1
|
Liao PS, Chiu CC, Fu YH, Hsia CC, Yang YC, Lee KF, Hsieh SL, Kuo SJ. Incidence of Hip Fractures among Patients with Chronic Otitis Media: The Real-World Data. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081138. [PMID: 36013605 PMCID: PMC9416011 DOI: 10.3390/medicina58081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Chronic otitis media (COM) has been considered as a localized disease, and its systemic impact is poorly understood. Whether COM-induced inflammation could be associated with systemic bone loss and hip fracture is unknown at present. Our study tried to determine the risk of hip fracture among COM patients. We selected the comparison individuals without the COM coding and paired the controls with COM patients by gender, age, and comorbidities (including osteoporosis) by about a one-to-two ratio. Our study showed that the incidence of hip fracture was 4.48 and 3.92 per 1000 person-years for comparison and COM cohorts respectively. The cumulative incidence of hip fracture is higher in the COM cohort (p < 0.001). After adjustment for gender, age, and comorbidities, the COM patients had a 1.11-fold (aHR = 1.11; 95% CI = 1.05−1.17) risk of hip fracture than the control subjects. Among COM patients, a history of hearing loss is associated with higher (aHR = 1.21; 95% CI = 1.20−1.42) fracture risk. Our study showed that COM patients, especially those with hearing loss, are susceptible to a higher risk for hip fracture.
Collapse
Affiliation(s)
- Pei-Shao Liao
- Department of Otolaryngology Head and Neck Surgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Ching-Chih Chiu
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Hsiu Fu
- Department of Education, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chia-Chun Hsia
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, Taichung 404327, Taiwan
| | - Kun-Feng Lee
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan
| | - Shang-Lin Hsieh
- School of Medicine, China Medical University, Taichung 404328, Taiwan
- Correspondence: (S.-L.H.); (S.-J.K.)
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Correspondence: (S.-L.H.); (S.-J.K.)
| |
Collapse
|
2
|
Mulay A, Chowdhury MMK, James CT, Bingle L, Bingle CD. The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biol Open 2021; 10:258492. [PMID: 33913472 PMCID: PMC8084567 DOI: 10.1242/bio.056564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM. Summary: This paper presents a genome wide transcriptional analysis of murine middle ear epithelial cells as they undergo differentiation to a mucociliary phenotype representative of the native middle ear epithelium.
Collapse
Affiliation(s)
- Apoorva Mulay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Md Miraj K Chowdhury
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Cameron T James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S102TN, UK
| |
Collapse
|
3
|
Kondyarpu A, Ray CS, Panda KC, Biswal NC, Ramchander PV. Association of ISL1 polymorphisms and eosinophilic levels among otitis media patients. J Clin Lab Anal 2021; 35:e23702. [PMID: 33476445 PMCID: PMC7957994 DOI: 10.1002/jcla.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background Otitis media (OM) is a middle ear inflammatory complex disorder involving genetic and environmental factors. It onsets during childhood and often recurs and perplexes in genetically susceptible patients. Previously, murine models had shown the association of ISL LIM homeobox 1 (ISL1) gene with otitis media with effusion. Aim To investigate the association of ISL1 genetic variants with otitis media. Subjects and methods A total of 285 cases and 277 controls were recruited for the study. The entire coding region of ISL1 gene was genotyped using Sanger sequencing or single‐strand conformation polymorphism methods. Genotype, haplotype, in silico analysis, and linkage disequilibrium analysis were performed. Results The variants rs2303751 (c.504A>G) and rs121913540 (c.513G>A) were associated with OM, and the OR (95%CI) was 0.74 (0.57–0.95) and 0.43 (0.20–0.91), respectively. Besides, the rs2303751 AA genotype was associated with elevated eosinophil numbers in OM when compared to controls. The 5 SNP haplotype analysis of SNPs c.‐492A>G, c.504A>G, c.513G>A, c.576C>T, and c.*651A>T revealed A‐A‐G‐C‐A to be a risk haplotype in females whereas the 3 SNP haplotype analysis of SNPs c.504A>G, c.513G>A, and c.567C>T suggested G‐A‐C as protective and A‐G‐C to be a risk haplotype for otitis media. Conclusion Ours is the first report which shows a significant association of ISL1 variants (rs2303751 and rs121913540) with hearing‐related disorder like otitis media in humans. These results implicate the possible role of ISL1 gene in the etiopathology of otitis media. The replication of the study in other ethnic populations may strengthen our findings.
Collapse
Affiliation(s)
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College & Hospital, Cuttack, India
| | - Khirod Chandra Panda
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College & Hospital, Cuttack, India
| | | | | |
Collapse
|
4
|
Kurabi A, Cooper M, Spriggs M, Xu Y, Schaerer D, Ryan AF. Molecular Screening Strategy to Identify a Non-invasive Delivery Mechanism for the Treatment of Middle Ear Disorders. Front Med (Lausanne) 2020; 7:503819. [PMID: 33392211 PMCID: PMC7775502 DOI: 10.3389/fmed.2020.503819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Middle ear ailments include a broad range of pathological conditions. Otitis media is the leading middle ear disease of childhood, which incurs significant health care resources in developed countries and, in developing countries, causes significant mortality and morbidity. Recurrent and chronic infections of the middle ear lead to the prolonged presence of inflammatory factors and cellular infiltrates resulting in temporary hearing loss. However, long-term alteration of the middle ear space can pose the risk of permanent damage to the delicate ear structures and cause tissue remodeling. While the etiopathogenesis of middle ear diseases is multifactorial, targeting the biological mechanisms and molecular networks that drive disease development is critical. Yet, a pivotal step in realizing the potential of molecular therapies is the development of methods for local drug delivery, since systemic application risks side effects. Utilizing bacteriophage display in the rat, we discovered rare peptides that are able to transit the intact tympanic membrane from the external canal to the middle ear cavity by an active process. An in vitro assay demonstrated that transport occurs across the tympanic membranes of humans and that the peptides cross the membrane independent of phage. Transport of phage, which is ~900 nm in length, suggests that these peptides could non-invasively deliver drug packages or gene therapy vectors into the middle ear.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Molly Cooper
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Meghan Spriggs
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Yuge Xu
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Daniel Schaerer
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States.,Department of Neurosciences, UCSD School of Medicine, San Diego, CA, United States.,San Diego VA Healthcare System, San Diego, CA, United States
| |
Collapse
|
5
|
Giese APJ, Ali S, Isaiah A, Aziz I, Riazuddin S, Ahmed ZM. Genomics of Otitis Media (OM): Molecular Genetics Approaches to Characterize Disease Pathophysiology. Front Genet 2020; 11:313. [PMID: 32391049 PMCID: PMC7191070 DOI: 10.3389/fgene.2020.00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is an infective and inflammatory disorder known to be a major cause of hearing impairment across all age groups. Both acute and chronic OM result in substantial healthcare utilization related to antibiotic prescription and surgical procedures necessary for its management. Although several studies provided evidence of genetics playing a significant role in the susceptibility to OM, we had limited knowledge about the genes associated with OM until recently. Here we have summarized the known genetic factors that confer susceptibility to various forms of OM in mice and in humans and their genetic load, along with associated cellular signaling pathways. Spotlighted in this review are fucosyltransferase (FUT) enzymes, which have been implicated in the pathogenesis of OM. A comprehensive understanding of the functions of OM-associated genes may provide potential opportunities for its diagnosis and treatment.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Saadat Ali
- The Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amal Isaiah
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ishrat Aziz
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Vikhe PP, Tateossian H, Bharj G, Brown SDM, Hood DW. Mutation in Fbxo11 Leads to Altered Immune Cell Content in Jeff Mouse Model of Otitis Media. Front Genet 2020; 11:50. [PMID: 32117459 PMCID: PMC7026503 DOI: 10.3389/fgene.2020.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Jeff mouse mutant carries a mutation in the F-box only 11 gene (Fbxo11) and heterozygous animals display conductive deafness due to the development of otitis media (OM). The Fbxo11 locus is also associated with chronic otitis media with effusion (COME) and recurrent OM in humans. The Jeff mutation affects the ability of FBXO11 to stabilize p53 that leads to perturbation in the TGF-beta/Smad2 signaling pathway important in immunity and inflammation. In the current study, we evaluated the effect of the Jeff mutation on the immune cell content using multicolor flow cytometry. In blood of Jeff heterozygotes, we observed a significant increase in the number of NK, dendritic (CD11b+), neutrophils, and natural killer T (NKT) cells and a significant decrease in effector T-helper and B-lymphocytes compared to wild-type controls. The percentage of NK cells significantly decreased in the lungs of Jeff heterozygotes, with a concomitant reduction in B-lymphocytes and T-cytotoxic cells. In the spleen, Jeff heterozygotes displayed a significant decrease in mature B-lymphocytes, effector T-helper, and naïve T-cytotoxic cells. Neutrophils, dendritic, and NKT cells dominated bulla fluid in Jeff heterozygote mice. Similar analysis carried out on Fbxo11tm2b/+ heterozygotes, which carry a null allele, showed no difference when compared to wild-type. Cytokine/chemokine analysis revealed a significant increase in the G-CSF, GM-CSF, sTNFRI, TPO, and IL-7 levels in Jeff heterozygote serum compared to wild-type. This analysis increases our understanding of the role played by Fbxo11, a gene associated with human OM, in the systemic and localized cellular immune response associated with increased susceptibility to OM.
Collapse
Affiliation(s)
- Pratik P Vikhe
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Gurpreet Bharj
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Derek W Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Geng R, Wang Q, Chen E, Zheng QY. Current Understanding of Host Genetics of Otitis Media. Front Genet 2020; 10:1395. [PMID: 32117425 PMCID: PMC7025460 DOI: 10.3389/fgene.2019.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of otitis media (OM), an inflammatory disease of the middle ear (ME), involves interplay between many different factors, including the pathogenicity of infectious pathogens, host immunological status, environmental factors, and genetic predisposition, which is known to be a key determinant of OM susceptibility. Animal models and human genetics studies have identified many genes and gene variants associated with OM susceptibility: genes that encode components of multiple signaling pathways involved in host immunity and inflammatory responses of the ME mucosa; genes involved in cellular function, such as mucociliary transport, mucin production, and mucous cell metaplasia; and genes that are essential for Eustachian tube (ET) development, ME cavitation, and homeostasis. Since our last review, several new mouse models with mutations in genes such as CCL3, IL-17A, and Nisch have been reported. Moreover, genetic variants and polymorphisms in several genes, including FNDC1, FUT2, A2ML1, TGIF1, CD44, and IL1-RA variable number tandem repeat (VNTR) allele 2, have been identified as being significantly associated with OM. In this review, we focus on the current understanding of the role of host genetics in OM, including recent discoveries and future research prospects. Further studies on the genes identified thus far and the discovery of new genes using advanced technologies such as gene editing, next generation sequencing, and genome-wide association studies, will advance our understanding of the molecular mechanism underlying the pathogenesis of OM and provide new avenues for early screening and developing effective preventative and therapeutic strategies to treat OM.
Collapse
Affiliation(s)
- Ruishuang Geng
- College of Special Education, Binzhou Medical University, Yantai, China
| | - Qingzhu Wang
- College of Special Education, Binzhou Medical University, Yantai, China.,Department of Otolaryngology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Eileen Chen
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
Mittal R, Sanchez-Luege SV, Wagner SM, Yan D, Liu XZ. Recent Perspectives on Gene-Microbe Interactions Determining Predisposition to Otitis Media. Front Genet 2019; 10:1230. [PMID: 31850076 PMCID: PMC6901973 DOI: 10.3389/fgene.2019.01230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
A comprehensive understanding about the pathogenesis of otitis media (OM), one of the most common pediatric diseases, has the potential to alleviate a substantial disease burden across the globe. Advancements in genetic and bioinformatic detection methods, as well as a growing interest in the microbiome, has enhanced the capability of researchers to investigate the interplay between host genes, host microbiome, invading bacteria, and resulting OM susceptibility. Early studies deciphering the role of genetics in OM susceptibility assessed the heritability of the phenotype in twin and triplet studies, followed by linkage studies, candidate gene approaches, and genome-wide association studies that have helped in the identification of specific loci. With the advancements in techniques, various chromosomal regions and genes such as FBXO11, TGIF1, FUT2, FNDC1, and others have been implicated in predisposition to OM, yet questions still remain as to whether these implicated genes truly play a causative role in OM and to what extent. Meanwhile, 16S ribosomal RNA (rRNA) sequencing, microbial quantitative trait loci (mbQTL), and microbial genome-wide association studies (mGWAS) have mapped the microbiome of upper airways sites and therefore helped in enabling a more detailed study of interactions between host polymorphisms and host microbiome composition. Variants of specific genes conferring increased OM susceptibility, such as A2ML1, have also been shown to influence the microbial composition of the outer and middle ear in patients with OM, suggesting their role as mediators of disease. These interactions appear to impact the colonization of known otopathogens (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis), as well as Neisseria, Gemella, Porphyromonas, Alloprevotella, and Fusobacterium populations that have also been implicated in OM pathogenesis. Meanwhile, studies demonstrating an increased abundance of Dolosigranulum and Corynebacterium in healthy patients compared to those with OM suggest a protective role for these bacteria, thereby introducing potential avenues for future probiotic treatment. Incorporating insights from these genetic, microbiome, and host-pathogen studies will allow for a more robust, comprehensive understanding of OM pathogenesis that can ultimately facilitate in the development of exciting new treatment modalities.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sebastian V Sanchez-Luege
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shannon M Wagner
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Del-Pozo J, MacIntyre N, Azar A, Glover J, Milne E, Cheeseman M. Chronic otitis media is initiated by a bulla cavitation defect in the FBXO11 mouse model. Dis Model Mech 2019; 12:12/3/dmm038315. [PMID: 30898767 PMCID: PMC6451434 DOI: 10.1242/dmm.038315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Auditory bulla cavitation defects are a cause of otitis media, but the normal cellular pattern of bulla mesenchyme regression and its failure are not well understood. In mice, neural-crest-derived mesenchyme occupies the bulla from embryonic day 17.5 (E17.5) to postnatal day 11 (P11) and then regresses to form the adult air-filled bulla cavity. We report that bulla mesenchyme is bordered by a single layer of non-ciliated epithelium characterized by interdigitating cells with desmosome cell junctions and a basal lamina, and by Bpifa1 gene expression and laminin staining of the basal lamina. At P11-P12, the mesenchyme shrinks: mesenchyme-associated epithelium shortens, and mesenchymal cells and extracellular matrix collagen fibrils condense, culminating in the formation of cochlea promontory mucosa bordered by compact non-ciliated epithelial cells. FBXO11 is a candidate disease gene in human chronic otitis media with effusion and we report that a bulla cavitation defect initiates the pathogenesis of otitis media in the established mouse model Jeff (Fbxo11Jf/+). Persistent mesenchyme in Fbxo11Jf/+ bullae has limited mesenchymal cell condensation, fibrosis and hyperplasia of the mesenchyme-associated epithelium. Subsequent modification forms fibrous adhesions that link the mucosa and the tympanic membrane, and this is accompanied by dystrophic mineralization and accumulation of serous effusion in the bulla cavity. Mouse models of bulla cavitation defects are important because their study in humans is limited to post-mortem samples. This work indicates new diagnostic criteria for this otitis media aetiology in humans, and the prospects of studying the molecular mechanisms of murine bulla cavitation in organ culture. Summary: FBXO11 is a candidate disease gene for otitis media in humans and the authors report that a bulla cavitation defect initiates otitis media in the Fbxo11Jf/+ mouse model.
Collapse
Affiliation(s)
- Jorge Del-Pozo
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Neil MacIntyre
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ali Azar
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - James Glover
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Elspeth Milne
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Michael Cheeseman
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK .,Centre for Comparative Pathology & Division of Pathology, University of Edinburgh, Institute of Genetics & Molecular Medicine, Crewe Road, Edinburgh EH4 2XR, UK
| |
Collapse
|
11
|
Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, Boonsawat P, Bruel AL, Buchert R, Calpena E, Cogné B, Dallapiccola B, Distelmaier F, Elmslie F, Faivre L, Haack TB, Harrison V, Henderson A, Hunt D, Isidor B, Joset P, Kumada S, Lachmeijer AM, Lees M, Lynch SA, Martinez F, Matsumoto N, McDougall C, Mefford HC, Miyake N, Myers CT, Moutton S, Nesbitt A, Novelli A, Orellana C, Rauch A, Rosello M, Saida K, Santani AB, Sarkar A, Scheffer IE, Shinawi M, Steindl K, Symonds JD, Zackai EH, Reis A, Sticht H, Zweier C, Sticht H, Zweier C. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Am J Hum Genet 2018; 103:305-316. [PMID: 30057029 DOI: 10.1016/j.ajhg.2018.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Bhutta MF, Thornton RB, Kirkham LAS, Kerschner JE, Cheeseman MT. Understanding the aetiology and resolution of chronic otitis media from animal and human studies. Dis Model Mech 2018; 10:1289-1300. [PMID: 29125825 PMCID: PMC5719252 DOI: 10.1242/dmm.029983] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. Summary: Chronic middle ear inflammation is a common disease. Animal models, and in particular mouse models, have been used to elucidate some potential mechanisms, including dysfunction in immune signalling, mucociliary function or Eustachian tube function.
Collapse
Affiliation(s)
- Mahmood F Bhutta
- Department of ENT, Brighton and Sussex University Hospitals NHS Trust, Brighton, BN2 5BE, England .,Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia
| | - Ruth B Thornton
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Lea-Ann S Kirkham
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Joseph E Kerschner
- Office of the Dean, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Cheeseman
- Division of Developmental Biology, Roslin Institute, University of Edinburgh, Midlothian, EH23 9RG, Scotland
| |
Collapse
|
13
|
Fritzen D, Kuechler A, Grimmel M, Becker J, Peters S, Sturm M, Hundertmark H, Schmidt A, Kreiß M, Strom TM, Wieczorek D, Haack TB, Beck-Wödl S, Cremer K, Engels H. De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies. Hum Genet 2018; 137:401-411. [PMID: 29796876 DOI: 10.1007/s00439-018-1892-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Abstract
Intellectual disability (ID) has an estimated prevalence of 1.5-2%. In most affected individuals, its genetic basis remains unclear. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that a large proportion of sporadic ID cases results from de novo mutations. Here, we present two unrelated individuals with similar clinical features and deleterious de novo variants in FBXO11 detected by WES. Individual 1, a 14-year-old boy, has mild ID as well as mild microcephaly, corrected cleft lip and alveolus, hyperkinetic disorder, mild brain atrophy and minor facial dysmorphism. WES detected a heterozygous de novo 1 bp insertion in the splice donor site of exon 3. Individual 2, a 3-year-old boy, showed ID and pre- and postnatal growth retardation, postnatal mild microcephaly, hyperkinetic and restless behaviour, as well as mild dysmorphism. WES detected a heterozygous de novo frameshift mutation. While ten individuals with ID and de novo variants in FBXO11 have been reported as part of larger studies, only one of the reports has some additional clinical data. Interestingly, the latter individual carries the identical mutation as our individual 2 and also displays ID, intrauterine growth retardation, microcephaly, behavioural anomalies, and dysmorphisms. Thus, we confirm deleterious de novo mutations in FBXO11 as a cause of ID and start the delineation of the associated clinical picture which may also comprise postnatal microcephaly or borderline small head size and behavioural anomalies.
Collapse
Affiliation(s)
- Daniel Fritzen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstrasse 7, 72076, Tübingen, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstrasse 7, 72076, Tübingen, Germany
| | - Hela Hundertmark
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Martina Kreiß
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Trogerstraße 32, 81675, München, Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstrasse 7, 72076, Tübingen, Germany
- Institute of Human Genetics, Technische Universität München, Trogerstraße 32, 81675, München, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstrasse 7, 72076, Tübingen, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|