1
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Shi X, Zhao X, Xue J, Jia E. Extracellular vesicle biomarkers in circulation for colorectal cancer detection: a systematic review and meta-analysis. BMC Cancer 2024; 24:623. [PMID: 38778252 PMCID: PMC11110411 DOI: 10.1186/s12885-024-12312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Yoshimura H, Takeda Y, Shirai Y, Yamamoto M, Nakatsubo D, Amiya S, Enomoto T, Hara R, Adachi Y, Edahiro R, Yaga M, Masuhiro K, Koba T, Itoh-Takahashi M, Nakayama M, Takata S, Hosono Y, Obata S, Nishide M, Hata A, Yanagawa M, Namba S, Iwata M, Hamano M, Hirata H, Koyama S, Iwahori K, Nagatomo I, Suga Y, Miyake K, Shiroyama T, Fukushima K, Futami S, Naito Y, Kawasaki T, Mizuguchi K, Kawashima Y, Yamanishi Y, Adachi J, Nogami-Itoh M, Ueki S, Kumanogoh A. Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology. J Allergy Clin Immunol 2024; 153:1268-1281. [PMID: 38551536 DOI: 10.1016/j.jaci.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 05/07/2024]
Abstract
BACKGROUND Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.
Collapse
Affiliation(s)
- Hanako Yoshimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Nakatsubo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takatoshi Enomoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miho Itoh-Takahashi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - So Takata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Obata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akinori Hata
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoko Namba
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan; Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Nogami-Itoh
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, University Graduate School of Medicine, Hondo, Akita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Cvjetkovic A, Karimi N, Crescitelli R, Thorsell A, Taflin H, Lässer C, Lötvall J. Proteomic profiling of tumour tissue-derived extracellular vesicles in colon cancer. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e127. [PMID: 38939898 PMCID: PMC11080707 DOI: 10.1002/jex2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
Colon cancer is one of the most commonly occurring tumours among both women and men, and over the past decades the incidence has been on the rise. As such, the need for biomarker identification as well as an understanding of the underlying disease mechanism has never been greater. Extracellular vesicles are integral mediators of cell-to-cell communication and offer a unique opportunity to study the machinery that drives disease progression, and they also function as vectors for potential biomarkers. Tumour tissue and healthy mucosal tissue from the colons of ten patients were used to isolate tissue-resident EVs that were subsequently subjected to global quantitative proteomic analysis through LC-MS/MS. In total, more than 2000 proteins were identified, with most of the common EV markers being among them. Bioinformatics revealed a clear underrepresentation of proteins involved in energy production and cellular adhesion in tumour EVs, while proteins involved in protein biosynthesis were overrepresented. Additionally, 53 membrane proteins were found to be significantly upregulated in tumour EVs. Among them were several proteins with enzymatic functions that degrade the extracellular matrix, and three of these, Fibroblast activating factor (FAP), Cell surface hyaluronidase (CEMIP2), as well as Ephrin receptor B3 (EPHB3), were validated and found to be consistent with the global quantitative results. These stark differences in the proteomes between healthy and cancerous tissue emphasise the importance of the interstitial vesicle secretome as a major player of disease development.
Collapse
Affiliation(s)
- Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Nasibeh Karimi
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of SurgerySahlgrenska University HospitalGothenburgSweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Helena Taflin
- Transplant Institute at Sahlgrenska University Hospital, Institute of Clinical SciencesSahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Fonseca Teixeira A, Wu S, Luwor R, Zhu HJ. A New Era of Integration between Multiomics and Spatio-Temporal Analysis for the Translation of EMT towards Clinical Applications in Cancer. Cells 2023; 12:2740. [PMID: 38067168 PMCID: PMC10706093 DOI: 10.3390/cells12232740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Rodney Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| |
Collapse
|
7
|
Guarnerio S, Tempest R, Maani R, Hunt S, Cole LM, Le Maitre CL, Chapple K, Peake N. Cellular Responses to Extracellular Vesicles as Potential Markers of Colorectal Cancer Progression. Int J Mol Sci 2023; 24:16755. [PMID: 38069076 PMCID: PMC10706375 DOI: 10.3390/ijms242316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.
Collapse
Affiliation(s)
- Sonia Guarnerio
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK;
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Keith Chapple
- Colorectal Surgical Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| |
Collapse
|
8
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Proteomic Signature of Extracellular Vesicles Associated with Colorectal Cancer. Molecules 2023; 28:molecules28104227. [PMID: 37241967 DOI: 10.3390/molecules28104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The proteins of extracellular vesicles (EVs) provide proteomic signatures that reflect molecular features of EV-producing cells, including cancer cells. Detection of cancer cell EV proteins is of great interest due to the development of novel predictive diagnostic approaches. Using targeted mass spectrometry with stable-isotope-labeled peptide standards (SIS), we measured in this study the levels of 34 EV-associated proteins in vesicles and whole lysate derived from the colorectal cancer (CRC) cell lines Caco-2, HT29 and HCT116. We also evaluated the abundance of 13 EV-associated proteins (FN1, TLN1, ITGB3, HSPA8, TUBA4A, CD9, CD63, HSPG2, ITGB1, GNAI2, TSG101, PACSIN2, and CDC42) in EVs isolated from blood plasma samples from 11 CRC patients and 20 healthy volunteers. Downregulation of TLN1, ITGB3, and TUBA4A with simultaneous upregulation of HSPG2 protein were observed in cancer samples compared to healthy controls. The proteomic cargo of the EVs associated with CRC represents a promising source of potential prognostic markers.
Collapse
Affiliation(s)
- Natalia Soloveva
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
9
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
10
|
Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:cancers15041107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
|
11
|
Goberdhan DCI. Large tumour-derived extracellular vesicles as prognostic indicators of metastatic cancer patient survival. Br J Cancer 2023; 128:471-473. [PMID: 36385555 PMCID: PMC9938279 DOI: 10.1038/s41416-022-02055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells and produced at particularly high levels by many cancer cells, often inducing pro-tumorigenic effects. Since these cancer EVs carry tumour proteins and RNAs, they can potentially be used at biomarkers. The heterogeneity of surface markers and cargos carried by EVs, however, presents some challenges to developing such approaches. Nanou et al. [1] found that automated counting of large tumour-derived EVs (tdEVs) performed at least as effectively as counting circulating tumour-derived cells (CTCs) and with higher sensitivity, in distinguishing the survival of patients with castration-resistant prostate cancer (CRPC), metastatic colorectal cancer (mCRC) and metastatic breast cancer (MBC), but not for non-small cell lung cancer (NSCLC). Subsequent work has suggested that these tdEVs may also be used to assess tumour subtype and that the number of large EVs produced by endothelial cells can also be increased in cancer patients. While by itself, the tdEV imaging approach used by Nanou et al. [1] is not specific enough to predict the survival of individual patients, in combination with other EV-associated assays, this test, perhaps enhanced through the inclusion of other tumour antigens, could prove invaluable in predicting cancer survival and other outcomes in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
12
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
13
|
Kasahara K, Narumi R, Nagayama S, Masuda K, Esaki T, Obama K, Tomonaga T, Sakai Y, Shimizu Y, Adachi J. A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer. Cancer Med 2022; 12:7616-7626. [PMID: 36394150 PMCID: PMC10067095 DOI: 10.1002/cam4.5442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance. EXPERIMENTAL DESIGN Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann-Whitney-Wilcoxon test and random forest model were applied in cohort 1 to select promising markers. Consensus clustering was applied to classify patients with CRC in cohort 2. The Kaplan-Meier method and Cox regression analysis were performed to identify potential molecular factors contributing to the overall survival (OS) of patients. RESULTS In the analysis of cohort 1, 99 proteins were associated with CRC. The analysis of cohort 2 revealed two clusters showing significant differences in OS (p = 0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), were suggested to be associated with the identified CRC subtypes, and ORM1 was shown to significantly contribute to OS, suggesting that ORM1 might be one of the factors closely related to the OS. CONCLUSIONS The study identified two novel subtypes of CRC, which exhibit differences in OS, as well as important biomarker proteins that are closely related to the identified subtypes. Liquid biopsy assessment with targeted proteomics analysis was proposed to be crucial for predicting the CRC prognosis.
Collapse
Affiliation(s)
- Keiko Kasahara
- Department of SurgeryKyoto University Graduate School of MedicineKyotoJapan
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Clinical and Analytical ChemistryCollaborative Research Center for Health and Medicine, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Satoshi Nagayama
- Department of Gastroenterological SurgeryGastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of SurgeryUji‐Tokusyukai Medical CenterKyotoJapan
| | - Keiko Masuda
- Laboratory for Cell‐Free Protein SynthesisRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Tsuyoshi Esaki
- The Center for Data Science Education and ResearchShiga UniversityShigaJapan
| | - Kazutaka Obama
- Department of SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | | | - Yoshihiro Shimizu
- Laboratory for Cell‐Free Protein SynthesisRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Clinical and Analytical ChemistryCollaborative Research Center for Health and Medicine, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| |
Collapse
|
14
|
Serum amyloid P component and pro-platelet basic protein in extracellular vesicles or serum are novel markers of liver fibrosis in chronic hepatitis C patients. PLoS One 2022; 17:e0271020. [PMID: 35797333 PMCID: PMC9262231 DOI: 10.1371/journal.pone.0271020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) contain proteins, mRNAs, and microRNAs, and their cargos have emerged as novel diagnostic markers in various diseases. We aimed to discover novel and noninvasive biomarkers of liver fibrosis by proteomic analysis using serum EVs in patients with chronic hepatitis C. We performed shotgun proteomics using serum EVs isolated from 54 patients with histologically assessed liver fibrosis. Shotgun proteomics identified a total of 974 proteins, and 445 proteins were detected in more than half of the patients. Among them, a total of 9 proteins were identified as proteins that tended to increase or decrease with liver fibrosis with a significance of p<0.005 and that were different between F1-2 patients and F3-4 patients with a significance of p<0.01. Among the 9 proteins, targeted proteomics using serum EVs isolated from the sera of another 80 patients with histologically assessed liver fibrosis verified that serum amyloid P component (SAP) and pro-platelet basic protein (PPBP) levels in EVs significantly decreased with the progression of liver fibrosis and were significantly lower in F3-4 patients than in F1-2 patients. The diagnostic accuracies of SAP and PPBP in EVs for the liver fibrosis stage were comparable to those of type IV collagen 7S, hyaluronic acid, and the fibrosis-4 index (FIB-4 index). Moreover, serum SAP and PPBP levels correlated with the levels in EVs, and the ability of serum SAP and PPBP to diagnose liver fibrosis stage was also comparable to the abilities of type IV collagen 7S, hyaluronic acid, and the FIB-4 index. In conclusion, proteomic analysis of serum EVs identified SAP and PPBP as candidate biomarkers for predicting liver fibrosis in patients with chronic hepatitis C. In addition, SAP and PPBP levels in serum are strongly correlated with those in EVs and could represent markers of liver fibrosis.
Collapse
|
15
|
Futami Y, Takeda Y, Koba T, Narumi R, Nojima Y, Ito M, Nakayama M, Ishida M, Yoshimura H, Naito Y, Fukushima K, Takimoto T, Edahiro R, Matsuki T, Nojima S, Hirata H, Koyama S, Iwahori K, Nagatomo I, Shirai Y, Suga Y, Satoh S, Futami S, Miyake K, Shiroyama T, Inoue Y, Adachi J, Tomonaga T, Ueda K, Kumanogoh A. Identification of CD14 and lipopolysaccharide-binding protein as novel biomarkers for sarcoidosis using proteomics of serum extracellular vesicles. Int Immunol 2022; 34:327-340. [PMID: 35294531 PMCID: PMC9166566 DOI: 10.1093/intimm/dxac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Sarcoidosis is a complex, polygenic, inflammatory granulomatous multi-organ disease of unknown cause. The granulomatous inflammation in sarcoidosis is driven by the interplay between T cells and macrophages. Extracellular vesicles (EVs) play important roles in intercellular communication. We subjected serum EVs, isolated by size exclusion chromatography, from seven patients with sarcoidosis and five control subjects to non-targeted proteomics analysis. Non-targeted, label-free proteomics analysis detected 2292 proteins in serum EVs; 42 proteins were up-regulated in patients with sarcoidosis relative to control subjects; and 324 proteins were down-regulated. The protein signature of EVs from patients with sarcoidosis reflected disease characteristics such as antigen presentation and immunological disease. Candidate biomarkers were further verified by targeted proteomics analysis (selected reaction monitoring) in 46 patients and 10 control subjects. Notably, CD14 and lipopolysaccharide-binding protein (LBP) were validated by targeted proteomics analysis. Up-regulation of these proteins was further confirmed by immunoblotting, and their expression was strongly increased in macrophages of lung granulomatous lesions. Consistent with these findings, CD14 levels were increased in lipopolysaccharide-stimulated macrophages during multinucleation, concomitant with increased levels of CD14 and LBP in EVs. The area under the curve values of CD14 and LBP were 0.81 and 0.84, respectively, and further increased to 0.98 in combination with angiotensin-converting enzyme and soluble interleukin-2 receptor. These findings suggest that CD14 and LBP in serum EVs, which are associated with granulomatous pathogenesis, can improve the diagnostic accuracy in patients with sarcoidosis.
Collapse
Affiliation(s)
- Yu Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yosui Nojima
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mari Ito
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Mimiko Ishida
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hanako Yoshimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kiyoharu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Takimoto
- Department of Respiratory Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Centre, Nagasone-Cho 1180, Kita-Ku, Sakai, Osaka 591-8555, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yoshikazu Inoue
- Clinical Research Centre, National Hospital Organization Kinki-Chuo Chest Medical Centre, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka 591-8555, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Centre, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto, Tokyo 135-8550, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Centre, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
17
|
Liu SY, Liao Y, Hosseinifard H, Imani S, Wen QL. Diagnostic Role of Extracellular Vesicles in Cancer: A Comprehensive Systematic Review and Meta-Analysis. Front Cell Dev Biol 2021; 9:705791. [PMID: 34722499 PMCID: PMC8555429 DOI: 10.3389/fcell.2021.705791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer-derived extracellular vesicles (EVs) are regarded to have significant function in most steps during cancer progression. This meta-analysis aims to investigate the accuracy of EVs as a biomarker in cancer diagnosis. Methods: The diagnostic efficacy of EVs for different cancers was assessed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), and overall area under the curve (AUC) of the summary receiver operating characteristic (SROC). The positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were verified to estimate the diagnostic efficacy of EV at a clinical level. Results: In all, 6,183 cancer patients and 2,437 healthy controls from 75 eligible studies reported in 42 publications were included in the study. The overall pooled sensitivity, specificity, PLR, NLR, and DOR were 0.62 (95% CI: 0.60–0.63), 0.76 (95% CI: 0.75–0.78), 3.07 (95% CI: 2.52–3.75), 0.34 (95% CI: 0.28–0.41), and 10.98 (95% CI: 7.53–16.00), respectively. Similarly, the AUC of the SROC was 0.88, indicating a high conservation of EVs as an early diagnostic marker. Furthermore, subgroup analysis suggested that the use of small EVs as a biomarker was more accurate in serum-based samples of nervous system cancer (p < 0.001). As a result, ultracentrifugation and quantification and size determination methods, such as Western blotting and ELISA were the most reliable identification methods for EV detection. We also indicated that increased secretion of EVs made them a capable biomarker for diagnosing cancer in elderly European individuals. Conclusions: Our study provides evidence that EVs are a promising non-invasive biomarker for cancer diagnosis. Well-designed cohort studies should be conducted to warrant the clinical diagnostic value of EVs.
Collapse
Affiliation(s)
- Shu-Ya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, China
| | - Yin Liao
- Department of Oncology, People's Hospital of Renshou, Meishan, China
| | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Lian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Nahm M, Lim SM, Kim YE, Park J, Noh MY, Lee S, Roh JE, Hwang SM, Park CK, Kim YH, Lim G, Lee J, Oh KW, Ki CS, Kim SH. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci Transl Med 2021; 12:12/566/eaax3993. [PMID: 33087501 DOI: 10.1126/scitranslmed.aax3993] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/15/2019] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation of calcium ion homeostasis and abnormal protein aggregation have been proposed as major pathogenic hallmarks underpinning selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Recently, mutations in annexin A11 (ANXA11), a gene encoding a Ca2+-dependent phospholipid-binding protein, have been identified in familial and sporadic ALS. However, the physiological and pathophysiological roles of ANXA11 remain unknown. Here, we report functions of ANXA11 related to intracellular Ca2+ homeostasis and stress granule dynamics. We analyzed the exome sequences of 500 Korean patients with sALS and identified nine ANXA11 variants in 13 patients. The amino-terminal variants p.G38R and p.D40G within the low-complexity domain of ANXA11 enhanced aggregation propensity, whereas the carboxyl-terminal ANX domain variants p.H390P and p.R456H altered Ca2+ responses. Furthermore, all four variants in ANXA11 underwent abnormal phase separation to form droplets with aggregates and led to the alteration of the biophysical properties of ANXA11. These functional defects caused by ALS-linked variants induced alterations in both intracellular Ca2+ homeostasis and stress granule disassembly. We also revealed that p.G228Lfs*29 reduced ANXA11 expression and impaired Ca2+ homeostasis, as caused by missense variants. Ca2+-dependent interaction and coaggregation between ANXA11 and ALS-causative RNA-binding proteins, FUS and hnRNPA1, were observed in motor neuron cells and brain from a patient with ALS-FUS. The expression of ALS-linked ANXA11 variants in motor neuron cells caused cytoplasmic sequestration of endogenous FUS and triggered neuronal apoptosis. Together, our findings suggest that disease-associated ANXA11 mutations can contribute to ALS pathogenesis through toxic gain-of-function mechanisms involving abnormal protein aggregation.
Collapse
Affiliation(s)
- Minyeop Nahm
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Sanggon Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju Eun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - GyuTae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | | | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea. .,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
19
|
Tsai IJ, Su ECY, Tsai IL, Lin CY. Clinical Assay for the Early Detection of Colorectal Cancer Using Mass Spectrometric Wheat Germ Agglutinin Multiple Reaction Monitoring. Cancers (Basel) 2021; 13:cancers13092190. [PMID: 34063271 PMCID: PMC8124906 DOI: 10.3390/cancers13092190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is currently the third leading cause of cancer death worldwide. Early diagnosis of CRC is important for increasing the opportunity for treatment and receiving a good prognosis. The aim of our study was to develop a detection method that combined wheat germ agglutinin (WGA) chromatography with mass spectrometry (MS) for early detection of CRC. Further, machine learning algorithms and logistic regression were applied to combine multiple biomarkers we discovered. We validated in a population of 286 plasma samples the diagnostic performance of peptides corresponding to WGA-captured protein and its combination, which received a sensitivity of 84.5% and a specificity of 97.5% in the diagnoses of CRC. Proteomic biomarkers combined with algorithms can provide a powerful tool for discriminating patients with CRC and health controls (HCs). Measurements of WGA-captured PF4, ITIH4, and APOE with MS are then useful for early detection of CRC. Additionally, our study revealed the potential of applying lectin chromatography with MS for disease diagnosis. Abstract Colorectal cancer (CRC) is currently the third leading cause of cancer-related mortality in the world. U.S. Food and Drug Administration-approved circulating tumor markers, including carcinoembryonic antigen, carbohydrate antigen (CA) 19-9 and CA125 were used as prognostic biomarkers of CRC that attributed to low sensitivity in diagnosis of CRC. Therefore, our purpose is to develop a novel strategy for novel clinical biomarkers for early CRC diagnosis. We used mass spectrometry (MS) methods such as nanoLC-MS/MS, targeted LC-MS/MS, and stable isotope-labeled multiple reaction monitoring (MRM) MS coupled to test machine learning algorithms and logistic regression to analyze plasma samples from patients with early-stage CRC, late-stage CRC, and healthy controls (HCs). On the basis of our methods, 356 peptides were identified, 6 differential expressed peptides were verified, and finally three peptides corresponding wheat germ agglutinin (WGA)-captured proteins were semi-quantitated in 286 plasma samples (80 HCs and 206 CRCs). The novel peptide biomarkers combination of PF454–62, ITIH4429–438, and APOE198–207 achieved sensitivity 84.5%, specificity 97.5% and an AUC of 0.96 in CRC diagnosis. In conclusion, our study demonstrated that WGA-captured plasma PF454–62, ITIH4429–438, and APOE198–207 levels in combination may serve as highly effective early diagnostic biomarkers for patients with CRC.
Collapse
Affiliation(s)
- I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3326)
| |
Collapse
|
20
|
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci 2021; 112:2033-2045. [PMID: 33721374 PMCID: PMC8088963 DOI: 10.1111/cas.14881] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to discover potential bladder cancer (BCa) biomarkers, however urine contains numerous EVs derived from the kidney and normal urothelial epithelium, which can obfuscate information related to BCa cell-derived EVs. In this study, we combined proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both urinary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of BCa patients (fold change > 2.0; P < .1). Among them, we selected 22 membrane proteins as BCa biomarker candidates for validation using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins (heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate (MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement decay-accelerating factor) were quantified using SRM/MRM analysis and validated as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detection of urinary BCa biomarkers.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kyosuke Matsuzaki
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineSayamaJapan
| | - Takashi Shiromizu
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyOsaka University Graduate School of Pharmaceutical SciencesSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
21
|
Koba T, Takeda Y, Narumi R, Shiromizu T, Nojima Y, Ito M, Kuroyama M, Futami Y, Takimoto T, Matsuki T, Edahiro R, Nojima S, Hayama Y, Fukushima K, Hirata H, Koyama S, Iwahori K, Nagatomo I, Suzuki M, Shirai Y, Murakami T, Nakanishi K, Nakatani T, Suga Y, Miyake K, Shiroyama T, Kida H, Sasaki T, Ueda K, Mizuguchi K, Adachi J, Tomonaga T, Kumanogoh A. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res 2021; 7:00658-2020. [PMID: 33778046 PMCID: PMC7983195 DOI: 10.1183/23120541.00658-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl-peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD. Moreover, six proteins; fibulin-3, tripeptidyl-peptidase 2, UTP-glucose-1-phosphate uridylyl transferase, CD81, CD177, and oncoprotein-induced transcript 3, were correlated with emphysema. Upregulation of fibulin-3 was confirmed by immunoblotting of EVs and immunohistochemistry in lungs. Strikingly, fibulin-3 knockout mice spontaneously developed emphysema with age, as evidenced by alveolar enlargement and elastin destruction. We discovered potential pathogenic biomarkers for COPD using next-generation proteomics of EVs. This is a novel strategy for biomarker discovery and precision medicine. This study identified novel biomarkers for COPD using next-generation proteomics of serum extracellular vesicles. Notably, the expression of fibulin-3 is correlated with lung function and emphysema. This could be useful for personalised medicine.https://bit.ly/2JfRCgk
Collapse
Affiliation(s)
- Taro Koba
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Yosui Nojima
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Ito
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Muneyoshi Kuroyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yu Futami
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Dept of Respiratory Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Kita-Ku, Sakai, Osaka, Japan
| | - Takanori Matsuki
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Nojima
- Dept of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitomo Hayama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mayumi Suzuki
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuya Shirai
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruaki Murakami
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Nakanishi
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Nakatani
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Kida
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takako Sasaki
- Dept of Biochemistry II, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsushi Kumanogoh
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
22
|
Chen X, Sun J, Wang X, Yuan Y, Cai L, Xie Y, Fan Z, Liu K, Jiao X. A Meta-Analysis of Proteomic Blood Markers of Colorectal Cancer. Curr Med Chem 2021; 28:1176-1196. [PMID: 32338203 DOI: 10.2174/0929867327666200427094054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/23/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Early diagnosis will significantly improve the survival rate of colorectal cancer (CRC); however, the existing methods for CRC screening were either invasive or inefficient. There is an emergency need for novel markers in CRC's early diagnosis. Serum proteomics has gained great potential in discovering novel markers, providing markers that reflect the early stage of cancer and prognosis prediction of CRC. In this paper, the results of proteomics of CRC studies were summarized through a meta-analysis in order to obtain the diagnostic efficiency of novel markers. METHODS A systematic search on bibliographic databases was performed to collect the studies that explore blood-based markers for CRC applying proteomics. The detection and validation methods, as well as the specificity and sensitivity of the biomarkers in these studies, were evaluated. Newcastle- Ottawa Scale (NOS) case-control studies version was used for quality assessment of included studies. RESULTS Thirty-four studies were selected from 751 studies, in which markers detected by proteomics were summarized. In total, fifty-nine proteins were classified according to their biological function. The sensitivity, specificity, or AUC varied among these markers. Among them, Mammalian STE20-like protein kinase 1/ Serine threonine kinase 4 (MST1/STK4), S100 calcium-binding protein A9 (S100A9), and Tissue inhibitor of metalloproteinases 1 (TIMP1) were suitable for effect sizes merging, and their diagnostic efficiencies were recalculated after merging. MST1/STK4 obtained a sensitivity of 68% and a specificity of 78%. S100A9 achieved a sensitivity of 72%, a specificity of 83%, and an AUC of 0.88. TIMP1 obtained a sensitivity of 42%, a specificity of 88%, and an AUC of 0.71. CONCLUSION MST1/STK4, S100A9, and TIMP1 showed excellent performance for CRC detection. Several other markers also presented optimized diagnostic efficacy for CRC early detection, but further verification is still needed before they are suitable for clinical use. The discovering of more efficient markers will benefit CRC treatment.
Collapse
Affiliation(s)
- Xiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xue Wang
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yanxuan Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Kaixi Liu
- Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
23
|
Mallia A, Gianazza E, Zoanni B, Brioschi M, Barbieri SS, Banfi C. Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:diagnostics10100843. [PMID: 33086718 PMCID: PMC7588996 DOI: 10.3390/diagnostics10100843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV’s origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.
Collapse
|
24
|
Matsumoto Y, Kano M, Murakami K, Toyozumi T, Suito H, Takahashi M, Sekino N, Shiraishi T, Kamata T, Ryuzaki T, Hirasawa S, Kinoshita K, Matsubara H. Tumor-derived exosomes influence the cell cycle and cell migration of human esophageal cancer cell lines. Cancer Sci 2020; 111:4348-4358. [PMID: 32969511 PMCID: PMC7734159 DOI: 10.1111/cas.14660] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/22/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Our laboratory previously reported the usefulness as biomarkers of exosomes in the plasma of esophageal squamous cell carcinoma (ESCC) patients. However, the influence of tumor‐derived exosomes on the tumor itself and underlying mechanisms remain unclear. We here report changes in the phenotype and gene expression when cancer cells exist in an environment with tumor‐derived exosomes. The exosomes were isolated from the culture medium of human ESCC cells (TE2, T.Tn) by ultracentrifugation; cell proliferation assay, wound‐healing assay, and fluorescence imaging of the cell cycle were performed to clarify the phenotypic changes in the high concentration of tumor‐derived exosomes. Gene expression changes were also assessed by mRNA microarray, and the data were analyzed by gene set enrichment analysis (GSEA). The data revealed that the proliferation of both TE2 and T.Tn was inhibited, and cell migration ability was upregulated in the exosome exposure group (P < .05). Fluorescence imaging using a fluorescent ubiquitination‐based cell cycle indicator expressing ESCC cells revealed that the ratio of G1‐phase cells was significantly increased in the exosome exposure group (P < .05). Findings of the GSEA clarified that high‐density exposure of cancer‐derived exosomes to their parent cancer cells downregulated the expression of genes related to cell proliferation and cell cycle, and upregulated the expression of genes related to actin filament length and extracellular structure organization. In conclusion, an environment of high‐density tumor‐derived exosomes induces changes in the gene expression and phenotype of tumor cells and may lead to tumor progression or malignant transformation.
Collapse
Affiliation(s)
- Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Shiraishi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiki Kamata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiro Ryuzaki
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
25
|
Kumar V, Ray S, Ghantasala S, Srivastava S. An Integrated Quantitative Proteomics Workflow for Cancer Biomarker Discovery and Validation in Plasma. Front Oncol 2020; 10:543997. [PMID: 33072574 PMCID: PMC7538778 DOI: 10.3389/fonc.2020.543997] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Blood plasma is one of the most widely used samples for cancer biomarker discovery research as well as clinical investigations for diagnostic and therapeutic purposes. However, the plasma proteome is extremely complex due to its wide dynamic range of protein concentrations and the presence of high-abundance proteins. Here we have described an optimized, integrated quantitative proteomics pipeline combining the label-free and multiplexed-labeling-based (iTRAQ and TMT) plasma proteome profiling methods for biomarker discovery, followed by the targeted approaches for validation of the identified potential marker proteins. In this workflow, the targeted quantitation of proteins is carried out by multiple-reaction monitoring (MRM) and parallel-reaction monitoring (PRM) mass spectrometry. Thus, our approach enables both unbiased screenings of biomarkers and their subsequent selective validation in human plasma. The overall procedure takes only ~2 days to complete, including the time for data acquisition (excluding database searching). This protocol is quick, flexible, and eliminates the need for a separate immunoassay-based validation workflow in blood cancer biomarker investigations. We anticipate that this plasma proteomics workflow will help to accelerate the cancer biomarker discovery program and provide a valuable resource to the cancer research community.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saicharan Ghantasala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
26
|
Yu J, Dong W, Liang J. Extracellular Vesicle-Transported Long Non-Coding RNA (LncRNA) X Inactive-Specific Transcript (XIST) in Serum is a Potential Novel Biomarker for Colorectal Cancer Diagnosis. Med Sci Monit 2020; 26:e924448. [PMID: 32843612 PMCID: PMC7448689 DOI: 10.12659/msm.924448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Colorectal cancer (CRC) cell-derived extracellular vesicles (EVs) contribute to tumor progression. Differentially expressed long non-coding (lnc)RNAs may serve as biomarkers for CRC diagnosis. This study aimed to discuss the diagnostic value of serum EV-derived lncRNA X inactive-specific transcript (XIST) in CRC. Material/Methods Serum EVs were extracted and identified. Microarray analysis was performed to screen out the differentially expressed lncRNAs in serum EVs. The expression and diagnostic efficacy of the most differentially expressed lncRNA were measured. Kaplan-Meier survival analysis was performed to evaluate the association between survival time and XIST expression in EVs. The expression profile of serum EV-carried XIST in 94 CRC patients with different tumor-node-metastasis stages, lymph node metastasis, and differentiation was assessed. The serum contents of CEA, CA242, CA199, and CA153 were measured. Results XIST in serum EVs in CRC patients was upregulated, with greatest diagnostic value. CRC patients with higher expression of XIST in serum EVs had worse 5-year survival rates and shorter life cycles, lower differentiation, higher lymph node metastasis, and tumor-node-metastasis than patients with lower XIST expression. XIST expression in serum EVs was positively correlated with CRC marker contents. Conclusions XIST upregulation in serum EVs is related to CRC progression, which may be helpful to the clinical diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Jinfeng Yu
- Department of General Medicine, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Weiwei Dong
- Department of Medical, Jinan First People's Hospital, Jinan, Shandong, China (mainland)
| | - Jianxiao Liang
- Department of Radiology, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
27
|
Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, Liu J, Wu SY, Chiang CM, Kutateladze TG, D'Orso I. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell 2020; 78:1133-1151.e14. [PMID: 32402252 PMCID: PMC7305985 DOI: 10.1016/j.molcel.2020.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023]
Abstract
Precise control of the RNA polymerase II (RNA Pol II) cycle, including pausing and pause release, maintains transcriptional homeostasis and organismal functions. Despite previous work to understand individual transcription steps, we reveal a mechanism that integrates RNA Pol II cycle transitions. Surprisingly, KAP1/TRIM28 uses a previously uncharacterized chromatin reader cassette to bind hypo-acetylated histone 4 tails at promoters, guaranteeing continuous progression of RNA Pol II entry to and exit from the pause state. Upon chromatin docking, KAP1 first associates with RNA Pol II and then recruits a pathway-specific transcription factor (SMAD2) in response to cognate ligands, enabling gene-selective CDK9-dependent pause release. This coupling mechanism is exploited by tumor cells to aberrantly sustain transcriptional programs commonly dysregulated in cancer patients. The discovery of a factor integrating transcription steps expands the functional repertoire by which chromatin readers operate and provides mechanistic understanding of transcription regulation, offering alternative therapeutic opportunities to target transcriptional dysregulation.
Collapse
Affiliation(s)
- Curtis W Bacon
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biological Chemistry Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi N Borkar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Juan Bayo
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires 1629, Argentina
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Schou AS, Nielsen JE, Askeland A, Jørgensen MM. Extracellular vesicle-associated proteins as potential biomarkers. Adv Clin Chem 2020; 99:1-48. [PMID: 32951635 DOI: 10.1016/bs.acc.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Every cell in the body secretes extracellular vesicles (EVs) possibly as cellular signaling components and these cell-derivatives can be found in multiple numbers in biological fluids. EVs have in the scientific field received great attention in relation to pathophysiology and disease diagnostics. Altered protein expressions associated with circulating EVs in diseased individuals can serve as biomarkers for different disease states. This capacity paves the way for non-invasive screening tools and early diagnostic markers. However, no isolation method of EVs has been acknowledged as the "golden standard," thus reproducibility of the studies remains inadequate. Increasing interest in EV proteins as disease biomarkers could give rise to more scientific knowledge with diagnostic applicability. In this chapter, studies of proteins believed to be associated with EVs within cancer, autoimmunity, metabolic and neurodegenerative diseases have been outlined.
Collapse
Affiliation(s)
- Anne Sophie Schou
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
29
|
Similarities in the General Chemical Composition of Colon Cancer Cells and Their Microvesicles Investigated by Spectroscopic Methods-Potential Clinical Relevance. Int J Mol Sci 2020; 21:ijms21051826. [PMID: 32155840 PMCID: PMC7084448 DOI: 10.3390/ijms21051826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Colon cancer constitutes 33% of all cancer cases in humans and the majority of patients with metastatic colon cancer still have poor prognosis. An important role in cancer development is the communication between cancer and normal cells. This may occur, among others, through extracellular vesicles (including microvesicles) (MVs), which are being released by both types of cells. MVs may regulate a diverse range of biological processes and are considered as useful cancer biomarkers. Herein, we show that similarity in the general chemical composition between colon cancer cells and their corresponding tumor-derived microvesicles (TMVs) does exist. These results have been confirmed by spectroscopic methods for four colon cancer cell lines: HCT116, LoVo, SW480, and SW620 differing in their aggressiveness/metastatic potential. Our results show that Raman and Fourier Transform InfraRed (FTIR) analysis of the cell lines and their corresponding TMVs did not differ significantly in the characterization of their chemical composition. However, hierarchical cluster analysis of the data obtained by both of the methods revealed that only Raman spectroscopy provides results that are in line with the molecular classification of colon cancer, thus having potential clinical relevance.
Collapse
|
30
|
Gawel DR, Lee EJ, Li X, Lilja S, Matussek A, Schäfer S, Olsen RS, Stenmarker M, Zhang H, Benson M. An algorithm-based meta-analysis of genome- and proteome-wide data identifies a combination of potential plasma biomarkers for colorectal cancer. Sci Rep 2019; 9:15575. [PMID: 31666584 PMCID: PMC6821706 DOI: 10.1038/s41598-019-51999-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Screening programs for colorectal cancer (CRC) often rely on detection of blood in stools, which is unspecific and leads to a large number of colonoscopies of healthy subjects. Painstaking research has led to the identification of a large number of different types of biomarkers, few of which are in general clinical use. Here, we searched for highly accurate combinations of biomarkers by meta-analyses of genome- and proteome-wide data from CRC tumors. We focused on secreted proteins identified by the Human Protein Atlas and used our recently described algorithms to find optimal combinations of proteins. We identified nine proteins, three of which had been previously identified as potential biomarkers for CRC, namely CEACAM5, LCN2 and TRIM28. The remaining proteins were PLOD1, MAD1L1, P4HA1, GNS, C12orf10 and P3H1. We analyzed these proteins in plasma from 80 patients with newly diagnosed CRC and 80 healthy controls. A combination of four of these proteins, TRIM28, PLOD1, CEACAM5 and P4HA1, separated a training set consisting of 90% patients and 90% of the controls with high accuracy, which was verified in a test set consisting of the remaining 10%. Further studies are warranted to test our algorithms and proteins for early CRC diagnosis.
Collapse
Affiliation(s)
- Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Division of Psychiatrics & Rehabilitation & Diagnostics, Region Jönköping County, Jönköping, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Renate Slind Olsen
- Pathology Laboratory, Division of Psychiatrics & Rehabilitation & Diagnostics, Region Jönköping County, Jönköping, Sweden.,Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Margaretha Stenmarker
- Department of Paediatrics, Jönköping, Region Jönköping County, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
32
|
An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids. Molecules 2019; 24:molecules24193516. [PMID: 31569778 PMCID: PMC6803898 DOI: 10.3390/molecules24193516] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer enclosed particles which present in almost all types of biofluids and contain specific proteins, lipids, and RNA. Increasing evidence has demonstrated the tremendous clinical potential of EVs as diagnostic and therapeutic tools, especially in biofluids, since they can be detected without invasive surgery. With the advanced mass spectrometry (MS), it is possible to decipher the protein content of EVs under different physiological and pathological conditions. Therefore, MS-based EV proteomic studies have grown rapidly in the past decade for biomarker discovery. This review focuses on the studies that isolate EVs from different biofluids and contain MS-based proteomic analysis. Literature published in the past decade (2009.1-2019.7) were selected and summarized with emphasis on isolation methods of EVs and MS analysis strategies, with the aim to give an overview of MS-based EV proteomic studies and provide a reference for future research.
Collapse
|
33
|
Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. JOURNAL OF ONCOLOGY 2019; 2019:1639854. [PMID: 31281356 PMCID: PMC6590542 DOI: 10.1155/2019/1639854] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Extracellular Vesicles (EVs) are small membrane-enclosed particles released by cells and able to vehiculate information between them. The term EVs categorizes many and different vesicles based on their biogenesis and release pathway, such as exosomes (Exo), ectosomes, or shedding microvesicles (SMVs), apoptotic blebs (ABs), and other EVs subsets, generating a heterogeneous group of components able to redistribute their cargo into the entire organism. Moreover EVs are becoming increasingly important in monitoring cancer progression and therapy, since they are able to carry specific disease biomarkers such as Glypican-1, colon cancer-associated transcript 2, CD63, CD24, and many others. The importance of their biological role together with their heterogeneity prompted researchers to adopt and standardize purification methods able to isolate EVs for characterizing their cargo. In this way, mass spectrometry (MS)-based proteomics approaches are emerging as promising tool for the identification and quantification of EVs protein cargoes, but this technique resulted to be deeply influenced by the low quality of the isolation techniques. This review presents the state-of-the-art of EVs isolation, purification, and characterization for omics studies, with a particular focus to their potential use in monitoring cancer progression and therapy.
Collapse
|
34
|
Li X, Ding L, Li X, Zhu H, Gashash EA, Li Z, Wang PG, Ma C. An integrated proteomic and glycoproteomic study for differences on glycosylation occupancy in rheumatoid arthritis. Anal Bioanal Chem 2019; 411:1331-1338. [DOI: 10.1007/s00216-018-1543-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023]
|
35
|
Wu AYT, Ueda K, Lai CPK. Proteomic Analysis of Extracellular Vesicles for Cancer Diagnostics. Proteomics 2019; 19:e1800162. [PMID: 30334355 DOI: 10.1002/pmic.201800162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) including exosomes and microvesicles are lipid bilayer-encapsulated nanoparticles released by cells, ranging from 40 nm to several microns in diameter. Biological cargoes including proteins, RNAs, and DNAs can be ferried by EVs to neighboring and distant cells via biofluids, serving as a means of cell-to-cell communication under normal and pathological conditions, especially cancers. On the other hand, EVs have been investigated as a novel "information capsule" for early disease detection and monitoring via liquid biopsy. This review summarizes current advancements in EV subtype characterization, cancer EV capture, proteomic analysis technologies, as well as possible EV-based multiomics for cancer diagnostics.
Collapse
Affiliation(s)
- Anthony Yan-Tang Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Japan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Gene expression profile analysis of colon cancer grade II into grade III transition by using system biology. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:60-66. [PMID: 30949321 PMCID: PMC6441480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Gene expression profile analysis of colon cancer grade II into grade III transition by using system biology. BACKGROUND Colon cancer is one of lethal cancer in men and women. Treatment in advanced colon cancer is difficult and survival rate is low. METHODS Gene expression profiles of children patients with non-preforated appendicitis in comparison with the samples with non- appendicitis abdominal pain are analysis via protein - protein interaction PPI and the critical compounds are introduced by STITCH. RESULTS Six critical genes including MAPK3, AKT1, SRC, TP53, GAPDH, and ALB were identified as a possible biomarker panel related to colon cancer grade II to III transition. Among these critical genes roles of MAPK3, AKT1, SRC, TP53 are highlighted. CONCLUSION It was concluded that target therapy to regulate SRC and TP53 may be the effective therapeutic way to treatment of colon cancer and more researches in necessary to design drugs for these purposes.
Collapse
|
37
|
Affiliation(s)
- Ravi Shah
- From the Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (R.S.), and the University of Massachusetts Medical School, Worcester (J.E.F.) - both in Massachusetts; and the Department of Transplantation, Mayo Clinic, Jacksonville, FL (T.P.)
| | - Tushar Patel
- From the Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (R.S.), and the University of Massachusetts Medical School, Worcester (J.E.F.) - both in Massachusetts; and the Department of Transplantation, Mayo Clinic, Jacksonville, FL (T.P.)
| | - Jane E Freedman
- From the Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (R.S.), and the University of Massachusetts Medical School, Worcester (J.E.F.) - both in Massachusetts; and the Department of Transplantation, Mayo Clinic, Jacksonville, FL (T.P.)
| |
Collapse
|
38
|
Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Anal Bioanal Chem 2018; 410:6371-6386. [PMID: 29974151 DOI: 10.1007/s00216-018-1219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Abstract
Lifestyle optimizations are implementable changes that can have an impact on health and disease. Nutrition is a lifestyle optimization that has been shown to be of great importance in cancer initiation, progression, and metastasis. Dozens of clinical trials are currently in progress that focus on the nutritional modifications that cancer patients can make prior to and during medical care that increase the efficacy of treatment. In this review, we discuss various nutritional inventions for cancer patients and the analytical approaches to characterize the downstream molecular effects. We first begin by briefly explaining the many different forms of nutritional intervention currently being used in cancer treatment as well as their motivating biology. The forms of nutrient modulation described in this review include calorie restriction, the different practices of fasting, and carbohydrate restriction. The review then shifts to explain how proteomics is used to determine biomarkers of cancer and how it can be utilized in the future to determine the metabolic phenotype of a tumor, and inform physicians if nutritional intervention should be recommended for a cancer patient. Nutrigenomics aims to understand the relationship of nutrients and gene expression and can be used to understand the downstream molecular effects of nutrition restriction, partially through proteomic analysis. Proteomics is just beginning to be used as cancer diagnostic and predictive tools. However, these approaches have not been used to their full potential to understand nutritional intervention in cancer. Graphical abstract ᅟ.
Collapse
|
39
|
Low serum Kallistatin level was associated with poor neurological outcome of out-of-hospital cardiac arrest survivors: Proteomics study. Resuscitation 2018; 128:6-10. [DOI: 10.1016/j.resuscitation.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/02/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
|
40
|
Lee PY, Chin SF, Low TY, Jamal R. Probing the colorectal cancer proteome for biomarkers: Current status and perspectives. J Proteomics 2018; 187:93-105. [PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia.
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|