitulski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Zhang W, Zheng R, Geng W, Wu X, Gao X, Zhou L, An Z, Liu C, Song Z, Ji H, Yang H, Wu X. Functional Characterization of an Aldol Condensation Synthase PheG for the Formation of Hispidin from Phellinus Igniarius. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413192. [PMID: 39874205 DOI: 10.1002/advs.202413192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Hispidin (1) is a polyphenolic compound with a wide range of pharmacological activities that is distributed in both plants and fungi. In addition to natural extraction, hispidin can be obtained by chemical or enzymatic synthesis. In this study, the identification and characterization of an undescribed enzyme, PheG, from Phellinus igniarius (P. igniarius), which catalyzes the construction of a key C─C bond in the enzymatic synthesis of hispidin are reported. It is demonstrated in vitro that PheG generates hispidin by catalyzing C─C bond formation in the aldol condensation reaction. Based on these results, a plausible pathway for hispidin biosynthesis is proposed by utilizing the primary triacetic acid lactone (TAL, 2) and 3,4-dihydroxybenzaldehyde (3). The mechanisms for the aldol condensation reaction of PheG are investigated using molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy calculations, density functional theory, and site-specific mutations. The locations of the key amino acid residues that catalyze the conversion of substrates 2 and 3 to hispidin at the active site of PheG-1 are identified. This study provides a new method for preparing hispidin with high efficiency and low cost.
Collapse
Affiliation(s)
- Wanting Zhang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Ruliang Zheng
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Weiling Geng
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Xinyuan Wu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Xiaojuan Gao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Li Zhou
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Zhenyu An
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Cheng Liu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Zhijun Song
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Hongyan Ji
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Hao Yang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Xiuli Wu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China
| |
Collapse
|
8
|
Rasool M, Haque A, Alharthi M, Sibiany A, Alamri MS, Alqarni SMH, Rather IA, Chaudhary AG, Karim S, Pushparaj PN. The mutational spectrum of NRAS gene discovers a novel frameshift mutation (E49R) in Saudi colorectal cancer patients. Cancer Cell Int 2025; 25:21. [PMID: 39844204 PMCID: PMC11755827 DOI: 10.1186/s12935-025-03652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem the world face currently and one of the leading causes of death worldwide. CRC is genetically heterogeneous and multiple genetic aberrations may appear on course of the disease throughout patient's lifetime. Genetic biomarkers such as BRAF, KRAS, and NRAS may provide early precision treatment options that are crucial for patient survival and well-being. The aim of this study was to identify pathogenic mutations in the NRAS gene causing colorectal cancer in the Saudi population. We enrolled 80 CRC tumor tissue samples and performed molecular analyses to establish the mutation spectrum status in the western region of Saudi Arabia. We identified 5 different mutations in 10 patients, 4 of whom were reported previously (G10R, E37K, Q61K, and Q61*) in the literature while we discovered one novel lethal insertion mutation (E49R). A novel identified insertion mutation was present in the third codon of the NRAS gene [c.145 insA (p.Glu49ArgTer85)], causing a frameshift in the amino acid sequence of the protein, and leading to an aberrant and truncated protein of 85 amino acids. Subsequent bioinformatics analysis showed that the mutation was highly deleterious and affected protein function to a greater extent. This identification may further improve the prognosis of CRC and benefit subsequent treatment choices.
Collapse
Affiliation(s)
- Mahmood Rasool
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Absarul Haque
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alharthi
- Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Sibiany
- Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Saad Alamri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
9
|
Zhang H, Xu J, Chen M, Yin J, Hou Y, Tang B. The OnSPN2 from the nipa palm hispid beetle Octodonta nipae is a multipurpose defense tool against proteases from different peptidase families. INSECT SCIENCE 2025. [PMID: 39828949 DOI: 10.1111/1744-7917.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025]
Abstract
Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like. Notably, OnSPN2 features an arginine residue (R364) at the P1 position, and additional arginine residues (R362, R367) at the P3 and P3' positions, respectively which is crucial for protease inhibition. Immunohistochemistry (IHC) and Western blot analyses revealed that OnSPN2 is primarily synthesized in plasmatocytes and then released into the plasma to exert its function. RNA interference results indicated that OnSPN2 knockdown may depress serine protease in melanization and remarkably increase the transcript level of Attacin in hemolymph, but its messenger RNA levels were not changed upon immune induction. Reciprocal co-immunoprecipitation assay results confirmed that OnSPN2 binds to OnPPAF1 and OnSP8, indicating its role as a negative regulator in the PO and AMP pathway. Intriguingly, several cathepsin-L isoforms were identified in the OnSPN2 immunoprecipitated samples. The cathepsin-L inhibition assays and protein-protein docking results, identified cathepsin-L as a potential target of OnSPN2. These results indicate that OnSPN2 is produced as an intracellular resident and additionally is associated with the PO and AMP pathway. OnSPN2 represents a multiple defense tool that may provide multiple antiproteolytic functions.
Collapse
Affiliation(s)
- Huajian Zhang
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Jiawei Xu
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Mintao Chen
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Jiawei Yin
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Youming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhen Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Liu J, Neupane P, Cheng J. Accurate Prediction of Protein Complex Stoichiometry by Integrating AlphaFold3 and Template Information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632663. [PMID: 39868088 PMCID: PMC11761747 DOI: 10.1101/2025.01.12.632663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protein structure prediction methods require stoichiometry information (i.e., subunit counts) to predict the quaternary structure of protein complexes. However, this information is often unavailable, making stoichiometry prediction crucial for complexes with unknown stoichiometry. Despite its importance, few computational methods address this challenge. In this study, we present an approach that integrates AlphaFold3 structure predictions with homologous template data to predict stoichiometry. The method generates candidate stoichiometries, builds structural models for them using AlphaFold3, ranks them based on AlphaFold3 scores, and further refine predictions with template-based information when available. In the 16th community-wide Critical Assessment of Techniques for Protein Structure Prediction (CASP16), our method achieved 71.4% top-1 accuracy and 92.9% top-3 accuracy, outperforming other predictors in terms of the overall performance. This demonstrates the complementary strengths of AlphaFold3- and template-based predictions and highlights its applicability for uncharacterized protein complexes lacking stoichiometry data.
Collapse
Affiliation(s)
| | | | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Basu P, Verma N, Indra Kumar S, Nanath M, Kaligatla SG, Sivalanka G, Veeraraghavan VM, Aggarwal L, A Nankar S, Marikanti RK, Jayaraman M. Mechanism of low molecular weight impurity formation in an IgG1 monoclonal antibody formulation. J Pharm Sci 2025:S0022-3549(24)00627-0. [PMID: 39826838 DOI: 10.1016/j.xphs.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Formulation robustness study was performed for a biosimilar monoclonal antibody (IgG1) manufactured at Dr. Reddy's Laboratory, where the pH and concentration level of excipients in the drug product formulation were systematically varied from the target formulation. It was observed that the IgG1 formulation having relatively low pH and high citrate (buffer salt) concentration were predisposed to the formation of low molecular weight impurities. Mass spectrometry analysis of the mAb1 fragments detected the pyroglutamate species from LC-LC dimer and fragmentation in the -DKTH- amino acid sequence of the heavy chain. Blind docking indicated binding of citrate with Lysine 222 residue in the proximity of Cys224 could have potentially fragmented IgG1.
Collapse
Affiliation(s)
- Pinaki Basu
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Nidhi Verma
- Data Analytics, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sigireddi Indra Kumar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Maya Nanath
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Giridhar Sivalanka
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Lovisha Aggarwal
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sunil A Nankar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Ravi Kumar Marikanti
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Murali Jayaraman
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India.
| |
Collapse
|
12
|
Schweitzer M, Friedrich AM, Dennig A, Berg G, Müller Bogotá CA. Exploring 1-alkene biosynthesis in bacterial antagonists and Jeotgalicoccus sp. ATCC 8456. FEMS Microbiol Lett 2025; 372:fnaf004. [PMID: 39805715 PMCID: PMC11776017 DOI: 10.1093/femsle/fnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025] Open
Abstract
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp. ATCC 8456 produces 1-alkenes via the fatty acid decarboxylase OleTJE. UndA and UndB are recently identified non-heme iron oxidases converting medium-chain fatty acids into terminal alkenes. Our knowledge about the diversity and natural function of OleTJE, UndA, and UndB homologs is scarce. We applied a combined screening strategy-solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME GC-MS) and polymerase chain reaction (PCR)-based amplification-to survey an environmental strain collection for microbial 1-alkene producers and their corresponding enzymes. Our results reinforce the high level of conservation of UndA and UndB genes across the genus Pseudomonas. In vivo production of defined 1-alkenes (C9-C13; C15; C19) was directed by targeted feeding of fatty acids. Lauric acid feeding enabled 1-undecene production to a concentration of 3.05 mg l-1 in Jeotgalicoccus sp. ATCC 8456 and enhanced its production by 105% in Pseudomonas putida 1T1 (1.10 mg l-1). Besides, whole genome sequencing of Jeotgalicoccus sp. ATCC 8456 enabled reconstruction of the 1-alkene biosynthetic pathway. These results advance our understanding of microbial 1-alkene synthesis and the underlying genetic basis.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Andrea Marianne Friedrich
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
- Leibniz-Institute for Agricultural Engineering Potsdam, Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | | |
Collapse
|
13
|
Şulea TA, Draga S, Mernea M, Corlan AD, Radu BM, Petrescu AJ, Amuzescu B. Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants. Int J Mol Sci 2025; 26:358. [PMID: 39796214 PMCID: PMC11720074 DOI: 10.3390/ijms26010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABAA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na+ current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.5. The determined apparent IC50 values of 87.6 µM (peak) and 46.5 µM (late current) are within a clinically relevant range of concentrations (the maximal plasma therapeutic effective concentration for a daily dose of 400 mg in humans is 170 µM). In this study, we built a 3D model of the canonical hNav1.5 channel (UniProt Q14524-1) in open conformation using AlphaFold2, embedded it in a DPPC lipid bilayer, corrected the residue protonation state (pH 7.2) with H++, and added 2 Na+ ions in the selectivity filter. By molecular docking, we found the cenobamate binding site in the central cavity. We identified 10-point mutant variants in the binding site region and explored them via docking and MD. Mutants N1462K/Y (rs1064795922, rs199473614) and M1765R (rs752476527) (by docking) and N932S (rs2061582195) (by MD) featured higher predicted affinity than wild-type.
Collapse
Affiliation(s)
- Teodor Asvadur Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Sorin Draga
- Biotehnos SA, Gorunului Str. 3-5, 075100 Otopeni, Romania;
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Alexandru Dan Corlan
- Cardiology Research Unit, University and Emergency Hospital of Bucharest, Splaiul Independenței 169, 050098 Bucharest, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| |
Collapse
|
14
|
Lettau E, Lorent C, Appel J, Boehm M, Cordero PRF, Lauterbach L. Insights into electron transfer and bifurcation of the Synechocystis sp. PCC6803 hydrogenase reductase module. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149508. [PMID: 39245309 DOI: 10.1016/j.bbabio.2024.149508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The NAD+-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H2) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE. We demonstrated the importance of HoxE for enzyme functionality, suggesting a regulatory role in maintaining enzyme activity and electron supply. Spectroscopic analysis confirmed that HoxE and HoxF each contain one [2Fe2S] cluster with an almost identical electronic structure. Structure predictions, alongside experimental evidence for ferredoxin interactions, revealed a remarkable similarity between SynSH and bifurcating hydrogenases, suggesting a related functional mechanism. Our study unveiled the subunit arrangement and cofactor composition essential for biological electron transfer. These findings enhance our understanding of NAD+-reducing [NiFe] hydrogenases in terms of their physiological function and structural requirements for biotechnologically relevant modifications.
Collapse
Affiliation(s)
- Elisabeth Lettau
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany; Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany.
| | - Christian Lorent
- Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany
| | - Jens Appel
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Marko Boehm
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Paul R F Cordero
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany
| | - Lars Lauterbach
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Yadav K, Patel K, Mani A, Yadav S, Yadav D. Elucidating the potential of bioactive of Trichoderma sp.. in combating pathogenesis by Fusarium sp.. by targeting pectin lyases: a bioinformatics approach. Biochem Biophys Res Commun 2025; 742:151111. [PMID: 39644607 DOI: 10.1016/j.bbrc.2024.151111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pectin lyase is an industrially important enzyme, predominately used in fruit juice clarification and retting of fibers. It also promotes pathogenesis via the degradation of the pectin. The phytopathogen, Fusarium infects various crops and causes several diseases. Trichoderma sp. is a promising biocontrol agent that is vital in maintaining plant health and disease prevention. In the current study, a computational approach utilizing structure prediction, molecular docking, molecular dynamics, and MM-PBSA analysis was used to analyze the potential role of bioactive compounds secreted by Trichoderma sp. in inhibiting the pectin lyase enzyme from Fusarium proliferatum, F. fujikuroi, F. graminearum, F. oxysporum and F. verticillioides. Molecular docking with secondary metabolites revealed that Viridiofungin A secreted by Trichoderma harzianum and Virone secreted by T. virens are bioactive compounds with immense potential to inhibit PNLs of Fusarium species. Further, the rigidity of the structure and stability of the docked complex were confirmed via Molecular dynamic simulations assessed through multiple parameters from the simulation trajectory data. Dual culture assay of T. harzianum and T. virens with F. proliferatum, F. fujikuroi, F. graminearum, F. oxysporum, and F. verticillioides showed variable mycelial inhibition. The research provides insight into the potential of the bioactive compounds secreted by Trichoderma species as an effective agent for the inhibition of pectin lyases produced by phytopathogens, especially Fusarium species. The proposed research can be used to develop bioformulations that function as biopesticides, offering a sustainable replacement for chemical products.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, 211004, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, 211004, Uttar Pradesh, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| |
Collapse
|
16
|
Kim A, Stewart JD. Exploring the Structure-Function Relationships in a 5-Aminolevulinic Acid Synthase and the Use of Protein Engineering to Expand its Substrate Range. Biochemistry 2024. [PMID: 39688068 DOI: 10.1021/acs.biochem.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
5-Aminolevulinate synthase (ALAS) is a PLP-dependent enzyme that catalyzes the production of 5-aminolevulinate from succinyl-CoA and glycine. Its ability to catalyze the essentially irreversible C-C bond formation has significant potential in chemoenzymatic synthesis of α-amino ketones. Native ALAS, unfortunately, is extremely substrate-selective, and this seriously limits its synthetic utility. Here, we have used three different protein engineering strategies to overcome this problem for the acyl-CoA substrate. By combining previously reported mutation results and structural analysis, a series of site-saturation mutagenesis/screening efforts were focused on R21, T82, N84, and T362 of Rhodopseudomonas palustris ALAS. These yielded single, double, and triple mutants with significantly improved substrate ranges. The steady-state kinetic parameters of several key variants were determined. These data were analyzed in the framework of the ALAS catalytic mechanism to identify the steps that may have been impacted. The most active variant was used in a larger-scale reaction to demonstrate its synthetic potential. Taken together, our results show how ALAS might become a useful biocatalyst for α-amino ketone synthesis and have also allowed us to comment on the relative merits of each the three protein engineering strategies utilized.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, Florida 32611, United States
| | - Jon D Stewart
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Liang F, Sun M, Xie L, Zhao X, Liu D, Zhao K, Zhang G. Recent advances and challenges in protein complex model accuracy estimation. Comput Struct Biotechnol J 2024; 23:1824-1832. [PMID: 38707538 PMCID: PMC11066466 DOI: 10.1016/j.csbj.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Estimation of model accuracy plays a crucial role in protein structure prediction, aiming to evaluate the quality of predicted protein structure models accurately and objectively. This process is not only key to screening candidate models that are close to the real structure, but also provides guidance for further optimization of protein structures. With the significant advancements made by AlphaFold2 in monomer structure, the problem of single-domain protein structure prediction has been widely solved. Correspondingly, the importance of assessing the quality of single-domain protein models decreased, and the research focus has shifted to estimation of model accuracy of protein complexes. In this review, our goal is to provide a comprehensive overview of the reference and statistical metrics, as well as representative methods, and the current challenges within four distinct facets (Topology Global Score, Interface Total Score, Interface Residue-Wise Score, and Tertiary Residue-Wise Score) in the field of complex EMA.
Collapse
Affiliation(s)
| | | | - Lei Xie
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xuanfeng Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
18
|
Nakonieczna A, Topolska-Woś A, Łobocka M. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:76. [PMID: 38194144 PMCID: PMC10776502 DOI: 10.1007/s00253-023-12839-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Bacillus anthracis is an etiological agent of anthrax, a severe zoonotic disease that can be transmitted to people and cause high mortalities. Bacteriophages and their lytic enzymes, endolysins, have potential therapeutic value in treating infections caused by this bacterium as alternatives or complements to antibiotic therapy. They can also be used to identify and detect B. anthracis. Endolysins of two B. anthracis Wbetavirus phages, J5a and F16Ba which were described by us recently, differ significantly from the best-known B. anthracis phage endolysin PlyG from Wbetavirus genus bacteriophage Gamma and a few other Wbetavirus genus phages. They are larger than PlyG (351 vs. 233 amino acid residues), contain a signal peptide at their N-termini, and, by prediction, have a different fold of cell binding domain suggesting different structural basis of cell epitope recognition. We purified in a soluble form the modified versions of these endolysins, designated by us LysJ and LysF, respectively, and depleted of signal peptides. Both modified endolysins could lyse the B. anthracis cell wall in zymogram assays. Their activity against the living cells of B. anthracis and other species of Bacillus genus was tested by spotting on the layers of bacteria in soft agar and by assessing the reduction of optical density of bacterial suspensions. Both methods proved the effectiveness of LysJ and LysF in killing the anthrax bacilli, although the results obtained by each method differed. Additionally, the lytic efficiency of both proteins was different, which apparently correlates with differences in their amino acid sequence. KEY POINTS: • LysJ and LysF are B. anthracis-targeting lysins differing from lysins studied so far • LysJ and LysF could be overproduced in E. coli in soluble and active forms • LysJ and LysF are active in killing cells of B. anthracis virulent strains.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100, Puławy, Poland.
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
19
|
Zhang S, Cheng Z, Li X, Shi Y, Zhu H, Zhang T, Wang L, Sun H. Trans-Placental Transfer Mechanisms of Aromatic Amine Antioxidants (AAs) and p-Phenylenediamine Quinones (PPD-Qs): Evidence from Human Gestation Exposure and the Rat Uterine Perfusion Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39558173 DOI: 10.1021/acs.est.4c09416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Aromatic amine antioxidants (AAs), as rubber additives, and their ozone photochemical oxidation products of p-phenylenediamine quinone (PPD-Qs) have attracted great attention recently due to their wide environmental occurrences and toxicity. However, there is currently no research on the exposure risks during pregnancy and their trans-placental transfer mechanisms. Herein, 20 AAs and six PPD-Qs were analyzed in 60 maternal urine and fifty-six amniotic fluid samples (n = 53 pairs). ΣAAs (median: 8.57 and 15.4 ng/mL) and ΣPPD-Qs (0.236 and 2.29 ng/mL) were both observed, where the median concentration of PPD-Qs was significantly (p < 0.05) higher than that of the parent PPDs (0.130 and 0.092 ng/mL) in the maternal urine and amniotic fluid samples, respectively. The result of the self-established rat uterine perfusion model and molecular docking analysis suggested that passive diffusion and active transport patterns were involved in the trans-placental transfer. This study will raise concerns regarding intrauterine exposure and the trans-placental transfer mechanisms to AAs/PPD-Qs during pregnancy.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian Liaoning 116026, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Xu K, Huang ZY, Sun CY, Pan J, Li CX, Xu JH. (+)-3,6-Epoxymaaliane: A Novel Derivative of (+)-Bicyclogermacrene Oxidation Catalyzed by CYP450 BM3-139-3 and Its Variants. Chembiochem 2024; 25:e202400410. [PMID: 39462891 DOI: 10.1002/cbic.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Indexed: 10/29/2024]
Abstract
(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes. In this study, we employed P450 BM3-139-3 variant for in vitro enzymatic oxidation of (+)-bicyclogermacrene, identifying a novel oxidized derivative of (+)-bicyclogermacrene, named (+)-3,6-epoxymaaliane, and an unknown sesquiterpenoid in a ratio of 70 : 30 (by GC peak area). (+)-3,6-Epoxymaaliane showed demonstrated antibacterial activities toward Escherichia coli and Staphylococcus aureus. To obtain a better variant of the monooxygenase with a high selectivity to form (+)-3,6-epoxymaaliane, we combined alanine scanning with the "Focused Rational Iterative Site-Specific Mutagenesis" (FRISM) strategy to modify the closest residues within 5 Å radius surrounding the substrate to create a small-but-smart library of mutants. Consequently, it gave an optimal variant with 1.6-fold improvement, in a turnover number (TON) of up to 964 toward (+)-3,6-epoxymaaliane production with a higher product selectivity.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yi Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
21
|
Patne AY, Dhulipala SM, Lawless W, Prakash S, Mohapatra SS, Mohapatra S. Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches. Int J Mol Sci 2024; 25:12233. [PMID: 39596300 PMCID: PMC11594879 DOI: 10.3390/ijms252212233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The complexities inherent in drug development are multi-faceted and often hamper accuracy, speed and efficiency, thereby limiting success. This review explores how recent developments in machine learning (ML) are significantly impacting target-based drug discovery, particularly in small-molecule approaches. The Simplified Molecular Input Line Entry System (SMILES), which translates a chemical compound's three-dimensional structure into a string of symbols, is now widely used in drug design, mining, and repurposing. Utilizing ML and natural language processing techniques, SMILES has revolutionized lead identification, high-throughput screening and virtual screening. ML models enhance the accuracy of predicting binding affinity and selectivity, reducing the need for extensive experimental screening. Additionally, deep learning, with its strengths in analyzing spatial and sequential data through convolutional neural networks (CNNs) and recurrent neural networks (RNNs), shows promise for virtual screening, target identification, and de novo drug design. Fragment-based approaches also benefit from ML algorithms and techniques like generative adversarial networks (GANs), which predict fragment properties and binding affinities, aiding in hit selection and design optimization. Structure-based drug design, which relies on high-resolution protein structures, leverages ML models for accurate predictions of binding interactions. While challenges such as interpretability and data quality remain, ML's transformative impact accelerates target-based drug discovery, increasing efficiency and innovation. Its potential to deliver new and improved treatments for various diseases is significant.
Collapse
Affiliation(s)
- Akshata Yashwant Patne
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Sai Madhav Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (S.M.D.); (W.L.)
| | - William Lawless
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (S.M.D.); (W.L.)
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Shyam S. Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (S.M.D.); (W.L.)
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| |
Collapse
|
22
|
Labossiere EH, Gonzalez-Diaz S, Enns S, Lopez P, Yang X, Kidane B, Vazquez-Grande G, Siddik AB, Kung SKP, Sandstrom P, Ravandi A, Ball TB, Su RC. Detectability of cytokine and chemokine using ELISA, following sample-inactivation using Triton X-100 or heat. Sci Rep 2024; 14:26777. [PMID: 39500912 PMCID: PMC11538312 DOI: 10.1038/s41598-024-74739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Clinical samples are routinely inactivated before molecular assays to prevent pathogen transmission. Antibody-based assays are sensitive to changes in analyte conformation, but the impact of inactivation on the analyte detectability has been overlooked. This study assessed the effects of commonly used inactivation-methods, Triton X-100 (0.5%) and heat (60 °C, 1 h), on cytokine/chemokine detection in plasma, lung aspirates, and nasopharyngeal samples. Heat significantly reduced analyte detectability in plasma (IL-12p40, IL-15, IL-16, VEGF, IL-7, TNF-β) by 33-99% (p ≤ 0.02), while Triton X-100 minimally affected analytes in plasma and nasopharyngeal samples (11-37%, p ≤ 0.04) and had no significant impact on lung aspirates. Structural analysis revealed that cytokines affected by heat had more hydrophobic residues and higher instability-indices. As the protein-detectability was affected differently in different sample types, the sample environment could also influence protein stability. This underscores the importance of selecting the most suitable inactivation methods for clinical samples to ensure accurate cytokine/chemokine analysis in both clinical and research settings.
Collapse
Affiliation(s)
- Erica Hofer Labossiere
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sandra Gonzalez-Diaz
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Enns
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Lopez
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xuefen Yang
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Gloria Vazquez-Grande
- Section of Critical Care, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Abu Bakar Siddik
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Sam Kam-Pun Kung
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Sandstrom
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics, Institute of Cardiovascular Sciences, St. Boniface Hospital, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
23
|
Wolf I, Storz J, Schultze-Seemann S, Esser PR, Martin SF, Lauw S, Fischer P, Peschers M, Melchinger W, Zeiser R, Gorka O, Groß O, Gratzke C, Brückner R, Wolf P. A new silicon phthalocyanine dye induces pyroptosis in prostate cancer cells during photoimmunotherapy. Bioact Mater 2024; 41:537-552. [PMID: 39246837 PMCID: PMC11378935 DOI: 10.1016/j.bioactmat.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Photoimmunotherapy (PIT) combines the specificity of antibodies with the cytotoxicity of light activatable photosensitizers (PS) and is a promising new cancer therapy. We designed and synthesized, in a highly convergent manner, the silicon phthalocyanine dye WB692-CB2, which is novel for being the first light-activatable PS that can be directly conjugated via a maleimide linker to cysteines. In the present study we conjugated WB692-CB2 to a humanized antibody with engineered cysteines in the heavy chains that specifically targets the prostate-specific membrane antigen (PSMA). The resulting antibody dye conjugate revealed high affinity and specificity towards PSMA-expressing prostate cancer cells and induced cell death after irradiation with red light. Treated cells exhibited morphological characteristics associated with pyroptosis. Mechanistic studies revealed the generation of reactive oxygen species, triggering a cascade of intracellular events involving lipid peroxidation, caspase-1 activation, gasdermin D cleavage and membrane rupture followed by release of pro-inflammatory cellular contents. In first in vivo experiments, PIT with our antibody dye conjugate led to a significant reduction of tumor growth and enhanced overall survival in mice bearing subcutaneous prostate tumor xenografts. Our study highlights the future potential of the new phthalocyanine dye WB692-CB2 as PS for the fluorescence-based detection and PIT of cancer, including local prostate tumor lesions, and systemic activation of anti-tumor immune responses by the induction of pyroptosis.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jonas Storz
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Philipp R Esser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Stefan F Martin
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Susan Lauw
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, 69120, Heidelberg, Germany
| | - Marie Peschers
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Melchinger
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Oliver Gorka
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Reinhard Brückner
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
24
|
Procopio R, Gagliardi M, Talarico M, Fortunato F, Sammarra I, Procopio AC, Roncada P, Malanga D, Annesi G, Gambardella A. Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures. Genes (Basel) 2024; 15:1407. [PMID: 39596607 PMCID: PMC11593345 DOI: 10.3390/genes15111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Febrile seizures (FSs) are the most common form of epilepsy in children aged between six months and five years. The exact cause is unknown, but several studies have demonstrated the importance of genetic predisposition, with increasing involvement of receptors and ion channels. The present study aims to identify novel pathogenic variants in Italian patients with FSs. METHODS We performed targeted panel sequencing in a cohort of 21 patients with FSs. In silico analysis was performed to predict the pathogenic role of the resulting variants. RESULTS We found two novel variants segregating in two families with FSs: c.1021C>G (p.Leu341Val) in the CHRNA2 gene and c.140A>G (p.Glu47Gly) in SCN2A. CONCLUSIONS The c.1021C>G (p.Leu341Val) variant leads to a codon change of highly conserved leucine to valine at position 341 and is located in segments M3 of the subunit, which is important for channel gating. The c.140A>G (p.Glu47Gly) variant causes a substitution of glutamic acid with glycine at position 47 of the protein, which is highly conserved across the species. Moreover, it is located in the N-terminal domain, a region commonly affected in ASD, which impacts the inactivation kinetics and voltage dependence of steady-state activation. Further analyses are needed to better explain the role of CHRNA2 and SCN2A in the development of febrile seizures.
Collapse
Affiliation(s)
- Radha Procopio
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mariagrazia Talarico
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.T.); (F.F.); (I.S.); (A.G.)
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.T.); (F.F.); (I.S.); (A.G.)
| | - Ilaria Sammarra
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.T.); (F.F.); (I.S.); (A.G.)
| | - Anna Caterina Procopio
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (A.C.P.); (P.R.)
| | - Paola Roncada
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (A.C.P.); (P.R.)
| | - Donatella Malanga
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Interdepartmental Center of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy
| | - Grazia Annesi
- Institute for Biomedical Research and Innovation, National Research Council, 87050 Mangone, Italy;
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.T.); (F.F.); (I.S.); (A.G.)
| |
Collapse
|
25
|
Li S, Zhang Z, Xie L, Zhao Y, Chen H, Zhang S, Cai Y, Ren B, Liu W, Tang S, Sha Y. Novel bi-allelic DNAH3 variants cause oligoasthenoteratozoospermia. Front Endocrinol (Lausanne) 2024; 15:1462509. [PMID: 39588341 PMCID: PMC11586517 DOI: 10.3389/fendo.2024.1462509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Oligoasthenoteratozoospermia (OAT) is a widespread cause of male infertility. One of the usual clinical manifestations of OAT is multiple morphological abnormalities of the sperm flagella (MMAF), which are frequently associated with mutations and defects in the dynein family. However, the relationship between the newly identified Dynein Axonemal Heavy Chain 3 (DNAH3) mutation and oligonasthenospermia in humans has not yet been established. Methods Whole exome sequencing, pathogenicity analysis, and species conservation analysis of mutation sites were conducted on two patients from different unrelated families with DNAH3 mutations. We identified representative mutation sites and predicted the protein structure following these mutations. The sperm characteristics of the two patients with DNAH3 mutations were verified using Papanicolaou staining, scanning electron microscopy, and transmission electron microscopy. Additionally, mRNA and protein levels were assessed through RT-qPCR and Western blotting. Results The biallelic mutations in the first progenitor included a heterozygous deletion and insertion, c.6535_6536 delinsAC (to infect mutation (p.Asp2179Thr), and stop codon premutation, c.3249G > A (p.Trp1083Ter). In Family II, the patient (P2) harbored a DNAH3 heterozygous missense mutation, c. 10439G> A(p.Arg3480Gln), along with a stop codon premutation, (c.10260G > A; p.Trp3420Ter). Patients with premature termination of transcription or translation due to DNAH3 mutations exhibit OAT phenotypes, including fibrous sheath dysplasia and multiple tail malformations. We identified the representative sites after mutation, predicted the protein structure, and assessed changes in the protein levels of DNAH3 and related genes following mutations. Notably,a significant reduction in DNAH3 protein expression was validated in these patients. We may explore in the future how DNAH3 affects sperm motility and quality through regulatory mechanisms involving protein structural changes. Conclusion Novel biallelic mutations in DNAH3, especially those resulting in a premature stop codon, may alter protein expression, structure, and active site, leading to spermatogenic failure and potentially inducing OAT. The discovery of new mutations in DNAH3 may be the key to the diagnosis and treatment of OAT.
Collapse
Affiliation(s)
- Shu Li
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zexin Zhang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Linna Xie
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yanqiu Zhao
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongtai Chen
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shijia Zhang
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yixiang Cai
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bingjie Ren
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Songxi Tang
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
26
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
27
|
Pan Y, Niu K, Miao P, Zhao G, Zhang Y, Ju Z, Chai J, Yang J, Cui X, Zhang R. Genome-wide analysis of the SWEET gene family and its response to powdery mildew and leaf spot infection in the common oat (Avena sativa L.). BMC Genomics 2024; 25:995. [PMID: 39448896 PMCID: PMC11515518 DOI: 10.1186/s12864-024-10933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
The nutritional quality and yield of oats (Avena sativa) are often compromised by plant diseases such as red leaf, powdery mildew, and leaf spot. Sugars Will Eventually be Exported Transporters (SWEETs) are newly identified sugar transporters involved in regulating plant growth and stress responses. However, the roles of SWEET genes in biotic stress responses remain uncharacterized in oats. In this study, 13 AsSWEET genes were identified across nine chromosomes of the oat genome, all of which were predicted to contain seven transmembrane regions. Phylogenetic analysis revealed four clades of AsSWEET proteins, with high homology to SWEET proteins in the Poaceae family. Collinearity analysis demonstrated strong relationships between oat and Zea mays SWEETs. Using subcellular localization prediction tools, AsSWEET proteins were predicted to localize to the plasma membrane. Promoter analysis revealed cis-acting elements associated with light response, growth, and stress regulation. Six AsSWEET proteins were predicted to interact in a network centered on AsSWEET1a and AsSWEET11. Gene expression analysis of two oat varieties, 'ForagePlus' and 'Molasses', indicated significant expression differences in several AsSWEET genes following infection with powdery mildew or leaf spot, including AsSWEET1a, AsSWEET1b, AsSWEET2b, AsSWEET3a, AsSWEET11, and AsSWEET16. These SWEET genes are potential candidates for disease resistance in oats. This study provides a foundation for understanding the regulatory mechanisms of AsSWEET genes, particularly in response to powdery mildew and leaf spot, and offers insights for enhancing oat molecular breeding.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Peiqin Miao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Guiqin Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 810016, Inner Mongolia, China
| | - Zeliang Ju
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Jikuan Chai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Juanjuan Yang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xiaoning Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Ran Zhang
- Institute of Ecological Protection and Restoration, Grassland Research Center, Chinese Academy of Forestry, National Forestry and Grassland Administration, Beijing, 100091, China
| |
Collapse
|
28
|
Asadi M, Ghaffari AD, Mohammadhasani F. In silico analysis and structural vaccinology prediction of Toxoplasma gondii ROP41 gene via immunoinformatics methods as a vaccine candidate. Curr Res Transl Med 2024; 73:103475. [PMID: 39461097 DOI: 10.1016/j.retram.2024.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Toxoplasma gondii (T. gondii) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research. MATERIALS AND METHODS The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine. RESULTS ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic. CONCLUSION The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.
Collapse
Affiliation(s)
- Masoumeh Asadi
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | | |
Collapse
|
29
|
Mirabello C, Wallner B. DockQ v2: improved automatic quality measure for protein multimers, nucleic acids, and small molecules. Bioinformatics 2024; 40:btae586. [PMID: 39348158 PMCID: PMC11467047 DOI: 10.1093/bioinformatics/btae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
MOTIVATION It is important to assess the quality of modeled biomolecules to benchmark and assess the performance of different prediction methods. DockQ has emerged as the standard tool for assessing the quality of protein interfaces in model structures against given references. However, as predictions of large multimers with multiple chains become more common, DockQ needs to be updated with more functionality for robustness and speed. Moreover, as the field progresses and more methods are released to predict interactions between proteins and other types of molecules, such as nucleic acids and small molecules, it becomes necessary to have a tool that can assess all types of interactions. RESULTS Here, we present a complete reimplementation of DockQ in pure Python. The updated version of DockQ is more portable, faster and introduces novel functionalities, such as automatic DockQ calculations for multiple interfaces and automatic chain mapping with multi-threading. These enhancements are designed to facilitate comparative analyses of protein complexes, particularly large multi-chain complexes. Furthermore, DockQ is now also able to score interfaces between proteins, nucleic acids, and small molecules. AVAILABILITY AND IMPLEMENTATION DockQ v2 is available online at: https://wallnerlab.org/DockQ.
Collapse
Affiliation(s)
- Claudio Mirabello
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, SE-581 83 Linköping, Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
30
|
Mičúchová A, Kyslík J, Korytář T, Piačková V, Frébort I. Barley as a production platform for oral vaccines in sustainable fish aquaculture. N Biotechnol 2024; 84:37-52. [PMID: 39332672 DOI: 10.1016/j.nbt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.
Collapse
Affiliation(s)
- Alžbeta Mičúchová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic; Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jiří Kyslík
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Tomáš Korytář
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Veronika Piačková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Ivo Frébort
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
31
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
32
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
33
|
Curry HN, Huynh R, Rouhana L. Melastatin subfamily Transient Receptor Potential channels support spermatogenesis in planarian flatworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610670. [PMID: 39282438 PMCID: PMC11398416 DOI: 10.1101/2024.09.01.610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related subfamily (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm Schmidtea mediterranea and analyzed their anatomical distribution of expression by whole-mount in situ hybridization. Enriched expression of two TRPMs (Smed-TRPM-c and Smed-TRPM-l) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of Smed-TRPM-c expression results in reduced sperm development, indicating a role for this receptor in supporting spermatogenesis. Smed-TRPM-l RNAi did not result in a detectable phenotype, but it increased sperm development deficiencies when combined with Smed-TRPM-c RNAi. Fluorescence in situ hybridization revealed expression of Smed-TRPM-c in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, Smed-TRPM-c RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that Smed-TRPM-c supports establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of few known examples for TRPM function in direct regulation of sperm development.
Collapse
Affiliation(s)
- Haley Nicole Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| | - Labib Rouhana
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| |
Collapse
|
34
|
Li R, Yang P, Zhang H, Wang C, Zhao F, Liu J, Wang Y, Liang Y, Sun T, Xie X. Comparative Genomic and Functional Analysis of c-di-GMP Metabolism and Regulatory Proteins in Bacillus velezensis LQ-3. Microorganisms 2024; 12:1724. [PMID: 39203566 PMCID: PMC11357230 DOI: 10.3390/microorganisms12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.
Collapse
Affiliation(s)
- Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Chunjing Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yan Liang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Ting Sun
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| |
Collapse
|
35
|
Gaiya DD, Muhammad A, Musa JS, Auta R, Dadah AJ, Bello RO, Hassan M, Eke SS, Odihi RI, Sankey M. In silico analysis of balsaminol as anti-viral agents targeting SARS-CoV-2 main protease, spike receptor binding domain and papain-like protease receptors. In Silico Pharmacol 2024; 12:75. [PMID: 39155972 PMCID: PMC11329488 DOI: 10.1007/s40203-024-00241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/13/2024] [Indexed: 08/20/2024] Open
Abstract
Plant-derived phytochemicals from medicinal plants are becoming increasingly attractive natural sources of antimicrobial and antiviral agents due to their therapeutic value, mechanism of action, level of toxicity and bioavailability. The continued emergence of more immune-evasive strains and the rate of resistance to current antiviral drugs have created a need to identify new antiviral agents against SARS-CoV-2. This study investigated the antiviral potential of balsaminol, a bioactive compound from Momordica balsamina, and its inhibitory activities against SARS-CoV-2 receptor proteins. In this study, three Food and Drug Administration (FDA) COVID-19 approved drugs namely; nirmatrelvir, ritonavir and remdesivir were used as positive control. Molecular docking was performed to determine the predominant binding mode (most negative Gibbs free energy of binding/ΔG) and inhibitory activity of balsaminol against SARS-CoV-2 receptor proteins. The pharmacokinetics, toxicity, physicochemical and drug-like properties of balsaminol were evaluated to determine its potential as an active oral drug candidate as well as its non-toxicity in humans. The results show that balsaminol E has the highest binding affinity to the SARS CoV-2 papain-like protease (7CMD) with a free binding energy of - 8.7 kcal/mol, followed by balsaminol A interacting with the spike receptor binding domain (6VW1) with - 8.5 kcal/mol and balsaminol C had a binding energy of - 8.1 kcal/mol with the main protease (6LU7) comparable to the standard drugs namely ritonavir, nirmatrelvir and remdesivir. However, the ADMET and drug-like profile of balsaminol F favours it as a better potential drug candidate and inhibitor of the docked SARS-CoV-2 receptor proteins. Further preclinical studies are therefore recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00241-0.
Collapse
Affiliation(s)
- Daniel Danladi Gaiya
- Biology Unit, Air Force Institute of Technology, Nigerian Air Force Base, P.M.B 2104, Kaduna, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1045, Samaru Zaria, Nigeria
| | - Joy Sim Musa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1045, Samaru Zaria, Nigeria
| | - Richard Auta
- Department of Biochemistry, Faculty of Life Sciences, Kaduna State University, Tafawa Balewa Way, P.M.B. 2339, Kaduna, Nigeria
| | - Anthony John Dadah
- Department of Microbiology, Faculty of Life Sciences, Kaduna State University, Tafawa Balewa Way, P.M.B. 2339, Kaduna, Nigeria
| | | | - Madinat Hassan
- Biology Unit, Air Force Institute of Technology, Nigerian Air Force Base, P.M.B 2104, Kaduna, Nigeria
| | - Samuel Sunday Eke
- Biology Unit, Air Force Institute of Technology, Nigerian Air Force Base, P.M.B 2104, Kaduna, Nigeria
| | - Rebecca Imoo Odihi
- Department of Biological Science, Nigerian Defence Academy, Kaduna, Nigeria
| | - Musa Sankey
- Department of Chemistry, Kaduna State College of Education, Gidan Waya, Kaduna, Nigeria
| |
Collapse
|
36
|
Lu X, Li J, Huang C, Wang Z, Chen Y, Jiang S, Li J, Xie N. Development of New Multi-Glycosylation Routes to Facilitate the Biosynthesis of Sweetener Mogrosides from Bitter Immature Siraitia Grosvenorii Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18078-18088. [PMID: 39078882 DOI: 10.1021/acs.jafc.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mogrosides, which have various pharmacological activities, are mainly extracted from Siraitia grosvenorii (Luo Han Guo) and are widely used as natural zero-calorie sweeteners. Unfortunately, the difficult cultivation and long maturation time of Luo Han Guo have contributed to a shortage of mogrosides. To overcome this obstacle, we developed a highly efficient biosynthetic method using engineered Escherichia coli to synthesize sweet mogrosides from bitter mogrosides. Three UDP-glycosyltransferase (UGT) genes with primary/branched glycosylation catalytic activity at the C3/C24 sites of mogrosides were screened and tested. Mutant M3, which could catalyze the glycosylation of nine types of mogrosides, was obtained through enhanced catalytic activity. This improvement in β-(1,6)-glycosidic bond formation was achieved through single nucleotide polymorphisms and direct evolution, guided by 3D structural analysis. A new multienzyme system combining three UGTs and UDP-glucose (UDPG) regeneration was developed to avoid the use of expensive UDPG. Finally, the content of sweet mogrosides in the immature Luo Han Guo extract increased significantly from 57% to 95%. This study not only established a new multienzyme system for the highly efficient production of sweet mogrosides from immature Luo Han Guo but also provided a guideline for the high-value utilization of rich bitter mogrosides from agricultural waste and residues.
Collapse
Affiliation(s)
- Xinyi Lu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Zhefei Wang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Yanchi Chen
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shuiyuan Jiang
- Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin 541006, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
37
|
Joshi N, Hosen SKY, Fahad M, Narooka AR, Gourinath S, Tiwari S. The 26 S proteasome in Entamoeba histolytica: divergence of the substrate binding pockets from host proteasomes. BMC Res Notes 2024; 17:216. [PMID: 39095914 PMCID: PMC11295364 DOI: 10.1186/s13104-024-06848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Proteasomes are conserved proteases crucial for proteostasis in eukaryotes and are promising drug targets for protozoan parasites. Yet, the proteasomes of Entamoeba histolytica remain understudied. The study's objective was to analyse the differences in the substrate binding pockets of amoeba proteasomes from those of host, and computational modelling of β5 catalytic subunit, with the goal of finding selective inhibitors. RESULTS Comparative sequence analysis revealed differences in substrate binding sites of E. histolytica proteasomes, especially in the S1 and S3 pockets of the catalytic beta subunits, implying differences in substrate preference and susceptibility to inhibitors from host proteasomes. This was strongly supported by significantly lower sensitivity to MG132 mediated inhibition of amoebic proteasome β5 subunit's chymotryptic activity compared to human proteasomes, also reflected in lower sensitivity of E. histolytica to MG132 for inhibition of proliferation. Computational models of β4 and β5 subunits, and a docked β4-β5 model revealed a binding pocket between β4-β5, similar to that of Leishmania tarentolae. Selective inhibitors for visceral leishmaniasis, LXE408 and compound 8, docked well to this pocket. This functional and sequence-based analysis predicts differences between amoebic and host proteasomes that can be utilized to develop rationally designed, selective inhibitors against E. histolytica.
Collapse
Affiliation(s)
- Nidhi Joshi
- Department of Pharmacology, University of Minnesota, Minneapolis, USA
- Molecular Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Yasir Hosen
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
- Molecular Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohd Fahad
- Molecular Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anil Raj Narooka
- Proteomics Department, Advanced Enzymes Technologies Ltd, Thane, 400604, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Molecular Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Tiwari
- Molecular Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
38
|
Zhang X, Sun Y, Zhang X, Shen D, Shu S, Yang X, Liu M, Cui L, Liu Q, Zhang X. Genotype-phenotype association and functional analysis of hnRNPA1 mutations in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:600-607. [PMID: 38717009 DOI: 10.1080/21678421.2024.2346502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Pathogenic variants in hnRNPA1 have been reported in amyotrophic lateral sclerosis (ALS) patients. However, studies on hnRNPA1 mutant spectrum and pathogenicity of variants were rare. METHODS We performed whole exome sequencing of ALS-associated genes and subsequent verification of rare variants in hnRNPA1 in our ALS patients. The hnRNPA1 mutations reported in literature were reviewed and combined with our results to determine the genotype-phenotype relationship. Functional analysis of the novel variant p.G195A was performed in vitro by transfection of mutant hnRNPA1 into 293T cell. RESULTS Among 207 ALS patients recruited, 3 rare hnRNPA1 variants were identified (mutant frequency 1.45%), including two recurrent mutations (p.P340S and p.G283R), and a novel rare variant p.G195A. In combination with previous reports, there are 27 ALS patients with 15 hnRNPA1 mutations identified. Disease onset age was 47.90 ± 1.52 years with predominant limb onset. The p.P340S mutation caused flail arm syndrome (FAS) in two independent families with extended life expectancy. The newly identified p.G195A mutation, lying at the start of the PrLD ("prion-like" domain)/LCD (low-complexity domain), causes local structural changes in 3D protein prediction. Upon sodium arsenite exposure, mutant hnRNPA1 retained in the nucleus but deficit of cytoplasmic G3BP1-positive stress granule clearance was observed. This is different from the p.P340S mutation which caused both cytoplasmic translocation and stress granule formation. No cytoplasmic TDP-43 translocation was observed. CONCLUSION Mutations in hnRNPA1 are overall minor in ALS patients. The p.P340S mutation is associated with manifestation of FAS. Mutations in LCD of hnRNPA1 cause stress granule misprocessing.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| | - Ye Sun
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xinzhe Zhang
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Shi Shu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xue Zhang
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| |
Collapse
|
39
|
Chen L, Li Q, Nasif KFA, Xie Y, Deng B, Niu S, Pouriyeh S, Dai Z, Chen J, Xie CY. AI-Driven Deep Learning Techniques in Protein Structure Prediction. Int J Mol Sci 2024; 25:8426. [PMID: 39125995 PMCID: PMC11313475 DOI: 10.3390/ijms25158426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein structure prediction is important for understanding their function and behavior. This review study presents a comprehensive review of the computational models used in predicting protein structure. It covers the progression from established protein modeling to state-of-the-art artificial intelligence (AI) frameworks. The paper will start with a brief introduction to protein structures, protein modeling, and AI. The section on established protein modeling will discuss homology modeling, ab initio modeling, and threading. The next section is deep learning-based models. It introduces some state-of-the-art AI models, such as AlphaFold (AlphaFold, AlphaFold2, AlphaFold3), RoseTTAFold, ProteinBERT, etc. This section also discusses how AI techniques have been integrated into established frameworks like Swiss-Model, Rosetta, and I-TASSER. The model performance is compared using the rankings of CASP14 (Critical Assessment of Structure Prediction) and CASP15. CASP16 is ongoing, and its results are not included in this review. Continuous Automated Model EvaluatiOn (CAMEO) complements the biennial CASP experiment. Template modeling score (TM-score), global distance test total score (GDT_TS), and Local Distance Difference Test (lDDT) score are discussed too. This paper then acknowledges the ongoing difficulties in predicting protein structure and emphasizes the necessity of additional searches like dynamic protein behavior, conformational changes, and protein-protein interactions. In the application section, this paper introduces some applications in various fields like drug design, industry, education, and novel protein development. In summary, this paper provides a comprehensive overview of the latest advancements in established protein modeling and deep learning-based models for protein structure predictions. It emphasizes the significant advancements achieved by AI and identifies potential areas for further investigation.
Collapse
Affiliation(s)
- Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Qiaomu Li
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Kazi Fahim Ahmad Nasif
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Bobin Deng
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Shuteng Niu
- Department of Computer Science, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Seyedamin Pouriyeh
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| | - Zhiyu Dai
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Jiawei Chen
- College of Computing, Data Science and Society, University of California, Berkeley, CA 94720, USA;
| | - Chloe Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Q.L.); (K.F.A.N.); (Y.X.); (B.D.); (S.P.)
| |
Collapse
|
40
|
Liu J, Bao X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Genome-Wide Identification and Expression Analysis of SlNRAMP Genes in Tomato under Nutrient Deficiency and Cadmium Stress during Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2024; 25:8269. [PMID: 39125839 PMCID: PMC11311520 DOI: 10.3390/ijms25158269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are well known for enhancing phosphorus uptake in plants; however, their regulating roles in cation transporting gene family, such as natural resistance-associated macrophage protein (NRAMP), are still limited. Here, we performed bioinformatics analysis and quantitative expression assays of tomato SlNRAMP 1 to 5 genes under nutrient deficiency and cadmium (Cd) stress in response to AM symbiosis. These five SlNRAMP members are mainly located in the plasma or vacuolar membrane and can be divided into two subfamilies. Cis-element analysis revealed several motifs involved in phytohormonal and abiotic regulation in their promoters. SlNRAMP2 was downregulated by iron deficiency, while SlNRAMP1, SlNRAMP3, SlNRAMP4, and SlNRAMP5 responded positively to copper-, zinc-, and manganese-deficient conditions. AM colonization reduced Cd accumulation and expression of SlNRAMP3 but enhanced SlNRAMP1, SlNRAMP2, and SlNRMAP4 in plants under Cd stress. These findings provide valuable genetic information for improving tomato resilience to nutrient deficiency and heavy metal stress by developing AM symbiosis.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoqi Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
41
|
Mamun TI, Bourhia M, Neoaj T, Akash S, Azad MAK, Hossain MS, Rahman MM, Bin Jardan YA, Ibenmoussa S, Sitotaw B. Structure based functional identification of an uncharacterized protein from Coxiella burnetii involved in adipogenesis. Sci Rep 2024; 14:16789. [PMID: 39039093 PMCID: PMC11263603 DOI: 10.1038/s41598-024-66072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen posing a significant global public health threat. There is a pressing need for dependable and effective treatments, alongside an urgency for further research into the molecular characterization of its genome. Within the genomic landscape of Coxiella burnetii, numerous hypothetical proteins remain unidentified, underscoring the necessity for in-depth study. In this study, we conducted comprehensive in silico analyses to identify and prioritize potential hypothetical protein of Coxiella burnetii, aiming to elucidate the structure and function of uncharacterized protein. Furthermore, we delved into the physicochemical properties, localization, and molecular dynamics and simulations, and assessed the primary, secondary, and tertiary structures employing a variety of bioinformatics tools. The in-silico analysis revealed that the uncharacterized protein contains a conserved Mth938-like domain, suggesting a role in preadipocyte differentiation and adipogenesis. Subcellular localization predictions indicated its presence in the cytoplasm, implicating a significant role in cellular processes. Virtual screening identified ligands with high binding affinities, suggesting the protein's potential as a drug target against Q fever. Molecular dynamics simulations confirmed the stability of these complexes, indicating their therapeutic relevance. The findings provide a structural and functional overview of an uncharacterized protein from C. burnetii, implicating it in adipogenesis. This study underscores the power of in-silico approaches in uncovering the biological roles of uncharacterized proteins and facilitating the discovery of new therapeutic strategies. The findings provide valuable preliminary data for further investigation into the protein's role in adipogenesis.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| | - Taufiq Neoaj
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md A K Azad
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Md Masudur Rahman
- Department of Pathology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| |
Collapse
|
42
|
Waterhouse AM, Studer G, Robin X, Bienert S, Tauriello G, Schwede T. The structure assessment web server: for proteins, complexes and more. Nucleic Acids Res 2024; 52:W318-W323. [PMID: 38634802 PMCID: PMC11223858 DOI: 10.1093/nar/gkae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The 'structure assessment' web server is a one-stop shop for interactive evaluation and benchmarking of structural models of macromolecular complexes including proteins and nucleic acids. A user-friendly web dashboard links sequence with structure information and results from a variety of state-of-the-art tools, which facilitates the visual exploration and evaluation of structure models. The dashboard integrates stereochemistry information, secondary structure information, global and local model quality assessment of the tertiary structure of comparative protein models, as well as prediction of membrane location. In addition, a benchmarking mode is available where a model can be compared to a reference structure, providing easy access to scores that have been used in recent CASP experiments and CAMEO. The structure assessment web server is available at https://swissmodel.expasy.org/assess.
Collapse
Affiliation(s)
- Andrew M Waterhouse
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Xavier Robin
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| |
Collapse
|
43
|
Diniz EADS, da Silva DP, Ferreira SDS, Fernandes-Pedrosa MDF, Vieira DS. Temperature effect in the inhibition of PLA 2 activity of Bothrops brazili venom by Rosmarinic and Chlorogenic acids, experimental and computational approaches. J Biomol Struct Dyn 2024; 42:5238-5252. [PMID: 37378497 DOI: 10.1080/07391102.2023.2226912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Davi Serradella Vieira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av Senador Salgado Filho, Natal-RN, Brazil
| |
Collapse
|
44
|
He H, Wang J, Meng Z, Dijkwel PP, Du P, Shi S, Dong Y, Li H, Xie Q. Genome-Wide Analysis of the SRPP/ REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. Int J Mol Sci 2024; 25:6864. [PMID: 38999970 PMCID: PMC11241686 DOI: 10.3390/ijms25136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Paul P Dijkwel
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yuxuan Dong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
45
|
Siciliano AJ, Zhao C, Liu T, Wang Z. EGG: Accuracy Estimation of Individual Multimeric Protein Models Using Deep Energy-Based Models and Graph Neural Networks. Int J Mol Sci 2024; 25:6250. [PMID: 38892437 PMCID: PMC11173161 DOI: 10.3390/ijms25116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Reliable and accurate methods of estimating the accuracy of predicted protein models are vital to understanding their respective utility. Discerning how the quaternary structure conforms can significantly improve our collective understanding of cell biology, systems biology, disease formation, and disease treatment. Accurately determining the quality of multimeric protein models is still computationally challenging, as the space of possible conformations is significantly larger when proteins form in complex with one another. Here, we present EGG (energy and graph-based architectures) to assess the accuracy of predicted multimeric protein models. We implemented message-passing and transformer layers to infer the overall fold and interface accuracy scores of predicted multimeric protein models. When evaluated with CASP15 targets, our methods achieved promising results against single model predictors: fourth and third place for determining the highest-quality model when estimating overall fold accuracy and overall interface accuracy, respectively, and first place for determining the top three highest quality models when estimating both overall fold accuracy and overall interface accuracy.
Collapse
Affiliation(s)
- Andrew Jordan Siciliano
- Department of Computer Science, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33124, USA; (A.J.S.); (T.L.)
| | - Chenguang Zhao
- Computer Information Sciences Department, St. Ambrose University, 518 W. Locust Street, Davenport, IA 52803, USA;
| | - Tong Liu
- Department of Computer Science, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33124, USA; (A.J.S.); (T.L.)
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33124, USA; (A.J.S.); (T.L.)
| |
Collapse
|
46
|
Ma H, Kennard A, Mattson N, Khan AS. Characterization of Sf9 cell clones with differential susceptibilities to Sf-rhabdovirus X +3.7 and Sf-rhabdovirus X - replication. Virology 2024; 594:110038. [PMID: 38471199 DOI: 10.1016/j.virol.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Our laboratory previously discovered a novel rhabdovirus in the Spodoptera frugiperda Sf9 insect cell line that was designated as Sf-rhabdovirus. Using limiting dilution, this cell line was found to be a mixed population of cells infected by Sf-rhabdovirus variants containing either the full length X accessory gene with a 3.7 kb internal duplication (designated as Sf-rhabdovirus X+3.7) or lacking the duplication and part of the X gene (designated as Sf-rhabdovirus X-), and cells that were negative for Sf-rhabdovirus. In this paper, we found that the Sf-rhabdovirus negative cell clones had sub-populations with different susceptibilities to the replication of Sf-rhabdovirus X+3.7 and X- variants: cell clone Sf9-13F12 was more sensitive to replication by both virus variants compared to Sf9-3003; moreover, Sf9-3003 showed more resistance to X+3.7 replication than to X- replication. RNA-Seq analysis indicated significant differentially expressed genes in the Sf9-13F12 and Sf9-3003 cell clones further supporting that distinct sub-populations of virus-negative cells co-exist in the parent Sf9 cell line.
Collapse
Affiliation(s)
- Hailun Ma
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Andrea Kennard
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nicholas Mattson
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Arifa S Khan
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
47
|
Bouqellah NA, Hussein ET, Abdel Razik AB, Ahmed MF, Faraag AHI. Development of transgenic Paulownia trees expressing antimicrobial thionin genes for enhanced resistance to fungal infections using chitosan nanoparticles. Microb Pathog 2024; 191:106659. [PMID: 38701959 DOI: 10.1016/j.micpath.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.
Collapse
Affiliation(s)
- Nahla Alsayd Bouqellah
- Taibah University, Science College, Biology Department, 42317- 8599, Al Madinah Al Munawwarah, Saudi Arabia.
| | - Eman Tawfik Hussein
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt
| | | | - Mohamed Fathy Ahmed
- Dry and Saline Farming Technology, Arid Land Agricultural Graduate Studies and Research Institute, Ain Shams University, 11566, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
48
|
Chen X, Liu J, Park N, Cheng J. A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models. Biomolecules 2024; 14:574. [PMID: 38785981 PMCID: PMC11117562 DOI: 10.3390/biom14050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein-protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Nolan Park
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
49
|
Huang M, Liu W, Qin C, Xu Y, Zhou X, Wen Q, Ma W, Huang Y, Chen X. Copper Resistance Mechanism and Copper Response Genes in Corynebacterium crenatum. Microorganisms 2024; 12:951. [PMID: 38792781 PMCID: PMC11124244 DOI: 10.3390/microorganisms12050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Heavy metal resistance mechanisms and heavy metal response genes are crucial for microbial utilization in heavy metal remediation. Here, Corynebacterium crenatum was proven to possess good tolerance in resistance to copper. Then, the transcriptomic responses to copper stress were investigated, and the vital pathways and genes involved in copper resistance of C. crenatum were determined. Based on transcriptome analysis results, a total of nine significantly upregulated DEGs related to metal ion transport were selected for further study. Among them, GY20_RS0100790 and GY20_RS0110535 belong to transcription factors, and GY20_RS0110270, GY20_RS0100790, and GY20_RS0110545 belong to copper-binding peptides. The two transcription factors were studied for the function of regulatory gene expression. The three copper-binding peptides were displayed on the C. crenatum surface for a copper adsorption test. Furthermore, the nine related metal ion transport genes were deleted to investigate the effect on growth in copper stress. This investigation provided the basis for utilizing C. crenatum in copper bioremediation.
Collapse
Affiliation(s)
- Mingzhu Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenxin Liu
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Chunyan Qin
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yang Xu
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xu Zhou
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Qunwei Wen
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenbin Ma
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yanzi Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xuelan Chen
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| |
Collapse
|
50
|
Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, Węgrzyn K, Vassilaki N, Mpekoulis G, Zouridakis M, Giastas P, Vidali VP, Kelaidonis K, Matsoukas MT, Dimitriou M, Mavromoustakos T, Tsiodras S, Gorgoulis VG, Karakasiliotis I, Chasapis CT, Matsoukas JM. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies. Expert Opin Ther Targets 2024; 28:437-459. [PMID: 38828744 DOI: 10.1080/14728222.2024.2362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
- AquaMem Consultants, Rodeo, NM, USA
| | - Graham J Moore
- Pepmetics Inc, 772 Murphy Place, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Weronika Hoffmann
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Petros Giastas
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | | | - Marios Dimitriou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- Faculty of Medicine, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John M Matsoukas
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- NewDrug PC, Patras Science Park, Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|