1
|
Brooker JS, Webb CE, de Waal FBM, Clay Z. The expression of empathy in human's closest relatives, bonobos and chimpanzees: current and future directions. Biol Rev Camb Philos Soc 2024; 99:1556-1575. [PMID: 38597291 DOI: 10.1111/brv.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Empathy is a complex, multi-dimensional capacity that facilitates the sharing and understanding of others' emotions. As our closest living relatives, bonobos (Pan paniscus) and chimpanzees (P. troglodytes) provide an opportunity to explore the origins of hominin social cognition, including empathy. Despite certain assumptions that bonobos and chimpanzees may differ empathically, these species appear to overlap considerably in certain socio-emotional responses related to empathy. However, few studies have systematically tested for species variation in Pan empathic or socio-emotional tendencies. To address this, we synthesise the growing literature on Pan empathy to inform our understanding of the selection pressures that may underlie the evolution of hominin empathy, and its expression in our last common ancestor. As bonobos and chimpanzees show overlaps in their expression of complex socio-emotional phenomena such as empathy, we propose that group comparisons may be as or more meaningful than species comparisons when it comes to understanding the evolutionary pressures for such behaviour. Furthermore, key differences, such as how humans and Pan communicate, appear to distinguish how we experience empathy compared to our closest living relatives.
Collapse
Affiliation(s)
- Jake S Brooker
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Christine E Webb
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Frans B M de Waal
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Zanna Clay
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
2
|
Ratku B, Lőrincz H, Csiha S, Sebestyén V, Berta E, Bodor M, Nagy EV, Szabó Z, Harangi M, Somodi S. Serum afamin and its implications in adult growth hormone deficiency: a prospective GH-withdrawal study. Front Endocrinol (Lausanne) 2024; 15:1348046. [PMID: 38379862 PMCID: PMC10876836 DOI: 10.3389/fendo.2024.1348046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Adult growth hormone deficiency (AGHD) is associated with a high prevalence of metabolic syndrome (MS), which contributes to the unfavorable cardiovascular risk profile in these patients. Insulin like growth factor-1 (IGF-1) is a widely used biomarker, however it does not always reflect the cardiometabolic risk and has a poor relationship with clinical efficacy endpoints. Consequently, there is an unmet need for biomarkers to monitor responses to GH-replacement. Afamin is a hormone-like glycoprotein, expressed in the liver. Higher afamin levels are strongly associated with MS and insulin resistance (IR). Although both MS and IR are very common in AGHD, afamin has not been investigated in these patients. Purpose To investigate afamin as a potential biomarker in patients with AGHD. Materials and methods Participants included 20 AGHD patients (11 GH-substituted and 9 GH-unsubstituted) and 37 healthy controls. Subjects underwent routine laboratory examinations, anthropometric measurements, body composition analysis using multi-frequency bioelectrical impedance analysis (InBody720) and measurement of serum afamin concentrations. In GH-substituted subjects, GH-substitution was withdrawn for 2 months. Measurements were carried out right before GH-withdrawal, at the end of the 2-month withdrawal period, and 1 month after reinstituting GH-replacement therapy (GHRT). Results GH-unsubstituted patients demonstrated higher afamin levels compared to controls (p=0.03). Afamin positively correlated with skeletal muscle mass, bone mineral content, total body water, extracellular- and intracellular water content, insulin (all, p<0.01), HOMA-IR (p=0.01) and C-peptide (p=0.03) levels in AGHD but not in healthy controls. In GH-substituted patients 2-month of GH-withdrawal caused significant changes in body composition, including decreased fat-free mass, skeletal muscle mass, total body water, and intracellular water content (all, p<0.01); but these changes almost fully recovered 1 month after reinstituting GHRT. Unexpectedly, afamin levels decreased after GH-withdrawal (p=0.03) and increased with reinstitution (p<0.01). Changes of afamin levels during GH-withdrawal positively correlated with changes of HOMA-IR (r=0.80; p<0.01) and changes of insulin (r=0.71; p=0.02). Conclusion Higher afamin levels in unsubstituted AGHD patients might indicate severe metabolic dysregulation. Significant changes accompanying GH-withdrawal and reinstitution, along with strong correlations with measures of IR, suggest that afamin could be a promising biomarker to monitor GHRT-associated changes of insulin sensitivity.
Collapse
Affiliation(s)
- Balázs Ratku
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sára Csiha
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Bodor
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Harangi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Somodi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Xu C, Hutchins ED, Eckalbar W, Pendarvis K, Benson DM, Lake DF, McCarthy FM, Kusumi K. Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. NATURAL SCIENCES (WEINHEIM, GERMANY) 2024; 4:e20210421. [PMID: 38505006 PMCID: PMC10947082 DOI: 10.1002/ntls.20210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth D. Hutchins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Walter Eckalbar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: School of Medicine, University of California, San Francisco, California, USA
| | - Ken Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Derek M. Benson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Fiona M. McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Gao Z, Sun B, Fan Z, Su Y, Zheng C, Chen W, Yao Y, Ma C, Du Y. Vv-circSIZ1 mediated by pre-mRNA processing machinery contributes to salt tolerance. THE NEW PHYTOLOGIST 2023; 240:644-662. [PMID: 37530126 DOI: 10.1111/nph.19181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
CircRNAs exist widely in plants, but the regulatory mechanisms for the biogenesis and function of plant circRNAs remain largely unknown. Using extensive mutagenesis of expression plasmids and genetic transformation methods, we analyzed the biogenesis and anti-salt functions of a new grape circRNA Vv-circSIZ1. We identified Vv-circSIZ1 that is mainly expressed in the cytoplasm of xylem. CircSIZ1 is species-specific, and genomic circSIZ1-forming region of seven tested species could be backspliced in Nicotiana benthamiana, but not in Arabidopsis. The retention length of Vv-circSIZ1 flanking introns was significantly positively correlated with its generation efficiency. The precise splicing of Vv-circSIZ1 does not depend on its mature exon sequence or internal intron sequences, but on the AG/GT splicing signal sites and branch site of the flanking introns. The spliceosome activity was inversely proportional to the expression level of Vv-circSIZ1. Furthermore, RNA-binding proteins can regulate the expression of Vv-circSIZ1. The overexpression of Vv-circSIZ1 improved salt tolerance of grape and N. benthamiana. Additionally, Vv-circSIZ1 could relieve the repressive effect of VvmiR3631 on its target VvVHAc1. Vv-circSIZ1 also promoted transcription of its parental gene. Overall, these results broaden our understanding of circRNAs in plants.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Baozhen Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weiping Chen
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 750002, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
6
|
Sansoucy M, Naud JF. Using Proteins As Markers for Anabolic Steroid Abuse: A New Perspective in Doping Control? Chem Res Toxicol 2023; 36:1168-1173. [PMID: 37561919 DOI: 10.1021/acs.chemrestox.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Drug toxicity is a major concern and has motivated numerous studies to elucidate specific adverse mechanisms, with acetaminophen being the favorite candidate in toxicology studies. Conversely, androgenic anabolic steroids (AASs) also represent a severe public health issue in sports for elite and non-elite athletes. Supraphysiological dosages of AASs are associated with various adverse effects, from cardiovascular to neurological repercussions including liver dysfunction. Yet, few studies have addressed the toxicity of anabolic steroids, and a significant amount of work will be needed to elucidate and understand steroid toxicity properly. This Perspective suggests ideas on how proteomics and liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) can contribute to (1) pinpoint serum proteins affected by substantial doses of anabolic steroids that would represent interesting novel candidates for routine testing and (2) provide additional knowledge on androgenic anabolic steroid toxicity to help raise awareness on the harmful effects.
Collapse
Affiliation(s)
- Maxime Sansoucy
- Laboratoire de contrôle du dopage, Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Jean-François Naud
- Laboratoire de contrôle du dopage, Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
7
|
García-Arnés JA, García-Casares N. Doping and sports endocrinology: growth hormone, IGF-1, insulin, and erythropoietin. Rev Clin Esp 2023; 223:181-187. [PMID: 36736729 DOI: 10.1016/j.rceng.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the substances prohibited by the World Anti-Doping Agency, "peptide hormones, growth factors, related substances, and mimetics" are classified as prohibited both in- and out-of-competition in section S2. This work reviews growth hormone and its releasing peptides, insulin-like growth factor 1 as the main growth factor, insulin, and erythropoietin and other agents that affect erythropoiesis. This review analyzes the prevalence of use among professional athletes and gym clients, the forms of use, dosing, ergogenic effects and effects on physical performance, as well as side effects and anti-doping detection methods.
Collapse
Affiliation(s)
- J A García-Arnés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - N García-Casares
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain; Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
8
|
García-Arnés J, García-Casares N. Endocrinología del dopaje y los deportes: hormona de crecimiento, IGF-1, insulina y eritropoyetina. Rev Clin Esp 2023. [DOI: 10.1016/j.rce.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Vlaeyen JMR, Heesen R, Kret ME, Clay Z, Bionda T, Kim Y. Bared-teeth displays in bonobos (Pan paniscus): An assessment of the power asymmetry hypothesis. Am J Primatol 2022; 84:e23419. [PMID: 35848310 DOI: 10.1002/ajp.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022]
Abstract
Facial expressions are key to navigating social group life. The Power Asymmetry Hypothesis of Motivational Emancipation predicts that the type of social organization shapes the meaning of communicative displays in relation to an individual's dominance rank. The bared-teeth (BT) display represents one of the most widely observed communicative signals across primate species. Studies in macaques indicate that the BT display in despotic species is often performed unidirectionally, from low- to high-ranking individuals (signaling submission), whereas the BT display in egalitarian species is usually produced irrespective of dominance (mainly signaling affiliation and appeasement). Despite its widespread presence, research connecting BT displays to the power asymmetry hypothesis outside the Macaca genus remains scarce. To extend this knowledge, we investigated the production of BT in relation to social dominance in dyadic interactions (N = 11,377 events) of 11 captive bonobos (Pan paniscus). Although adult bonobos were more despotic than previously suggested in the literature, BT displays were produced irrespective of dominance rank. Moreover, while adults produced the BT exclusively during socio-sexual interactions, especially during periods of social tension, immature bonobos produced the BT in a wider number of contexts. As such, the results indicate that the communicative meaning of the BT display is consistent with signaling appeasement, especially in periods of social tension. Moreover, the BT display does not seem to signal social status, supporting the prediction for species with a high degree of social tolerance. These results advance our understanding of the origins of communicative signals and their relation to species' social systems.
Collapse
Affiliation(s)
- Jolinde M R Vlaeyen
- Animal Behaviour and Cognition, Utrecht University, Utrecht, the Netherlands.,Institute of Cognitive Science Comparative BioCognition, University of Osnabrück, Osnabruck, Germany
| | | | - Mariska E Kret
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Zanna Clay
- Department of Psychology, Durham University, Durham, UK
| | | | - Yena Kim
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
10
|
Afzaal M, Saeed F, Hussain M, Shahid F, Siddeeg A, Al‐Farga A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci Nutr 2022; 10:2333-2346. [PMID: 35844910 PMCID: PMC9281926 DOI: 10.1002/fsn3.2842] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
Adulteration and mislabeling have become a very common global malpractice in food industry. Especially foods of animal origin are prepared from plant sources and intentionally mislabeled. This type of mislabeling is an important concern in food safety as the replaced ingredients may cause a food allergy or toxicity to vulnerable consumers. Moreover, foodborne pathogens also pose a major threat to food safety. There is a dire need to develop strong analytical tools to deal with related issues. In this context, proteomics stands out as a promising tool used to report the aforementioned issues. The development in the field of omics has inimitable advantages in enabling the understanding of various biological fields especially in the discipline of food science. In this review, current applications and the role of proteomics in food authenticity, safety, and quality and food traceability are highlighted comprehensively. Additionally, the other components of proteomics have also been comprehensively described. Furthermore, this review will be helpful in the provision of new intuition into the use of proteomics in food analysis. Moreover, the pathogens in food can also be identified based on differences in their protein profiling. Conclusively, proteomics, an indicator of food properties, its origin, the processes applied to food, and its composition are also the limelight of this article.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farheen Shahid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| |
Collapse
|
11
|
Cawley A, Keen B, Tou K, Elbourne M, Keledjian J. Biomarker ratios. Drug Test Anal 2022; 14:983-990. [PMID: 35293161 DOI: 10.1002/dta.3250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| | - Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Kathy Tou
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Madysen Elbourne
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - John Keledjian
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| |
Collapse
|
12
|
Norscia I, Caselli M, De Meo G, Cordoni G, Guéry JP, Demuru E. Yawn contagion in bonobos: Another group, another story. Am J Primatol 2022; 84:e23366. [PMID: 35098561 PMCID: PMC9285681 DOI: 10.1002/ajp.23366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
In primates, yawn contagion (the yawning response elicited by others' yawn) is variably influenced by individual (e.g., sex, age) and social factors (e.g., familiarity) and possibly linked to interindividual synchronization, coordination, and emotional contagion. Two out of three studies on yawn contagion in bonobos (Pan paniscus), found the presence of the phenomenon with mixed results concerning the effect of familiarity and no replication on its modulating factors. To address this puzzling issue, we recorded all occurrences data on yawn contagion in a captive bonobo group (March-June 2021; 18 individuals; La Vallée des Singes, France). Contrary to chimpanzees and humans, the number of triggering yawns increased contagion, possibly owing to a higher stimulus threshold. This aspect may explain the interindividual variability observed in yawn contagion rates. In subjects under weaning, we did not detect yawn contagion and, as it occurs in certain human cohorts, yawn contagion declined with age, possibly due to reduced sensitivity to others. Females responded more than males and elicited more responses from females when showing sexual swelling. As reproductive females are central in bonobo society, our results support the hypothesis that-as in other Hominini-the most influential sex can influence yawn contagion. The relationship quality (measured via grooming/play) did not affect yawn contagion, possibly due to bonobos' xenophilic nature. Overall, this study confirms the presence of yawn contagion in bonobos and introduces new elements on its modulating factors, pointing toward the necessity of cross-group studies.
Collapse
Affiliation(s)
- Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Marta Caselli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gabriele De Meo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Elisa Demuru
- Dynamique Du Langage, CNRS-UMR 5596, University Lyon 2, Lyon, France.,Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS-UMR 5292, Inserm UMR S1028, University of Lyon/Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
13
|
Esefeld M, Pastor A, de la Torre R, Barroso O, Aikin R, Sarwath H, Engelke R, Schmidt F, Suhre K. The Proteomic Signature of Recombinant Growth Hormone in Recreational Athletes. J Endocr Soc 2021; 5:bvab156. [PMID: 34765854 PMCID: PMC8577606 DOI: 10.1210/jendso/bvab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Administration of human growth hormone (hGH) is prohibited in competitive sport and its detection in an athlete's sample triggers an adverse analytical finding. However, the biological processes that are modulated by recombinant hGH are not well characterized and associated blood serum proteins may constitute new biomarkers for hGH misuse. METHODS Thirty-five recreational athletes were enrolled in a study to investigate the time- and dose-dependent response of serum protein levels to recombinant hGH administration. Participants were randomly assigned to 4 groups, receiving 1 of 3 different doses of recombinant hGH or a placebo. Bio samples were collected at 22 time points over a period of 13 weeks, starting 4 weeks before treatment, during 3 weeks of treatment, and at 6 weeks' follow-up. A total of 749 serum samples were analyzed for 1305 protein markers using the SOMAscan proteomics platform. RESULTS We identified 66 proteins that significantly associated with recombinant hGH administration and dosage, including well known hGH targets, such as IGF1, but also previously unknown hGH-related proteins (eg, protease inhibitors, WFIKKN1, and chemokines, CCL2). Network analysis revealed changes in specific biological pathways, mainly related to the immune system and glucose metabolism. CONCLUSION Our analysis suggests that hGH administration affects biological processes more strongly than previously acknowledged. Some of the proteins were dysregulated even after hGH treatment and could potentially be developed into biomarkers for hGH misuse. Moreover, our findings suggest new roles for hGH-associated proteins in the etiology of hGH-related diseases and may indicate new risks that may be associated with hGH misuse.
Collapse
Affiliation(s)
- Max Esefeld
- Proteomics Core, Weill Cornell Medicine–Qatar, Qatar Foundation–Education City, Doha, Qatar
- Department of Transfusion Medicine, Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience Research Group. Hospital del Mar Medical Research Institute (IMIM), 08009 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), 28029 Madrid, Spain
- University Pompeu Fabra (CEXS-UPF)
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group. Hospital del Mar Medical Research Institute (IMIM), 08009 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), 28029 Madrid, Spain
- University Pompeu Fabra (CEXS-UPF)
| | - Osquel Barroso
- World Anti-Doping Agency, Montreal, Quebec H4Z 1B7, Canada
| | - Reid Aikin
- World Anti-Doping Agency, Montreal, Quebec H4Z 1B7, Canada
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine–Qatar, Qatar Foundation–Education City, Doha, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine–Qatar, Qatar Foundation–Education City, Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine–Qatar, Qatar Foundation–Education City, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Qatar Foundation–Education City, Doha, Qatar
| |
Collapse
|
14
|
Becktell L, Matuska AM, Hon S, Delco ML, Cole BJ, Begum L, Zhang S, Fortier LA. Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products. Cartilage 2021; 13:495S-507S. [PMID: 33356465 PMCID: PMC8804846 DOI: 10.1177/1947603520976767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Amnion products are used in various musculoskeletal surgeries and as injections for joint pain with conflicting reports of cell viability and protein contents. The objective of this study was to determine the full proteome and examine cell viability in 9 commercial amnion products using an unbiased bottom-up shotgun proteomics approach and confocal microscopy. DESIGN Products were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and searched against a UniProt Homo sapiens database. Relative protein abundance was determined for each sample. Based on proteomics results, lumican was measured by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis was performed for interleukin-1 receptor antagonist (IL-1Ra) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2). Cell viability was determined by calcein AM (live) and ethidium homodimer (dead) staining and confocal microscopy. RESULTS Proteomic analysis revealed 919 proteins in the nine products. Proteins were primarily collagens, keratin, and albumin. Lumican, a small leucine-rich proteoglycan (SLRP) was found in all samples. Western blot analysis for IL-1Ra and TIMP-2 indicated presence of both proteins, with nonspecific antibody binding also present in all samples. No live cells were identified in any product. CONCLUSIONS Several novel proteins were identified through proteomics that might impart the beneficial effects of amnion products, including SLRPs, collagens, and regulators of fibroblast activity. IL-1Ra and TIMP-2 were identified, but concentrations measured by ELISA may be falsely increased due to nonspecific antibody binding. The concept that the amnion tissues provide live cells to aid in tissue regeneration cannot be supported by the findings of this study.
Collapse
Affiliation(s)
- Liliya Becktell
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Stephanie Hon
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Brian J. Cole
- Midwest Orthopedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| | - Laila Begum
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility,
Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA,Lisa A. Fortier, Department of Clinical
Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road,
Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Narduzzi L, Buisson C, Morvan ML, Marchand A, Audran M, Le Bouc Y, Varlet-Marie E, Ericsson M, Le Bizec B, Dervilly G. Coupling Complete Blood Count and Steroidomics to Track Low Doses Administration of Recombinant Growth Hormone: An Anti-Doping Perspective. Front Mol Biosci 2021; 8:683675. [PMID: 34179089 PMCID: PMC8222787 DOI: 10.3389/fmolb.2021.683675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Growth Hormone (GH) under its human recombinant homologue (rhGH), may be abused by athletes to take advantage of its well-known anabolic and lipolytic properties; hence it is prohibited in sports by the World Anti-Doping Agency. Due to the rapid turnover of rhGH, anti-doping screening tests have turned to monitor two endocrine biomarkers (IGF-I and P-III-NP), but unfortunately, they show population-wise variability, limiting the identification rate of rhGH users. Previous studies have evidenced the numerous effects of GH on human physiology, especially in hematopoiesis and steroidogenesis. In this work, aiming to discover novel physiological rhGH biomarkers, we analyzed the complete blood count and the steroidomics profile of healthy, physically active, young males treated either with EPO + rhGH or EPO + placebo. The time-trends of these two physiological routes have been analyzed through geometric trajectory analysis (GTA) and OPLS-DA. Individuals supplemented with micro-doses of rhGH exhibited different leukopoietic and steroidal profiles compared to the control population, suggesting a role of the rhGH in both pathways. In the article, hypotheses on the observed differences are discussed according to the most recent literature and compared to results in animal models. The use of leukopoietic and steroidal biomarkers together with endocrine biomarkers (IGF-1 and P-III-NP) allows to correctly classify over 98% of samples with no false positives, miss-classifying only one single sample (false negative) over a total of 56; a promising result, if compared to the current rhGH detection strategies.
Collapse
Affiliation(s)
- Luca Narduzzi
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Corinne Buisson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Marie-Line Morvan
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Alexandre Marchand
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Michel Audran
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine (CRSA), Paris, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM), Centre Hospitalier Universitaire de Montpellier, Montpellie, France
| | - Magnus Ericsson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Bruno Le Bizec
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Gaud Dervilly
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| |
Collapse
|
16
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Zhang W, Wang Q, Xing X, Yang L, Xu M, Cao C, Wang R, Li W, Niu X, Gao D. The antagonistic effects and mechanisms of microRNA-26a action in hypertensive vascular remodelling. Br J Pharmacol 2021; 178:1037-1054. [PMID: 33305374 DOI: 10.1111/bph.15337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hypertensive vascular remodelling is responsible for end-organ damage and is the result of increased extracellular matrix accumulation and excessive vascular smooth muscle cell (VSMC) proliferation. MicroRNA-26a (miR-26a), a non-coding small RNA, is involved in several cardiovascular diseases. We aimed to validate the effect and mechanisms of miR-26a in hypertensive vascular remodelling. EXPERIMENTAL APPROACH Male spontaneously hypertensive rats (SHRs) were injected intravenously with recombinant adeno-associated virus-miR-26a. Samples of thoracic aorta were examined histologically with H&E staining. In vitro, angiotensin II (AngII)-induced VSMCs cultured from thoracic aortae of female Sprague-Dawley rats, were transfected with miR-26a mimic or inhibitor. Western blots, qRT-PCR and immunohistological methods were used, along with chromatin-immunoprecipitation and luciferase reporter assays. Specific siRNAs were used to silence Smad production in VSMCs KEY RESULTS: Levels of miR-26a were lower in the thoracic aorta and plasma of SHRs than in WKY rats. Overexpression of miR-26a inhibited extracellular matrix deposition by targeting connective tissue growth factor (CTGF) and decreased VSMC proliferation by regulating the enhancer of zeste homologue 2 (EZH2)/p21 pathway both in vitro and in vivo. AngII-mediated Smad3 activation suppressed miR-26a expression, which in turn promoted Smad3 activation via targeted regulation of Smad4, leading to further down-regulation of miR-26a. CONCLUSION AND IMPLICATIONS Our data show that AngII stimulated a Smads/miR-26a positive feedback loop, which further reduced expression of miR-26a, leading to collagen production and VSMC proliferation and consequently vascular remodelling. MiR-26a has an antagonistic effect on hypertensive vascular remodelling and can be a strategy for treating hypertensive vascular remodelling.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chunhui Cao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Rong Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Weicheng Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Cardiology, Meishan Branch of the Third Affiliated Hospital, Yanan University School of Medical, Meishan, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
18
|
Bonilauri B, Dallagiovanna B. Linking long noncoding RNAs (lncRNAs) and doping detection. Drug Test Anal 2020; 13:1068-1071. [PMID: 33119947 DOI: 10.1002/dta.2952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
In the fight against doping, efficient methods for detecting substances or biomarkers are still being improved. Indirect methods are an interesting alternative for the detection of substances misuse longitudinally. Here we shed lights the long non-coding RNAs (lncRNAs) as a possible biomarkers due to their characteristics such as tissue-specific expression and strict regulation.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Pisor AC, Jones JH. Do people manage climate risk through long-distance relationships? Am J Hum Biol 2020; 33:e23525. [PMID: 33103823 DOI: 10.1002/ajhb.23525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Long-distance social relationships have been a feature of human evolutionary history; evidence from the paleoanthropological, archeological, and ethnographic records suggest that one function of these relationships is to manage the risk of resource shortfalls due to climate variability. We should expect long-distance relationships to be especially important when shortfalls are chronic or temporally positively autocorrelated, as these are more likely to exhaust local adaptations for managing risk. Further, individuals who experience shortfalls not as rare shocks, but as patterned events, should be more likely to pay the costs of maintaining long-distance relationships. We test these hypotheses in the context of two communities of Bolivian horticulturalists, where climate variability-especially precipitation variability-is relevant to production and access to long-distance connections is improving. METHODS Data on individuals' migration histories, social relationships, and other relevant variables were collected in 2017 (n = 119). Precipitation data were obtained from the US National Center for Atmospheric Research, allowing us to estimate participants' exposure to drought and excess precipitation. RESULTS Exposure duration, proximity in time, and frequency did not predict having a greater number of long-distance relationships. Males, extraverted individuals, and those who had traveled more did have more long-distance relationships, however. CONCLUSION Another function of long-distance relationships is to access resources that can never be obtained locally; ethnographic data suggest this is their primary function in rural Bolivia. We conclude by refining our predictions about the conditions under which long-distance relationships are likely to help individuals manage the risks posed by climate variability.
Collapse
Affiliation(s)
- Anne C Pisor
- Department of Anthropology, Washington State University, Pullman, Washington, USA.,Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - James Holland Jones
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Badekila AK, Kini S, Jaiswal AK. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J Cell Physiol 2020; 236:741-762. [PMID: 32657458 DOI: 10.1002/jcp.29935] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
In the last four decades, several researchers worldwide have routinely and meticulously exercised cell culture experiments in two-dimensional (2D) platforms. Using traditionally existing 2D models, the therapeutic efficacy of drugs has been inappropriately validated due to the failure in generating the precise therapeutic response. Fortunately, a 3D model addresses the foregoing limitations by recapitulating the in vivo environment. In this context, one has to contemplate the design of an appropriate scaffold for favoring the organization of cell microenvironment. Instituting pertinent model on the platter will pave way for a precise mimicking of in vivo conditions. It is because animal cells in scaffolds oblige spontaneous formation of 3D colonies that molecularly, phenotypically, and histologically resemble the native environment. The 3D culture provides insight into the biochemical aspects of cell-cell communication, plasticity, cell division, cytoskeletal reorganization, signaling mechanisms, differentiation, and cell death. Focusing on these criteria, this paper discusses in detail, the diversification of polymeric scaffolds based on their available resources. The paper also reviews the well-founded and latest techniques of scaffold fabrication, and their applications pertaining to tissue engineering, drug screening, and tumor model development.
Collapse
Affiliation(s)
- Anjana K Badekila
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Sudarshan Kini
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Amit K Jaiswal
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
21
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
22
|
Sieckmann T, Elmongy H, Ericsson M, Bhuiyan H, Lehtihet M, Ekström L. Longitudinal studies of putative growth hormone (GH) biomarkers and hematological and steroidal parameters in relation to 2 weeks administration of human recombinant GH. Drug Test Anal 2020; 12:711-719. [DOI: 10.1002/dta.2787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Sieckmann
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Stockholm Sweden
| | - Hatem Elmongy
- Department of Environmental Science and Analytical ChemistryStockholm University Stockholm Sweden
| | - Magnus Ericsson
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Stockholm Sweden
- Doping Control Laboratory, Department of Clinical PharmacologyKarolinska University Hospital, Stockholm, Sweden
| | - Hasanuzzaman Bhuiyan
- Department of Environmental Science and Analytical ChemistryStockholm University Stockholm Sweden
| | - Mikael Lehtihet
- Department of MedicineKarolinska Institutet Stockholm Sweden
| | - Lena Ekström
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Stockholm Sweden
| |
Collapse
|
23
|
Wong KS, Cheung HW, Choi TLS, Kwok WH, Curl P, Mechie SC, Prabhu A, Wan TSM, Ho ENM. Label-free Proteomics for Discovering Biomarker Candidates for Controlling Krypton Misuse in Castrated Horses (Geldings). J Proteome Res 2020; 19:1196-1208. [DOI: 10.1021/acs.jproteome.9b00724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocr Pract 2019; 25:1191-1232. [PMID: 31760824 DOI: 10.4158/gl-2019-0405] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG). Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence). Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH-stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document. LAY ABSTRACT This updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH-stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH-stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH-stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone-releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor-binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test.
Collapse
|
25
|
Holt RIG, Ho KKY. The Use and Abuse of Growth Hormone in Sports. Endocr Rev 2019; 40:1163-1185. [PMID: 31180479 DOI: 10.1210/er.2018-00265] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
GH is banned by the World Anti-Doping Agency as a performance-enhancing anabolic agent. Doping with GH likely began in the early 1980s and became more prevalent with the advent of recombinant technology well before any scientific evidence of benefit. The expectation that GH improves physical function stems from its anabolic and lipolytic properties. Athletic performance depends on muscle strength and the energy required to power muscle function. In recreational athletes, GH selectively improves anaerobic sprint capacity but has not been proven to significantly enhance muscle strength, power, or maximum rate of oxygen consumption. GH is secreted as a family of isoform peptides in a pulsatile manner reflecting intermittent secretion and rapid clearance. Its anabolic actions are largely mediated by IGF-I, which stimulates whole-body protein synthesis, including skeletal muscle and collagen proteins. Two methods have been validated for detecting GH abuse in athletes. The first (the isoform method) is based on distinguishing pure recombinant 22-kDa GH from the heterogeneous isoforms secreted from the pituitary. The second (the marker method) is based on measuring blood levels of GH-responsive proteins, specifically IGF-I and the N-terminal propeptide of type III collagen (P-III-NP). Only a handful of athletes have been caught since the implementation of GH doping tests in 2004. The low rate likely reflects the limitation of in-competition testing using current methods. Improved detection rates may be achieved by more out-of-competition testing, introducing athletes' biological passports, and the development of novel methods. Governance, operational, technical, and political factors influence the effectiveness of an anti-doping program.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ken K Y Ho
- Garvan Institute of Medical Research, St. Vincent's Hospital, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S, Cowardin CA, Meier MF, O'Donnell D, Talcott M, Spears LD, Semenkovich CF, Henrissat B, Giannone RJ, Hettich RL, Ilkayeva O, Muehlbauer M, Newgard CB, Sawyer C, Head RD, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Hossain MI, Islam M, Choudhury N, Sarker SA, Huq S, Mahmud I, Mostafa I, Mahfuz M, Barratt MJ, Ahmed T, Gordon JI. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019; 365:eaau4732. [PMID: 31296738 PMCID: PMC6683325 DOI: 10.1126/science.aau4732] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/24/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
To examine the contributions of impaired gut microbial community development to childhood undernutrition, we combined metabolomic and proteomic analyses of plasma samples with metagenomic analyses of fecal samples to characterize the biological state of Bangladeshi children with severe acute malnutrition (SAM) as they transitioned, after standard treatment, to moderate acute malnutrition (MAM) with persistent microbiota immaturity. Host and microbial effects of microbiota-directed complementary food (MDCF) prototypes targeting weaning-phase bacterial taxa underrepresented in SAM and MAM microbiota were characterized in gnotobiotic mice and gnotobiotic piglets colonized with age- and growth-discriminatory bacteria. A randomized, double-blind controlled feeding study identified a lead MDCF that changes the abundances of targeted bacteria and increases plasma biomarkers and mediators of growth, bone formation, neurodevelopment, and immune function in children with MAM.
Collapse
Affiliation(s)
- Jeanette L Gehrig
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddarth Venkatesh
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanderlene L Kung
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sathish Subramanian
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carrie A Cowardin
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin F Meier
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David O'Donnell
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Talcott
- Division of Comparative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Larry D Spears
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille cedex 9, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher Sawyer
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aleksandr A Arzamasov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Md Iqbal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Munirul Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Nuzhat Choudhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Shafiqul Alam Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Sayeeda Huq
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Imteaz Mahmud
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
|
28
|
Vargas-Mendoza N, Fregoso-Aguilar T, Madrigal-Santillán E, Morales-González Á, Morales-González JA. Ethical Concerns in Sport: When the Will to Win Exceed the Spirit of Sport. Behav Sci (Basel) 2018; 8:bs8090078. [PMID: 30177618 PMCID: PMC6162520 DOI: 10.3390/bs8090078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/11/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background: The need to advance and achieve success is deeply ingrained in human evolution. As a species, humans developed instincts that allowed them to survive and transmit their genes along generations. The will to win is an instinct that has been maintained in the species for millions of years. Sport is an activity as old as humans themselves and is subject to rules; Objective: The proposal of this work is to explore some of the most recurrent practices to achieve the athletes' goals, and the origins and historical use of methods or substances to improve performance and its regulation, as well as to review the impact of new technologies on achieving better results and to make a proposal of what actions should be takenin order to prevent bad practices; Methods: A narrative literature review of ethical sports issues and decision-making was performed in the English language; Results: Practically all behavior with regards to the theme of sports is regulated by ethical codes that must be followed by sportspersons, as well as by everyone involved in the athlete's healthcare and in the athlete's administrative, marketing, and business aspects. Notwithstanding this, winning and reaping glory implies a reward far greater than fame and fortune, which can lead to poor ethical practices in athletes, as well as in interested parties who detract from the intrinsic value of the spirit of sports. The will to win could exceed the limits of what is permitted in fair-play, like the use of prohibited methods or substances; Conclusions: In this work, we review some of the bioethical aspects ofsports. Additionally, recommendations are offered for good practices and to prevent falling into poor ethical behavior.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Área Académica de Nutrición, ICSa, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto CP42000, Mexico.
| | - Tomás Fregoso-Aguilar
- Depto. de Fisiología, Laboratorio de Hormonas y Conducta, ENCB Campus Zacatenco, Instituto Politécnico Nacional, Ciudad de Mexico 07700, Mexico.
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de Mexico CP 11340, Mexico.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de Mexico CP 07738, Mexico.
| | - José A Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de Mexico CP 11340, Mexico.
| |
Collapse
|