1
|
Chen X, Xiong Y, Zeng S, Delić D, Gaballa M, Kalk P, Klein T, Krämer BK, Hocher B. Comparison of sGC activator and sGC stimulator in 5/6 nephrectomized rats on high-salt-diet. Front Pharmacol 2024; 15:1480186. [PMID: 39494352 PMCID: PMC11527642 DOI: 10.3389/fphar.2024.1480186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Soluble guanylate cyclase (sGC) stimulators and activators are known to enhance kidney function in various models of chronic kidney disease (CKD) by increasing cyclic guanosine monophosphate (cGMP). Their differential effects on CKD progression, particularly under conditions of oxidative stress, remain unexplored by direct comparative studies. Methods We conducted a side-by-side comparison using 5/6 nephrectomized rats on a high salt diet (5/6Nx+HSD) to evaluate the efficacy of the sGC stimulator BAY 41-8543 and the sGC activator BAY 60-2770 in CKD progression. BAY 41-8543 (1 mg/kg; twice daily) and BAY 60-2770 (1 mg/kg; once daily) were administered by gavage for 11 weeks. Results The 5/6Nx+HSD model led to increased plasma creatinine, proteinuria, and blood pressure. Both BAY 41-8543 and BAY 60-2770 significantly reduced systolic and diastolic blood pressure to a similar extent but did not improve renal function parameters. Notably, BAY 60-2770 reduced renal fibrosis, including interstitial fibrosis and glomerulosclerosis, whereas BAY 41-8543 did not. These antifibrotic effects of BAY 60-2770 were independent of blood pressure reduction. Proteomic analysis revealed that BAY 60-2770 corrected the upregulation of 9 proteins associated with apoptosis and fibrosis, including Caspase-3, MKK6 (Mitogen-Activated Protein Kinase Kinase 6), Prdx5 (Peroxiredoxin-5), in the 5/6Nx+HSD group. Discussion In contrast, BAY 41-8543 had no significant impact on these proteins. sGC activators were more effective than sGC stimulators in reducing renal fibrosis in 5/6 nephrectomized rats on a high salt diet, and this effect was due to modulation of apoptosis-associated proteins beyond the control of blood pressure.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yingquan Xiong
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Denis Delić
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Mohamed Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- Academy of Scientific Research and Technology, Cairo, Egypt
| | - Philipp Kalk
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Department of Endocrinology, IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
- Key Laboratory of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
3
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Jia A, Jiang H, Liu W, Chen P, Xu Q, Zhang R, Sun J. Novel application potential of cinaciguat in the treatment of mixed hyperlipidemia through targeting PTL/NPC1L1 and alleviating intestinal microbiota dysbiosis and metabolic disorders. Pharmacol Res 2023; 194:106854. [PMID: 37460003 DOI: 10.1016/j.phrs.2023.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Mixed hyperlipidemia, characterized by high levels of triglycerides and cholesterol, is a key risk factor leading to atherosclerosis and other cardiovascular diseases. Existing clinical drugs usually only work on a single indicator, decreasing either triglyceride or cholesterol levels. Developing dual-acting agents that reduce both triglycerides and cholesterol remains a great challenge. Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as crucial proteins in the transport of triglycerides and cholesterol. Here, cinaciguat, a known agent used in the treatment of acute decompensated heart failure, was identified as a potent dual inhibitor targeting PTL and NPC1L1. We presented in vitro evidence from surface plasmon resonance analysis that cinaciguat interacted with PTL and NPC1L1. Furthermore, cinaciguat exhibited potent PTL-inhibition activity. Fluorescence-labeled cholesterol uptake analysis and confocal imaging showed that cinaciguat effectively inhibited cholesterol uptake. In vivo evaluation showed that cinaciguat significantly reduced the plasma levels of triglycerides and cholesterol, and effectively alleviated high-fat diet-induced intestinal microbiota dysbiosis and metabolic disorders. These results collectively suggest that cinaciguat has the potential to be further developed for the therapy of mixed hyperlipidemia.
Collapse
Affiliation(s)
- Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Jufeng Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
6
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
7
|
Huang W, Chen YY, Li ZQ, He FF, Zhang C. Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. Int J Mol Sci 2022; 23:ijms231810882. [PMID: 36142794 PMCID: PMC9506036 DOI: 10.3390/ijms231810882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common causes of end-stage renal disease worldwide. The treatment of DKD is strongly associated with clinical outcomes in patients with diabetes mellitus. Traditional therapeutic strategies focus on the control of major risk factors, such as blood glucose, blood lipids, and blood pressure. Renin–angiotensin–aldosterone system inhibitors have been the main therapeutic measures in the past, but the emergence of sodium–glucose cotransporter 2 inhibitors, incretin mimetics, and endothelin-1 receptor antagonists has provided more options for the management of DKD. Simultaneously, with advances in research on the pathogenesis of DKD, some new therapies targeting renal inflammation, fibrosis, and oxidative stress have gradually entered clinical application. In addition, some recently discovered therapeutic targets and signaling pathways, mainly in preclinical and early clinical trial stages, are expected to provide benefits for patients with DKD in the future. This review summarizes the traditional treatments and emerging management options for DKD, demonstrating recent advances in the therapeutic strategies for DKD.
Collapse
|
8
|
Maruno S, Tanaka T, Nangaku M. Exploring molecular targets in diabetic kidney disease. Kidney Res Clin Pract 2022; 41:S33-S45. [PMID: 35354246 PMCID: PMC9590302 DOI: 10.23876/j.krcp.21.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease is the leading cause of end-stage kidney disease, and it remains a major challenge. Many factors, such as glomerular hyperfiltration, oxidative stress, inflammation, hypoxia, and epigenetics, are associated with the progression of diabetic kidney disease; however, the whole mechanism is not yet completely understood. No specific treatment for diabetic kidney disease has been established, so new approaches are being explored extensively. Sodium-glucose cotransporter 2 inhibitors have shown renoprotective effects in several human clinical trials. Glucagon-like peptide 1 receptor agonists and mineralocorticoid receptor antagonists have been reported to be effective in diabetic kidney disease, and novel therapeutic candidates are also being examined. In the TSUBAKI trial, a nuclear factor erythroid 2-related factor 2 activator, bardoxolone methyl, improved the glomerular filtration rate of diabetic kidney disease patients. Similarly, new agents that act in the oxidative stress and inflammation pathways are of major interest, such as pentoxifylline, apoptosis signal-regulating kinase-1 inhibitors, C-C chemokine receptor 2 inhibitors, and Janus kinase-1/2 inhibitors. Endothelin-1 receptor A antagonists and soluble guanylate cyclase stimulators are also expected to affect renal hemodynamics. Some preclinical studies suggest that hypoxia-inducible factor prolyl hydroxylase inhibitors, which influence multiple inflammations and oxidative stress pathways, reduce albuminuria in diabetic kidney disease. Advanced glycation end-product inhibitors and treatments related to epigenetics have also shown promise as potential diabetic kidney disease treatments in preclinical studies. The discovery of new targets could provide new therapeutic options for overcoming diabetic kidney disease.
Collapse
Affiliation(s)
- Sayako Maruno
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Correspondence: Masaomi Nangaku Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail:
| |
Collapse
|
9
|
Tomita N, Hotta Y, Naiki-Ito A, Sanagawa A, Kataoka T, Furukawa-Hibi Y, Takahashi S, Kimura K. Protective effects of tadalafil on damaged podocytes in an adriamycin-induced nephrotic syndrome model. J Pharmacol Sci 2022; 149:53-59. [DOI: 10.1016/j.jphs.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
|
10
|
Hu L, Chen Y, Zhou X, Hoek M, Cox J, Lin K, Liu Y, Blumenschein W, Grein J, Swaminath G. Effects of soluble guanylate cyclase stimulator on renal function in ZSF-1 model of diabetic nephropathy. PLoS One 2022; 17:e0261000. [PMID: 35085251 PMCID: PMC8794189 DOI: 10.1371/journal.pone.0261000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diabetic nephropathy is associated with endothelial dysfunction and oxidative stress, in which the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway is impaired. We hypothesize that sGC stimulator Compound 1 can enhance NO signaling, reduce proteinuria in a diabetic nephropathy preclinical model with diminished NO bioavailability and increased oxidized sGC. Therefore, we evaluated the effect of sGC stimulator Compound 1 on the renal effect in obese ZSF1 (ZSF1 OB) rats. MATERIALS AND METHODS The sGC stimulator Compound 1, the standard of care agent Enalapril, and a combination of Compound 1 and Enalapril were administered chronically to obese ZSF1 rats for 6 months. Mean arterial pressure, heart rate, creatinine clearance for glomerular filtration rate (eGFR), urinary protein excretion to creatinine ratio (UPCR), and urinary albumin excretion ratio (UACR) were determined during the study. The histopathology of glomerular and interstitial lesions was assessed at the completion of the study. RESULTS While both Compound 1 and Enalapril significantly reduced blood pressure, the combination of Compound 1 and Enalapril normalized blood pressure levels. Compound 1 improved eGFR and reduced UPCR and UACR. A combination of Enalapril and Compound 1 resulted in a marked reduction in UPCR and UACR and improved GFR. CONCLUSION The sGC stimulator Compound 1 as a monotherapy slowed renal disease progression, and a combination of the sGC stimulator with Enalapril provided greater renal protection in a rodent model of diabetic nephropathy.
Collapse
Affiliation(s)
- Lufei Hu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Yinhong Chen
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Xiaoyan Zhou
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Maarten Hoek
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Biology Department, Maze Therapeutics, San Francisco, CA, United States of America
| | - Jason Cox
- Chemistry, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Discovery Chemistry, Kinnate Biopharma, San Diego, CA, United States of America
| | - Ken Lin
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Drug Metabolism and Pharmacokinetics, BridgeBio, Palo Alto, CA, United States of America
| | - Yang Liu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Wendy Blumenschein
- Department of Molecular Discovery Profiling and Expression, Merck & Co. Inc., Kenilworth, NJ, United States of America
| | - Jeff Grein
- Department of Molecular Discovery Profiling and Expression, Merck & Co. Inc., Kenilworth, NJ, United States of America
| | - Gayathri Swaminath
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
11
|
Repurposing Riociguat to Target a Novel Paracrine Nitric Oxide-TRPC6 Pathway to Prevent Podocyte Injury. Int J Mol Sci 2021; 22:ijms222212485. [PMID: 34830371 PMCID: PMC8621407 DOI: 10.3390/ijms222212485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Increased expression and activity of the Ca2+ channel transient receptor potential channel 6 (TRPC6) is associated with focal segmental glomerulosclerosis, but therapeutic strategies to target TRPC6 are currently lacking. Nitric oxide (NO) is crucial for normal glomerular function and plays a protective role in preventing glomerular diseases. We investigated if NO prevents podocyte injury by inhibiting injurious TRPC6-mediated signaling in a soluble guanylate cyclase (sGC)-dependent manner and studied the therapeutic potential of the sGC stimulator Riociguat. Experiments were performed using human glomerular endothelial cells and podocytes. Podocyte injury was induced by Adriamycin incubation for 24 h, with or without the NO-donor S-Nitroso-N-acetyl-DL-penicillamine (SNAP), the sGC stimulator Riociguat or the TRPC6 inhibitor Larixyl Acetate (LA). NO and Riociguat stimulated cGMP synthesis in podocytes, decreased Adriamycin-induced TRPC6 expression, inhibited the Adriamycin-induced TRPC6-mediated Ca2+ influx and reduced podocyte injury. The protective effects of Riociguat and NO were blocked when sGC activity was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or when TRPC6 activity was inhibited by LA. Our data demonstrate a glomerular (e)NOS-NO-sGC-cGMP-TRPC6 pathway that prevents podocyte injury, which can be translated to future clinical use by, e.g., repurposing the market-approved drug Riociguat.
Collapse
|
12
|
Pharmic Activation of PKG2 Alleviates Diabetes-Induced Osteoblast Dysfunction by Suppressing PLC β1-Ca 2+-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552530. [PMID: 34221234 PMCID: PMC8225424 DOI: 10.1155/2021/5552530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
As reported in our previous study, cinaciguat can improve implant osseointegration in type 2 diabetes mellitus (T2DM) rats by reactivating type 2 cGMP-dependent protein kinase (PKG2), but the downstream mechanisms remain unclear. In the present study, we investigated the favorable effect of cinaciguat on primary rat osteoblast, which was cultivated on titanium disc under vitro T2DM conditions (25 mM glucose and 200 μM palmitate), and clarified the therapeutic mechanism by proteomic analysis. The results demonstrated that T2DM medium caused significant downregulation of PKG2 and induced obvious osteoblast dysfunction. And overexpression of PKG2 by lentivirus and cinaciguat could promote cell proliferation, adhesion, and differentiation, leading to decreased osteoblasts injury. Besides, proteomic analysis revealed the interaction between PKG2 and phospholipase Cβ1 (PLCβ1) in the cinaciguat addition group, and we further verified that upregulated PKG2 by cinaciguat could inhibit the activation of PLCβ1, then relieve intracellular calcium overload, and suppress endoplasmic reticulum (ER) stress to ameliorate osteoblast functions under T2DM condition. Collectively, these findings provided the first detailed mechanisms responsible for cinaciguat provided a favorable effect on promoting osseointegration in T2DM and demonstrated a new insight that diabetes mellitus-induced the aberrations in PKG2-PLCβ1-Ca2+-ER stress pathway was one underlying mechanism for poor osseointegration.
Collapse
|
13
|
Fleischmann D, Harloff M, Maslanka Figueroa S, Schlossmann J, Goepferich A. Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-β Pathway. Int J Mol Sci 2021; 22:ijms22052557. [PMID: 33806499 PMCID: PMC7961750 DOI: 10.3390/ijms22052557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3′,5′-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor β (TGF-β) signaling pathway and the resulting pro-fibrotic remodeling by 50–100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Manuela Harloff
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
- Correspondence:
| |
Collapse
|
14
|
Harloff M, Prüschenk S, Seifert R, Schlossmann J. Activation of soluble guanylyl cyclase signalling with cinaciguat improves impaired kidney function in diabetic mice. Br J Pharmacol 2021; 179:2460-2475. [PMID: 33651375 DOI: 10.1111/bph.15425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy is the leading cause for end-stage renal disease worldwide. Until now, there is no specific therapy available. Standard treatment with inhibitors of the renin-angiotensin system just slows down progression. However, targeting the NO/sGC/cGMP pathway using sGC activators does prevent kidney damage. Thus, we investigated if the sGC activator cinaciguat was beneficial in a mouse model of diabetic nephropathy, and we analysed how mesangial cells (MCs) were affected by related conditions in cell culture. EXPERIMENTAL APPROACH Type 1 diabetes was induced with streptozotocin in wild-type and endothelial NOS knockout (eNOS KO) mice for 8 or 12 weeks.. Half of these mice received cinaciguat in their chow for the last 4 weeks. Kidneys from the diabetic mice were analysed with histochemical assays and by RT-PCR and western blotting. . Additionally, primary murine MCs under diabetic conditions were stimulated with 8-Br-cGMP or cinaciguat to activate the sGC/cGMP pathway. KEY RESULTS The diabetic eNOS KO mice developed most characteristics of diabetic nephropathy, most marked at 12 weeks. Treatment with cinaciguat markedly improved GFR, serum creatinine, mesangial expansion and kidney fibrosis in these animals. We determined expression levels of related signalling proteins. Thrombospondin 1, a key mediator in kidney diseases, was strongly up-regulated under diabetic conditions and this increase was suppressed by activation of sGC/cGMP signalling. CONCLUSION AND IMPLICATIONS Activation of the NO/sGC/PKG pathway with cinaciguat was beneficial in a model of diabetic nephropathy. Activators of sGC might be an appropriate therapy option in patients with Type 1 diabetes.
Collapse
Affiliation(s)
- Manuela Harloff
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Sally Prüschenk
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.,Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jens Schlossmann
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Nio Y, Ookawara M, Yamasaki M, Hanauer G, Tohyama K, Shibata S, Sano T, Shimizu F, Anayama H, Hazama M, Matsuo T. Ameliorative effect of phosphodiesterase 4 and 5 inhibitors in deoxycorticosterone acetate-salt hypertensive uni-nephrectomized KKA y mice. FASEB J 2020; 34:14997-15014. [PMID: 32939821 DOI: 10.1096/fj.202001084r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease (ESRD). Hypertension increases kidney stress, which deteriorates function, and leads to peripheral renal vascular resistance. Long-term hypoperfusion promotes interstitial fibrosis and glomerular sclerosis, resulting in nephrosclerosis. Although hypertension and DN are frequent ESRD complications, relevant animal models remain unavailable. We generated a deoxycorticosterone acetate (DOCA)-salt hypertensive uni-nephrectomized (UNx) KKAy mouse model demonstrating hypertension, hyperglycemia, cardiac hypertrophy, kidney failure, increased urinary albumin creatinine ratio (UACR), and increased renal PDE4D and cardiac PDE5A mRNA levels. We hypothesized that the novel PDE4 selective inhibitor, compound A, and PDE5 inhibitor, sildenafil, exhibit nephroprotective, and cardioprotective effects in this new model. Compound A, sildenafil, and the angiotensin II receptor blocker, irbesartan, significantly reduced ventricular hypertrophy and pleural effusion volume. Meanwhile, compound A and sildenafil significantly suppressed the UACR, urinary kidney injury molecule-1, and monocyte chemoattractant protein-1 levels, as well as that of renal pro-fibrotic marker mRNAs, including collagen 1A1, fibronectin, and transforming growth factor-beta (TGF-β). Moreover, compound A significantly suppressed TGF-β-induced pro-fibrotic mRNA expression in vitro in all major kidney lesions, including within the glomerular mesangial region, podocytes, and epithelial region. Hence, PDE4 and PDE5 inhibitors may be promising treatments, in combination with irbesartan, for DN with hypertension as they demonstrate complementary mechanisms.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Mitsugi Ookawara
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Midori Yamasaki
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Guido Hanauer
- Takeda Pharmaceuticals International AG, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kimio Tohyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Sachio Shibata
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoya Sano
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Fumi Shimizu
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisashi Anayama
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masatoshi Hazama
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takanori Matsuo
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
16
|
Wang F, Li R, Zhao L, Ma S, Qin G. Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy. Eur J Pharmacol 2020; 885:173387. [PMID: 32710953 DOI: 10.1016/j.ejphar.2020.173387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. Resveratrol (RSV) has been shown to exert a renoprotective effect against DN, but despite research progress, the protective mechanisms of RSV have not been fully elucidated. Here, we demonstrated that RSV relieved a series of pathological characteristics of DN and attenuated oxidative stress and apoptosis in the renal tissues of diabetic (db/db) mice. In addition, RSV inhibited oxidative stress production and apoptosis in human podocytes exposed to high glucose. Furthermore, inhibition of reactive oxygen species generation by reactive oxygen species scavengers N-acetylcysteine and 2,2,6,6-tetramethyl-1-piperidinyloxy had the same anti-apoptosis effects on podocytes as did RSV. Finally, we found that 5' adenosine monophosphate-activated protein kinase (AMPK) was activated by RSV in db/db mice and podocytes exposed to high glucose. The protective effects of RSV on podocytes were suppressed by Compound C, a pharmacological inhibitor of AMPK. Together, our results indicate that RSV effectively attenuated renal damage by suppressing oxidative stress-mediated apoptosis of podocytes, which was dependent on AMPK activation. This study revealed a possible mechanism to protect podocytes against apoptosis in DN.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China
| | - Ran Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Linlin Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China
| | - Shuang Ma
- The Nephrology Center of the First Affiliated Hospital of Zhengzhou University, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
17
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
18
|
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease around the globe and is one of the main complications in patients with type 1 and 2 diabetes. The standard treatment for DKD is drugs controlling hyperglycemia and high blood pressure. Renin angiotensin aldosterone system blockade and sodium glucose cotransporter 2 (SGLT2) inhibition have yielded promising results in DKD, but many diabetic patients on such treatments nevertheless continue to develop DKD, leading to kidney failure and cardiovascular comorbidities. New therapeutic options are urgently required. We review here the promising therapeutic avenues based on insights into the mechanisms of DKD that have recently emerged, including mineralocorticoid receptor antagonists, SGLT2 inhibitors, glucagon-like peptide-1 receptor agonist, endothelin receptor A inhibition, anti-inflammatory agents, autophagy activators and epigenetic remodelling. The involvement of several molecular mechanisms in DKD pathogenesis, together with the genetic and epigenetic variability of this condition, makes it difficult to target this heterogeneous patient population with a single drug. Personalized medicine, taking into account the genetic and mechanistic variability, may therefore improve renal and cardiovascular protection in diabetic patients with DKD.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France
- INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France
| |
Collapse
|
19
|
Jia T, Wang YN, Zhang J, Hao X, Zhang D, Xu X. Cinaciguat in combination with insulin induces a favorable effect on implant osseointegration in type 2 diabetic rats. Biomed Pharmacother 2019; 118:109216. [PMID: 31319371 DOI: 10.1016/j.biopha.2019.109216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
The osseointegration process of implant is seriously impaired in type 2 diabetes mellitus (T2DM) that causes high failure rate, and insufficiency exists in current insulin therapy, creating a demand for new bone-synergistic agent. Cinaciguat, a novel type of soluble guanylate cyclase (sGC) activator, plays a vital role in glucose metabolism, inflammation control and bone regeneration. We hypothesized that the combined application of cinaciguat and insulin could reverse poor implant osseointegration in diabetes. To test this hypothesis, streptozotocin-induced diabetic rats were placed implants in the femur, and divided into five groups: control, T2DM, cinaciguat-treated T2DM (7 μg/kg), insulin-treated T2DM (12 IU/kg), cinaciguat plus insulin combination-treated T2DM (7 μg/kg and 12 IU/kg respectively), according to different treatment received. The weight and glucose levels of rats were evaluated at fixed times, and plasma level of cyclic guanosine monophosphate (cGMP) was determined before euthanasia. Three months after therapy, the femurs were isolated for pull-out test, environmental scanning electron microscope observation, microscopic computerized tomography evaluation and various histology analysis. Results revealed that diabetic rats showed the highest blood glucose level and lowest cGMP content, which led to the worst structural damage and least osseointegration. Combined treatment could attenuate the diabetes induced hyperglycemia to be normal, restore the cGMP content, protein kinase G II (PKG II) expression, phosphodiesterase-5 (PDE5) activity and ameliorate the mechanical strength, the impaired bone microarchitecture and osseointegration to the highest level. Meanwhile, monotreatment (insulin or cinaciguat) also showed restorative effect, but less. Our findings demonstrated that the cGMP/PKG II signaling pathway activated by cinaciguat mediated the favorable effects of the combined application on improving implant fixation under T2DM condition.
Collapse
Affiliation(s)
- Tingting Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Ya-Nan Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jiajia Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Xinyu Hao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
20
|
Németh Á, Mózes MM, Calvier L, Hansmann G, Kökény G. The PPARγ agonist pioglitazone prevents TGF-β induced renal fibrosis by repressing EGR-1 and STAT3. BMC Nephrol 2019; 20:245. [PMID: 31277592 PMCID: PMC6610924 DOI: 10.1186/s12882-019-1431-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has been proposed that peroxisome proliferator-activated receptor-γ (PPARγ) agonists might reduce renal fibrosis, however, several studies had contradictory results. Moreover, the possible interaction of TGF-β1, PPARγ, and transcription factors in renal fibrosis have not been investigated. We hypothesized that oral pioglitazone treatment would inhibit TGF-β–driven renal fibrosis and its progression, by modulating profibrotic transcription factors in TGF-β1 transgenic mice. Methods Male C57Bl/6 J mice (control, CTL, n = 14) and TGF-β overexpressing transgenic mice (TGFβ, n = 14, having elevated plasma TGF-β1 level) were divided in two sets at 10 weeks of age. Mice in the first set were fed with regular rodent chow (CTL and TGFβ, n = 7/group). Mice in the second set were fed with chow containing pioglitazone (at a dose of 20 mg/kg/day, CTL + Pio and TGFβ+Pio, n = 7/group). After 5 weeks of treatment, blood pressure was assessed and urine samples were collected, and the kidneys were analyzed for histology, mRNA and protein expression. Results TGF-β1 induced glomerulosclerosis and tubulointerstitial damage were significantly reduced by pioglitazone. Pioglitazone inhibited renal mRNA expression of all the profibrotic effectors: type-III collagen, TGF-β1, CTGF and TIMP-1, and alike transcription factors cFos/cJun and protein expression of EGR-1, and STAT3 protein phosphorylation. Conclusions Oral administration of PPARγ agonist pioglitazone significantly reduces TGF-β1-driven renal fibrosis, via the attenuation of EGR-1, STAT3 and AP-1. This implies that PPARγ agonists might be effective in the treatment of chronic kidney disease patients. Electronic supplementary material The online version of this article (10.1186/s12882-019-1431-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ágnes Németh
- Department of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Miklós M Mózes
- Department of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Gábor Kökény
- Department of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
| |
Collapse
|
21
|
Donda K, Zambrano R, Moon Y, Percival J, Vaidya R, Dapaah-Siakwan F, Luo S, Duncan MR, Bao Y, Wang L, Qin L, Benny M, Young K, Wu S. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth. PLoS One 2018; 13:e0199927. [PMID: 29990355 PMCID: PMC6038999 DOI: 10.1371/journal.pone.0199927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common and serious chronic lung disease of premature infants. Severe BPD complicated with pulmonary hypertension (PH) increases the mortality of these infants. Riociguat is an allosteric soluble guanylate cyclase stimulator and is approved by the FDA for treating PH in adults. However, it has not been approved for use in neonates due to concern for adverse effects on long bone growth. To address this concern we investigated if administration of riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without side effects on long bone growth in newborn rats. Newborn rats were randomized to normoxia (21% O2) or hyperoxia (85% O2) exposure groups within 24 hours of birth, and received riociguat or placebo by once daily intraperitoneal injections during continuous normoxia or hyperoxia exposure for 9 days. In the hyperoxia control group, radial alveolar count, mean linear intercept and vascular density were significantly decreased, the pathological hallmarks of BPD, and these were accompanied by an increased inflammatory response. There was also significantly elevated vascular muscularization of peripheral pulmonary vessels, right ventricular systolic pressure and right ventricular hypertrophy indicating PH. However, administration of riociguat significantly decreased lung inflammation, improved alveolar and vascular development, and decreased PH during hyperoxia by inducing cGMP production. Additionally, riociguat did not affect long bone growth or structure. These data indicate that riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without affecting long bone growth and structure and hence, suggests riociguat may be a potential novel agent for preventing BPD and PH in neonates.
Collapse
Affiliation(s)
- Keyur Donda
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Ronald Zambrano
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Younghye Moon
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin Percival
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ruben Vaidya
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Fredrick Dapaah-Siakwan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shihua Luo
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Matthew R. Duncan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Yong Bao
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Luqing Wang
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ling Qin
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Merline Benny
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Karen Young
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shu Wu
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
22
|
The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Int J Mol Sci 2018; 19:ijms19061712. [PMID: 29890734 PMCID: PMC6032334 DOI: 10.3390/ijms19061712] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.
Collapse
|