1
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
2
|
Li M, Yang L, Chan AKN, Pokharel SP, Liu Q, Mattson N, Xu X, Chang W, Miyashita K, Singh P, Zhang L, Li M, Wu J, Wang J, Chen B, Chan LN, Lee J, Zhang XH, Rosen ST, Müschen M, Qi J, Chen J, Hiom K, Bishop AJR, Chen C. Epigenetic Control of Translation Checkpoint and Tumor Progression via RUVBL1-EEF1A1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206584. [PMID: 37075745 PMCID: PMC10265057 DOI: 10.1002/advs.202206584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Anthony K. N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Nicole Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Xiaobao Xu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Wen‐Han Chang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kazuya Miyashita
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Maggie Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jun Wu
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jinhui Wang
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Bryan Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lai N. Chan
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOH44195USA
| | - Jaewoong Lee
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- School of Biosystems and Biomedical SciencesCollege of Health ScienceKorea UniversitySeoul02841South Korea
- Interdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841South Korea
| | | | | | - Markus Müschen
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
| | - Jun Qi
- Department of Cancer BiologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kevin Hiom
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeNethergateDundeeDD1 4HNUK
| | - Alexander J. R. Bishop
- Department of Cellular Systems and AnatomyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Chun‐Wei Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| |
Collapse
|
3
|
Hao L, Zhang J, Liu Z, Lin X, Guo J. Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Front Oncol 2023; 13:1145766. [PMID: 37007137 PMCID: PMC10063963 DOI: 10.3389/fonc.2023.1145766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Biomolecular modifications play an important role in the development of life, and previous studies have investigated the role of DNA and proteins. In the last decade, with the development of sequencing technology, the veil of epitranscriptomics has been gradually lifted. Transcriptomics focuses on RNA modifications that affect gene expression at the transcriptional level. With further research, scientists have found that changes in RNA modification proteins are closely linked to cancer tumorigenesis, progression, metastasis, and drug resistance. Cancer stem cells (CSCs) are considered powerful drivers of tumorigenesis and key factors for therapeutic resistance. In this article, we focus on describing RNA modifications associated with CSCs and summarize the associated research progress. The aim of this review is to identify new directions for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xia Lin
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jie Guo,
| |
Collapse
|
4
|
Zhang C, Zhao J, Zhao J, Liu B, Tang W, Liu Y, Huang W, Weinman SA, Li Z. CYP2E1-dependent upregulation of SIRT7 is response to alcohol mediated metastasis in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1961-1974. [PMID: 35902730 PMCID: PMC10832389 DOI: 10.1038/s41417-022-00512-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Long-term alcohol use is a confirmed risk factor of liver cancer tumorigenesis and metastasis. Multiple mechanisms responsible for alcohol related tumorigenesis have been proposed, including toxic reactive metabolite production, oxidative stress and fat accumulation. However, mechanisms underlying alcohol-mediated liver cancer metastasis remain largely unknown. We have previously demonstrated that SIRT7 regulates chemosensitivity by altering a p53-dependent pathway in human HCC. In the current study, we further revealed that SIRT7 is a critical factor in promoting liver cancer metastasis. SIRT7 expression is associated with disease stage and high SIRT7 predicts worse overall and disease-free survival. Overexpression of SIRT7 promotes HCC cell migration and EMT while knockdown of SIRT7 showed opposite effects. Mechanistically, we found that SIRT7 suppresses E-Cadherin expression through FOXO3-dependent promoter binding and H3K18 deacetylation. Knockdown of FOXO3 abolished the suppressive effect of SIRT7 on E-cadherin transcription. More importantly, we identified that alcohol treatment upregulates SIRT7 and suppresses E-cadherin expression via a CYP2E/ROS axis in hepatocytes both in vitro and in vivo. Antioxidant treatment in primary hepatocyte or CYP2E1-/- mice fed with alcohol impaired those effects. Reducing SIRT7 activity completely abolished alcohol-mediated promotion of liver cancer metastasis in vivo. Taken together, our data reveal that SIRT7 is a pivotal regulator of alcohol-mediated HCC metastasis.
Collapse
Affiliation(s)
- Chen Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinqiu Zhao
- Department of Infectious Disease, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bohao Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Wenbin Tang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yi Liu
- Department of General Surgery, People's Hospital of Hunan Province and Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wenxiang Huang
- Department of Infectious Disease, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhuan Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China.
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China.
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China.
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
6
|
Li S, Tan HY, Wang N, Feng Y, Wang X, Feng Y. Recent Insights Into the Role of Immune Cells in Alcoholic Liver Disease. Front Immunol 2019; 10:1328. [PMID: 31244862 PMCID: PMC6581703 DOI: 10.3389/fimmu.2019.01328] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical and experimental evidences have demonstrated that both innate and adaptive immunity are involved in the pathogenesis of alcoholic liver disease (ALD), in which the role of immunity is to fuel the inflammation and to drive the progression of ALD. Various immune cells are implicated in the pathogenesis of ALD. The activation of innate immune cells induced by alcohol and adaptive immune response triggered by oxidative modification of hepatic constituents facilitate the persistent hepatic inflammation. Meanwhile, the suppressed antigen-presenting capability of various innate immune cells and impaired function of T cells may consequently lead to an increased risk of infection in the patients with advanced ALD. In this review, we summarized the significant recent findings of immune cells participating in ALD. The pathways and molecules involved in the regulation of specific immune cells, and novel mediators protecting the liver from alcoholic injury via affecting these cells are particularly highlighted. This review aims to update the knowledge about immunity in the pathogenesis of ALD, which may facilitate to enhancement of currently available interventions for ALD treatment.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yigang Feng
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Laboratory of Wudang Local Chinese Medicine Research, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Castillo-Chabeco B, Figueroa G, Parira T, Napuri J, Agudelo M. Ethanol-induced modulation of GPR55 expression in human monocyte-derived dendritic cells is accompanied by H4K12 acetylation. Alcohol 2018; 71:25-31. [PMID: 29957399 DOI: 10.1016/j.alcohol.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023]
Abstract
Inflammation supports the progression of alcohol-related organ injury. Recent research findings have linked ethanol exposure to changes in histone acetylation and deacetylation in the brain and in peripheral tissues, leading to ethanol-dependence related damage. One of the mechanisms that has been shown to play a major role during inflammation is the cannabinoid system. Previous research has demonstrated that ethanol can modulate cannabinoid receptors' functions. Our lab has shown that the G protein-coupled receptor (GPR55), a novel cannabinoid receptor, is upregulated in binge drinkers and in cells treated acutely with ethanol. Additionally, our group has also uncovered that chronic ethanol exposure leads to an increase in histone modifications, such as acetylation. However, the regulatory mechanism of GPR55 within the immune system under the influence of ethanol is poorly understood. Since changes in histone modifications might lead to changes in gene expression, we hypothesize that the mechanism of ethanol-induced upregulation of GPR55 is linked to epigenetic changes on histone proteins. Taking into account previous findings from our lab, the goal of the present study was to determine whether there is any relevant association between histone hyperacetylation and the regulation of the novel cannabinoid receptor GPR55 in monocyte-derived dendritic cells (MDDCs) of human origin treated acutely with ethanol. Therefore, monocytes were isolated from buffy coats and allowed to differentiate into MDDCs. The cells were treated with ethanol for 24 h, harvested, fixed, and stained with antibodies against GPR55. As expected, based on previous findings, confocal microscopy showed that ethanol exposure increases GPR55 expression. In order to demonstrate the correlation between histone acetylation and GPR55 expression regulation, the cells were treated with ethanol, harvested, and then the chromatin was extracted and fractionated for chromatin immunoprecipitation (ChIP) assay, followed by real-time qPCR for the analysis of DNA fragments. The results showed an enrichment of the histone modification H4K12ac in the GPR55 gene of MDDCs treated with ethanol. Furthermore, siRNA against the histone acetyltransferase Tip60 (responsible for the acetylation of H4K12) resulted in a downregulation of GPR55. In conjunction, these results indicate that in the presence of ethanol, the upregulation of GPR55 expression is accompanied by H4K12 acetylation, which might have a significant effect in the ability of this innate immune system's cells to cope with cellular stress induced by ethanol. However, the causality of ethanol regulation of H4K12ac in GPR55 expression changes still lacks further elucidation; therefore, additional experimental approaches to confirm a significant causality between H4K12 acetylation and ethanol regulation of GPR55 are currently undergoing in our lab.
Collapse
|
8
|
Parira T, Figueroa G, Granado S, Napuri J, Castillo-Chabeco B, Nair M, Agudelo M. Trichostatin A Shows Transient Protection from Chronic Alcohol-Induced Reactive Oxygen Species (ROS) Production in Human Monocyte-Derived Dendritic Cells. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2018; 6:316. [PMID: 30596124 PMCID: PMC6309403 DOI: 10.4172/2329-6488.1000316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to understand whether histone deacetylase (HDACs) inhibitor Trichostatin A or TSA can block and/or reverse chronic alcohol exposure-induced ROS in human monocyte-derived dendritic cells (MDDCs). Additionally, since nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a known regulator of antioxidant responses, we studied the effects of alcohol and TSA on ROS production and modulation of Nrf2 by MDDCs. METHODS Intra-cellular, extra-cellular, and total ROS levels were measured in MDDCs treated chronically with alcohol (0.1 and 0.2 % EtOH) using 2',7'-dichlorofluorescin diacetate (DCF-DA) followed by detection of ROS in microplate reader and imaging flow cytometer. Nrf2 expression was analyzed by qRT- PCR and western blot. In addition, NFE2L2 (Nrf2), class I HDAC genes HDAC1, HDAC2, and histone acetyltransferase genes KAT5 were analyzed in silico using the GeneMania prediction server. RESULTS Our results confirmed alcohol's ability to increase intracellular ROS levels in MDDCs within minutes of treatment. Our findings have also demonstrated, for the first time, that TSA has a transient protective effect on MDDCs treated chronically with alcohol since the ability of TSA to reduce intracellular ROS levels is only detected up to 15 minutes post-chronic alcohol treatment with no significant protective effects by 10 hours. In addition, chronic alcohol treatment was able to increase the expression of the antioxidant regulator Nrf2 in a dose dependent manner, and the effect of the higher amount of alcohol (0.2%) on Nrf2 gene expression was significantly enhanced by TSA. CONCLUSION This study demonstrates that TSA has a transient protective effect against ROS induced by chronic alcohol exposure of human MDDCs and chronic long-term exposure of MDDCs with alcohol and TSA induces cellular toxicity. It also highlights imaging flow cytometry as a novel tool to detect intracellular ROS levels. Overall, the effect of TSA might be mediated through Nrf2; however, further studies are needed to fully understand the molecular mechanisms.
Collapse
Affiliation(s)
- Tiyash Parira
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Gloria Figueroa
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Sherly Granado
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jacqueline Napuri
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Boris Castillo-Chabeco
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Marisela Agudelo
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
9
|
Chinnapaiyan S, Dutta R, Bala J, Parira T, Agudelo M, Nair M, Unwalla HJ. Cigarette smoke promotes HIV infection of primary bronchial epithelium and additively suppresses CFTR function. Sci Rep 2018; 8:7984. [PMID: 29789655 PMCID: PMC5964097 DOI: 10.1038/s41598-018-26095-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent lung infections are a common cause of morbidity and mortality in people living with HIV and this is exacerbated in smokers even when administered combination antiretroviral therapy (cART). The incidence of pneumonia is increased with smoking and treatment interruption and is directly dependent on viral load in patients when adjusted for CD4 counts. CFTR dysfunction plays an important role in aberrant airway innate immunity as it is pivotal in regulating mucociliary clearance (MCC) rates and other antibacterial mechanisms of the airway. In our earlier work, we have demonstrated that bronchial epithelium expresses canonical HIV receptors CD4, CCR5 and CXCR4 and can be infected with HIV. HIV Tat suppresses CFTR mRNA and function via TGF-β signaling. In the present study, we demonstrate that cigarette smoke (CS) potentiates HIV infection of bronchial epithelial cells by upregulating CD4 and CCR5 expression. HIV and CS individually and additively suppress CFTR biogenesis and function, possibly explaining the increased incidence of lung infections in HIV patients and its exacerbation in HIV smokers.
Collapse
Affiliation(s)
- S Chinnapaiyan
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - R Dutta
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - J Bala
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - T Parira
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M Agudelo
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - H J Unwalla
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|