1
|
Wang X, Zhuang Y, Lin Z, Chen S, Chen L, Huang H, Lin H, Wu S. Research hotspots and trends on neuropathic pain-related mood disorders: a bibliometric analysis from 2003 to 2023. FRONTIERS IN PAIN RESEARCH 2023; 4:1233444. [PMID: 38179224 PMCID: PMC10764508 DOI: 10.3389/fpain.2023.1233444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Neuropathic Pain (NP) is often accompanied by mood disorders, which seriously affect the quality of life of patients. This study aimed to analyze the hotspots and trends in NP-related mood disorder research using bibliometric methods and to provide valuable predictions for future research in this field. Methods Articles and review articles on NP-related mood disorders published from January 2003 to May 2023 were retrieved from the Web of Science Core Collection. We used CiteSpace to analyze publications, countries, institutions, authors, cited authors, journals, cited journals, references, cited references, and keywords. We also analyzed collaborative network maps and co-occurrence network maps. Results A total of 4,540 studies were collected for analysis. The number of publications concerning NP-related mood disorders every year shows an upward trend. The United States was a major contributor in this field. The University of Toronto was the most productive core institution. C GHELARDINI was the most prolific author, and RH DWORKIN was the most frequently cited author. PAIN was identified as the journal with the highest productivity and citation rate. The current research hotspots mainly included quality of life, efficacy, double-blind methodology, gabapentin, pregabalin, postherpetic neuralgia, and central sensitization. The frontiers in research mainly focused on the mechanisms associated with microglia activation, oxidative stress, neuroinflammation, and NP-related mood disorders. Discussion In conclusion, the present study provided insight into the current state and trends in NP-related mood disorder research over the past 20 years. Consequently, researchers will be able to identify new perspectives on potential collaborators and cooperative institutions, hot topics, and research frontiers in this field.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhigang Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Shuijin Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Lechun Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hongye Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shiye Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/ NLRP3 pathway and apoptosis. Sci Rep 2023; 13:2111. [PMID: 36747075 PMCID: PMC9902529 DOI: 10.1038/s41598-023-28418-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, we aimed to evaluate the anti-inflammatory and anti-apoptotic effects of melatonin (MLT) on neuropathic pain (NP)-induced anxiety and depression in a rat model. Adult male rats were separated into four groups, i.e., Sham-VEH: healthy animals received a vehicle, Sham-MLT (10 mg/kg), and chronic constrictive injury (CCI)-VEH: nerve ligation received the vehicle, and CCI-MLT. Next, we used behavioral tests to evaluate pain severity, anxiety, and depression. Finally, rats were sacrificed for molecular and histopathological studies. Behavioral tests showed that NP could induce depressive- and anxiety-like behaviors. NP activated NF-κB/NLRP3 inflammasome pathways by upregulating NF-κB, NLRP3, ASC, active Caspase-1, also enhancing the concentrations of cytokines (IL-1β and IL-18) in the prefrontal cortex (PFC) and hippocampus (HC). NP upregulated Bax, downregulated Bcl2, and increased cell apoptosis in the HC and PFC. The rats treated with MLT eliminated the effects of NP, as the reduced pain severity, improved anxiety- and depressive-like behaviors, ameliorated NF-κB/NLRP3 inflammasome pathways, and modulated levels of cytokines in the HC and PFC. MLT could promote cell survival from apoptosis by modulating Bax and Bcl2. Therefore, it might be inferred that its anti-inflammatory and anti-apoptotic properties mediate the beneficial effects of MLT in NP-induced affective disorders.
Collapse
|
4
|
Zhu C, Zhu Y, Zhang G, Wu H, Shi Y, Li J, Yang J, Mao Z, Xu Q, Yao X, Zhu X, Wang J, Liu X, Lin N. The analgesic and antidepressant properties of dihydroartemisinine in the neuropathic pain mice: By the downregulation of HnRNPA1 in the spinal cord and hippocampus. Clin Transl Med 2022; 12:e751. [PMID: 35220669 PMCID: PMC8882243 DOI: 10.1002/ctm2.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Chunyan Zhu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yongping Zhu
- Artemisinin Research Center and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Hongyan Wu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yuqi Shi
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jiahao Li
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jun Yang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Zhiyun Mao
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Qionghong Xu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xuemin Yao
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou 510080 China
| | - Na Lin
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|
5
|
Fathi D, Abulsoud AI, Saad MA, Nassar NN, Maksimos MM, Rizk SM, Senousy MA. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sci 2021; 284:119904. [PMID: 34453945 DOI: 10.1016/j.lfs.2021.119904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
AIM Alcohol abuse is a significant causative factor of death worldwide. The Notch1 signaling pathway is involved in alcohol tolerance, withdrawal and dependence. Agomelatine is a known antidepressant acting as a melatonin receptor (MT1/2) agonist and a 5-hydroxytryptamine receptor-2C antagonist. However, its effects on alcohol cravings and alcohol withdrawal symptoms have not been investigated. In this study, we assessed the possibility of using agomelatine for the treatment of these symptoms in a rat model of alcoholism and the possible role of Notch1 signaling. MAIN METHODS We induced alcoholism in rats using a free-choice drinking model for 60 days. From day 61, free-choice was continued until day 82 for the craving model, whereas only water was offered in the withdrawal model. Meanwhile, the treated groups for both models received agomelatine (50 mg/kg/day) orally from day 61 to 82, followed by behavioral, histopathological and biochemical assessment. KEY FINDINGS Agomelatine treatment caused significant decrease in alcohol consumption with a positive effect on anxiety-like behavior in the open field, memory in the Morris water maze and immobility in the forced swim test. Moreover, agomelatine induced the expression of Notch1 pathway markers, including Notch1, NICD, CREB, CCNE-2, Hes-1, both total and phosphorylated ERK1/2, MMP9, Per2and RGS-2 in the hippocampal formation. By contrast, NMDAR expression was reduced. Furthermore, agomelatine normalized the serum levels of BDNF, cortisol, dopamine and glutamate which were disrupted by alcohol consumption. SIGNIFICANCE Based on these findings, agomelatine reversed alcohol cravings and withdrawal symptoms associated with alcohol dependence by modulating the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina M Maksimos
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Institute for Microbiology, Faculty of Life Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A. Melatonin Ameliorates Cadmium-Induced Affective and Cognitive Impairments and Hippocampal Oxidative Stress in Rat. Biol Trace Elem Res 2021; 199:1445-1455. [PMID: 32613486 DOI: 10.1007/s12011-020-02247-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
The present work aims to evaluate the effect of melatonin (Mel) on affective and cognitive disorders induced by chronic exposure to Cadmium (Cd). Male and female Wistar rats received either an intraperitoneal injection of saline solution NaCl (0.9%), Mel (4 mg/kg), Cd (1 mg/kg), or Cd (1 mg/kg) + Mel (4 mg/kg) for 8 weeks. Behavioral disorders were evaluated by different tests mainly the open field and elevated plus maze tests for anxiety-like behavior, forced swimming test (FST) for depression-like behavior, and the Y-maze and Morris water maze (MWM) tests for cognitive disorders. Thereafter, oxidative stress indices and histology of the hippocampus were evaluated. The results confirm that Cd administration has anxiogenic-like effects in both anxiety tests and depressive-like effects in the FST and leads to memory and learning disabilities in the Y-maze and MWM. We also report that Mel counteracts these neurobehavioral disorders. Biochemical assays showed that rats intoxicated with Cd significantly increased levels of nitric oxide (NO) and lipid peroxidation (LPO), while the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased in the hippocampus. In contrast, Mel administration attenuates the Cd-induced changes. The histopathological studies in the hippocampus of rats also supported that Mel markedly reduced the Cd-induced neuronal loss in CA3 sub-region. Overall, our results suggest that Mel could be used to protect against Cd-induced neurobehavioral changes via its antioxidant properties in the hippocampus. The effects of Cd and Mel are sex-dependent, knowing that Cd is more harmful in males, while Mel is more protective in females.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco.
| | - Sofia Azirar
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| |
Collapse
|
7
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
8
|
Lamtai M, Ouakki S, Zghari O, Hamzaoui AE, Benmhammed H, Azirar S, Hessni AE, Mesfioui A, Ouichou A. Neuroprotective effect of melatonin on nickel-induced affective and cognitive disorders and oxidative damage in rats. Environ Anal Health Toxicol 2021; 35:e2020025-0. [PMID: 33434425 PMCID: PMC7829405 DOI: 10.5620/eaht.2020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
The present work is carried out to explore the neuroprotective potential of Melatonin(Mel), on Ni-induced neurobehavioral, biochemical and histological alterations in male and female rats. The rats were intraperitoneally administered by nickel chloride (NiCl2, 1 mg/kg) and Mel (4 mg/kg) for 60 days. A neurobehavioral assessment was performed. Biochemical determinations of oxidative stress (OS) levels, and histological analysis of hippocampal tissues were also performed. Results showed that Nickel (Ni) treatment increased anxiety-like and depression-like behavior in rats. Besides, cognitive behavior on the Morris water maze was compromised following Ni treatment. Alongside this, Ni elevated hippocampal OS markers like lipid peroxidation and nitric oxide formation with a decrease in superoxide dismutase and catalase activities. Histological observations confirmed these results. Significantly, Mel administration alleviated neurobehavioral changes in Ni-treated rats of both genders. Also, Mel attenuated Ni-induced OS and increased the activities of antioxidant enzymes. The histopathological studies in the hippocampus supported that Mel markedly reduced the Ni-induced neuronal loss. In conclusion, this study suggests that Mel has a neuroprotective effect against Ni-induced neurobehavioral alterations, which may be related to lowering OS in the hippocampus.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Hajar Benmhammed
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sofia Azirar
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, 14000, Kenitra, Morocco
| |
Collapse
|
9
|
Chronicling changes in the somatosensory neurons after peripheral nerve injury. Proc Natl Acad Sci U S A 2020; 117:26414-26421. [PMID: 33020310 DOI: 10.1073/pnas.1922618117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Current drug discovery efforts focus on identifying lead compounds acting on a molecular target associated with an established pathological state. Concerted molecular changes that occur in specific cell types during disease progression have generally not been identified. Here, we used constellation pharmacology to investigate rat dorsal root ganglion neurons using two models of peripheral nerve injury: chronic constriction injury (CCI) and spinal nerve ligation (SNL). In these well-established models of neuropathic pain, we show that the onset of chronic pain is accompanied by a dramatic, previously unreported increase in the number of bradykinin-responsive neurons, with larger increases observed after SNL relative to CCI. To define the neurons with altered expression, we charted the temporal course of molecular changes following 1, 3, 6, and 14 d after SNL injury and demonstrated that specific molecular changes have different time courses during the progression to a pain state. In particular, ATP receptors up-regulated on day 1 postinjury, whereas the increase in bradykinin receptors was gradual after day 3 postinjury. We specifically tracked changes in two subsets of neurons: peptidergic and nonpeptidergic nociceptors. Significant increases occurred in ATP responses in nAChR-expressing isolectin B4+ nonpeptidergic neurons 1 d postinjury, whereas peptidergic neurons did not display any significant change. We propose that remodeling of ion channels and receptors occurs in a concerted and cell-specific manner, resulting in the appearance of bradykinin-responsive neuronal subclasses that are relevant to chronic pain.
Collapse
|
10
|
Biomolecular network-based synergistic drug combination discovery: a combination of paeoniflorin and liquiritin alleviates neuropathic pain by inhibiting neuroinflammation via suppressing the chemokine signaling pathway. Signal Transduct Target Ther 2020; 5:73. [PMID: 32439892 PMCID: PMC7242454 DOI: 10.1038/s41392-020-0160-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023] Open
|
11
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
12
|
Aberrant ER Stress Induced Neuronal-IFNβ Elicits White Matter Injury Due to Microglial Activation and T-Cell Infiltration after TBI. J Neurosci 2019; 40:424-446. [PMID: 31694961 DOI: 10.1523/jneurosci.0718-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress in neurons is associated with activation of inflammatory cells and subsequent neuroinflammation following traumatic brain injury (TBI); however, the underlying mechanism remains elusive. We found that induction of neuronal-ER stress, which was mostly characterized by an increase in phosphorylation of a protein kinase R-like ER kinase (PERK) leads to release of excess interferon (IFN)β due to atypical activation of the neuronal-STING signaling pathway. IFNβ enforced activation and polarization of the primary microglial cells to inflammatory M1 phenotype with the secretion of a proinflammatory chemokine CXCL10 due to activation of STAT1 signaling. The secreted CXCL10, in turn, stimulated the T-cell infiltration by serving as the ligand and chemoattractant for CXCR3+ T-helper 1 (Th1) cells. The activation of microglial cells and infiltration of Th1 cells resulted in white matter injury, characterized by impaired myelin basic protein and neurofilament NF200, the reduced thickness of corpus callosum and external capsule, and decline of mature oligodendrocytes and oligodendrocyte precursor cells. Intranasal delivery of CXCL10 siRNA blocked Th1 infiltration but did not fully rescue microglial activation and white matter injury after TBI. However, impeding PERK-phosphorylation through the administration of GSK2656157 abrogated neuronal induction of IFNβ, switched microglial polarization to M2 phenotype, prevented Th1 infiltration, and increased Th2 and Treg levels. These events ultimately attenuated the white matter injury and improved anxiety and depressive-like behavior following TBI.SIGNIFICANCE STATEMENT A recent clinical study showed that human brain trauma patients had enhanced expression of type-1 IFN; suggests that type-1 IFN signaling may potentially influence clinical outcome in TBI patients. However, it was not understood how TBI leads to an increase in IFNβ and whether induction of IFNβ has any influence on neuroinflammation, which is the primary reason for morbidity and mortality in TBI. Our study suggests that induction of PERK phosphorylation, a characteristic feature of ER stress is responsible for an increase in neuronal IFNβ, which, in turn, activates microglial cells and subsequently manifests the infiltration of T cells to induce neuroinflammation and subsequently white matter injury. Blocking PERK phosphorylation using GSK2656157 (or PERK knockdown) the whole cascade of neuroinflammation was attenuated and improved cognitive function after TBI.
Collapse
|
13
|
Jang JH, Kim YK, Jung WM, Kim HK, Song EM, Kim HY, Oh JY, Park JY, Ryu Y, Song MY, Park HJ. Acupuncture Improves Comorbid Cognitive Impairments Induced by Neuropathic Pain in Mice. Front Neurosci 2019; 13:995. [PMID: 31616240 PMCID: PMC6763606 DOI: 10.3389/fnins.2019.00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Growing evidence indicates that neuropathic pain is frequently accompanied by cognitive impairments, which aggravate the quality of life of chronic pain patients. Here, we investigated whether acupuncture treatments can improve cognitive dysfunction as well as allodynia induced by neuropathic pain in mice. One week after the left partial sciatic nerve ligation (PSNL), acupuncture treatments on the acupoints GB30-GB34 (AP1), HT7-GV20 (AP2), or control points (CP) were performed for 4 weeks. Notably, the significant attenuations of mechanical allodynia and cognitive impairment were observed in the AP1 group, but not in PSNL, AP2, or CP groups. A random decision forest classifier based on the pain and cognitive functions displayed that the acupuncture group was clearly segregated from the other groups. We also demonstrated that acupuncture restored the reduced field excitatory post-synaptic potentials and was able to elevate the expression levels of glutamate receptors (NR2B and GluR1) in the hippocampus. Moreover, the expressions of Ca2+/calmodulin-dependent protein kinase II and synaptic proteins (pPSD-95 and pSyn-1) were enhanced by acupuncture treatment. These results suggest that acupuncture can enhance hippocampal long-term action through the regulation of the synaptic efficacy and that acupuncture may provide a viable option for managing both pain and cognitive functions associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Kang Kim
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | | | - Hyung-Kyu Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eun-Mo Song
- Department of Physical Medicine and Rehabilitation, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hee-Young Kim
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Yeonhee Ryu
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Mi-Yeon Song
- Department of Physical Medicine and Rehabilitation, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
14
|
Saha P, Gupta R, Sen T, Sen N. Histone Deacetylase 4 Downregulation Elicits Post-Traumatic Psychiatric Disorders through Impairment of Neurogenesis. J Neurotrauma 2019; 36:3284-3296. [PMID: 31169064 DOI: 10.1089/neu.2019.6373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An enduring deficit in neurogenesis largely contributes to the development of severe post-traumatic psychiatric disorders such as anxiety, depression, and memory impairment following traumatic brain injury (TBI); however, the mechanism remains obscure. Here we have shown that an imbalance in the generation of γ-aminobutyric acid (GABA)ergic and glutamatergic neurons due to aberrant induction of vesicular glutamate transporter 1 (vGlut1)-positive glutamatergic cells is responsible for impaired neuronal differentiation in the hippocampus following TBI. To elucidate the molecular mechanism, we found that TBI activates a transcription factor, Pax3, by increasing its acetylation status, and subsequently induces Ngn2 transcription. This event, in turn, augments the vGlut1-expressing glutamatergic neurons and accumulation of excess glutamate in the hippocampus that can affect neuronal differentiation. In our study the acetylation of Pax3 was increased due to loss of its interaction with a deacetylase, histone deacetylase 4 (HDAC4), which was downregulated after TBI. TBI-induced activation of GSK3β was responsible for the degradation of HDAC4. We also showed that overexpression of HDAC4 before TBI reduces Pax3 acetylation by restoring an interaction between HDAC4 and Pax3 in the hippocampus. This event prevents the aberrant induction of vGlut1-positive glutamatergic neurons by decreasing the Ngn2 level and subsequently reinforces the balance between GABAergic and glutamatergic neurons following TBI. Further, we found that overexpression of HDAC4 in the hippocampus improves anxiety, depressive-like behavior, and memory functions following TBI.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Fateh AA, Long Z, Duan X, Cui Q, Pang Y, Farooq MU, Nan X, Chen Y, Sheng W, Tang Q, Chen H. Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2019; 284:53-60. [PMID: 30684896 DOI: 10.1016/j.pscychresns.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Despite the impressive advancements in the neuropathology of mood disorders, patients with bipolar disorder (BD) are often misdiagnosed on the initial presentation with major depressive disorder (MDD). With supporting evidence from neuroimaging studies, the abnormal functional connectivity (FC) of the hippocampus has been associated with various mood disorders, including BD and MDD. However, the features of the hippocampal FC underlying MDD and BD have not been directly compared. This study aims to investigate the hippocampal resting-state FC (rsFC) analyses to distinguish these two clinical conditions. Resting-state functional magnetic resonance imaging (fMRI) data was collected from a sample group of 30 patients with BD, 29 patients with MDD and 30 healthy controls (HCs). One-way ANOVA was employed to assess the potential differences of the hippocampus FC across all subjects. BD patients exhibited increased FC of the bilateral anterior/posterior hippocampus with lingual gyrus and inferior frontal gyrus (IFG) relative to patients MDD patients. In comparison with HCs, patients with BD and MDD had an increased FC between the right anterior hippocampus and lingual gyrus and a decreased FC between the right posterior hippocampus and right IFG. The results revealed a distinct hippocampal FC in MDD patients compared with that observed in BD patients. These findings may assist investigators in attempting to distinguish mood disorders by using fMRI data.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Long
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Muhammad Umar Farooq
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China
| | - Xiaoyu Nan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Humo M, Lu H, Yalcin I. The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res 2019; 377:21-43. [PMID: 30778732 DOI: 10.1007/s00441-019-03003-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
The increasing number of individuals with comorbidities poses an urgent need to improve the management of patients with multiple co-existing diseases. Among these comorbidities, chronic pain and mood disorders, two long-lasting disabling conditions that significantly reduce the quality of life, could be cited first. The recent development of animal models accelerated the studies focusing on the underlying mechanisms of the chronic pain and depression/anxiety comorbidity. This review provides an overview of clinical and pre-clinical studies performed over the past two decades addressing the molecular aspects of the comorbid relationship of chronic pain and depression. We thus focused on the studies that investigated the molecular characteristics of the comorbid relationship between chronic pain and mood disorders, especially major depressive disorders, from the genetic and epigenetic point of view to key neuromodulators which have been shown to play an important role in this comorbidity.
Collapse
Affiliation(s)
- Muris Humo
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000, Strasbourg, France
| | - Han Lu
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000, Strasbourg, France.,Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, D-79104, Freiburg, Germany
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
17
|
The Chinese Medicine Wu-Tou Decoction Relieves Neuropathic Pain by Inhibiting Hippocampal Microglia Activation. Sci Rep 2018; 8:12292. [PMID: 30115941 PMCID: PMC6095857 DOI: 10.1038/s41598-018-30006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
The comorbidity between the nociceptive and mental syndromes adds to the refractoriness of neuropathic pain (NP). Wu-Tou decoction (WTD) has been prescribed for chronic pain for thousands of years in China. Recently, we reported that WTD was helpful for hippocampus and co-curative for the nociceptive, depressive and anxiety behaviors in the spinal cord ligation (SNL) mice. However, the mechanism underlying the rescue of hippocampus, as well as the roles hippocampus assumed in co-curation remain unexplored. In this study, we validated that in SNL mice, the long-lasting damages to limbic system were mainly limited to hippocampus. In addition, hippocampal neurons were proven sensitive to harms induced by microglia and rescued by WTD, which in sum indicated hippocampal microglia as the critical modulator of co-curation. To validate this hypothesis the hippocampal microglia were mal-activated in shamed mice, in which the atrophy of hippocampus and the development of NP syndromes were consolidated and proven rescued by WTD. On the contrary, in the SNL mice, the failure to control hippocampal microglia was sufficient to void all the rescues mediated by WTD. In sum, our study points out that the effective modulation of microglia in hippocampus is of pivotal importance for the co-curation by WTD.
Collapse
|
18
|
Electroacupuncture at Hua Tuo Jia Ji Acupoints Reduced Neuropathic Pain and Increased GABA A Receptors in Rat Spinal Cord. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8041820. [PMID: 30069227 PMCID: PMC6057337 DOI: 10.1155/2018/8041820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Chronic constriction injury- (CCI-) induced neuropathic pain is the most similar model to hyperalgesia in clinical observation. Neuropathic pain is a neuronal dysfunction in the somatosensory system that may lead to spontaneous pain. In this study, electroacupuncture (EA) was applied at bilateral L4 and L6 of Hua Tuo Jia Ji points (EX-B2) for relieving neuropathic pain in rats. Eighteen Sprague-Dawley rats were randomly assigned to three groups: sham, 2-Hz EA, and 15-Hz EA groups. Following von Frey and cold plate tests, both the 2- and the 15-Hz EA groups had significantly lower mechanical and thermal hyperalgesia than the sham group. Western blot analysis results showed that γ-aminobutyric acid A (GABAA), adenosine A1 receptor (A1R), transient receptor potential cation channel subfamily V member 1 (TRPV1), TRPV4, and metabotropic glutamate receptor 3 (mGluR3) were similar in the dorsal root ganglion of all three groups. Furthermore, levels of GABAA receptors were higher in the spinal cord of rats in the 2- and 15-Hz EA groups compared with the sham control group. This was not observed for A1R, TRPV1, TRPV4, or mGluR3 receptors. In addition, all the aforementioned receptors were unchanged in the somatosensory cortex of the study rats, suggesting a central spinal effect. The study results provide evidence to support the clinical use of EA for specifically alleviating neuropathic pain.
Collapse
|