1
|
Xu Y, Ou J, Zhang C, Chen J, Chen J, Li A, Huang B, Zhao X. Rapamycin promotes the intestinal barrier repair in ulcerative colitis via the mTOR/PBLD/AMOT signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167287. [PMID: 38862095 DOI: 10.1016/j.bbadis.2024.167287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Intestinal barrier dysfunction characterized by the functional loss of the intestinal epithelium's tight junction (TJ) barrier is a key factor in the pathogenesis of ulcerative colitis (UC). Although rapamycin, an mTOR (mechanistic target of rapamycin) inhibitor, has shown promise in inducing clinical remission and mucosal healing in inflammatory bowel disease, its underlying mechanism remains elusive. Thus, this study investigated the role of the mTOR pathway in regulating the intestinal barrier. To investigate the molecular mechanism regulating the intestinal barrier, specific intestinal epithelial phenazine biosynthesis-like domain-containing protein (PBLD)-deficient (PBLDIEC-/-) mice and control wild-type (WT) mice were intraperitoneally injected with rapamycin or MHY1485. To determine the relevance of the findings for UC, we analyzed transcriptome data and single-cell expression profiles from public databases and intestinal mucosal tissues obtained from patients with active UC or colon cancer. We observed that mTOR activation in the intestinal epithelium of patients with active UC. Moreover, in vivo, rapamycin markedly increased the expressions of PBLD and TJ proteins and reduced intestinal inflammation in mice with dextran sulfate sodium-induced enteritis. However, the therapeutic efficacy of rapamycin was notably reduced in PBLDIEC-/- mice. In vitro, rapamycin influenced PBLD expression by modulating the nuclear transcription of transcription factor EB (TFEB). Angiomotin (AMOT) could directly bind to PBLD, and rapamycin could not effectively increase the expression of TJ proteins after the knockdown of PBLD or AMOT. In summary, the administration of rapamycin is a potential treatment for UC, and targeting the mTOR/PBLD/AMOT axis is a potential novel approach for UC treatment.
Collapse
Affiliation(s)
- Yan Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jinyuan Ou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Chuhong Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jiayue Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| | - Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| |
Collapse
|
2
|
Losby M, Hayes M, Valfort A, Sopariwala DH, Sanders R, Walker JK, Xu W, Narkar VA, Zhang L, Billon C, Burris TP. The Estrogen Receptor-Related Orphan Receptors Regulate Autophagy through TFEB. Mol Pharmacol 2024; 106:164-172. [PMID: 39168657 PMCID: PMC11413914 DOI: 10.1124/molpharm.124.000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Autophagy is an essential self-degradative and recycling mechanism that maintains cellular homeostasis. Estrogen receptor-related orphan receptors (ERRs) are fundamental in regulating cardiac metabolism and function. Previously, we showed that ERR agonists improve cardiac function in models of heart failure and induce autophagy. Here, we characterized a mechanism by which ERRs induce the autophagy pathway in cardiomyocytes. Transcription factor EB (TFEB) is a master regulator of the autophagy-lysosome pathway and has been shown to be crucial regulator of genes that control autophagy. We discovered that TFEB is a direct ERR target gene whose expression is induced by ERR agonists. Activation of ERR results in increased TFEB expression in both neonatal rat ventricular myocytes and C2C12 myoblasts. An ERR-dependent increase in TFEB expression results in increased expression of an array of TFEB target genes, which are critical for the stimulation of autophagy. Pharmacologically targeting ERR is a promising potential method for the treatment of many diseases where stimulation of autophagy may be therapeutic, including heart failure. SIGNIFICANCE STATEMENT: Estrogen receptor-related receptor agonists function as exercise mimetics and also display efficacy in animal models of metabolic disease, obesity, and heart failure.
Collapse
Affiliation(s)
- McKenna Losby
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Matthew Hayes
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Aurore Valfort
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Danesh H Sopariwala
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Ryan Sanders
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - John K Walker
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Weiyi Xu
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Vihang A Narkar
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Lilei Zhang
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Cyrielle Billon
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| | - Thomas P Burris
- Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
| |
Collapse
|
3
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
4
|
Kudo K, Ranasinghe KG, Morise H, Syed F, Sekihara K, Rankin KP, Miller BL, Kramer JH, Rabinovici GD, Vossel K, Kirsch HE, Nagarajan SS. Neurophysiological trajectories in Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541379. [PMID: 37293044 PMCID: PMC10245777 DOI: 10.1101/2023.05.18.541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Kamalini G Ranasinghe
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Faatimah Syed
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | | | - Katherine P Rankin
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Keith Vossel
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
5
|
Jin X, You L, Qiao J, Han W, Pan H. Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. Autophagy 2024; 20:242-258. [PMID: 37723664 PMCID: PMC10813649 DOI: 10.1080/15548627.2023.2259214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
ABBREVIATIONS A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.
Collapse
Affiliation(s)
- Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
7
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin interaction dynamic measurements for key components of the RNA Pol II general transcription machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550532. [PMID: 37546819 PMCID: PMC10402067 DOI: 10.1101/2023.07.25.550532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them. Results We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. Conclusions The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA 22908
| | - Savera J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Elizabeth A. Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
8
|
Xu M, Ling F, Li J, Chen Y, Li S, Cheng Y, Zhu L. Oat beta-glucan reduces colitis by promoting autophagy flux in intestinal epithelial cells via EPHB6-TFEB axis. Front Pharmacol 2023; 14:1189229. [PMID: 37441529 PMCID: PMC10333523 DOI: 10.3389/fphar.2023.1189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of the gastrointestinal tract, mainly including Crohn's disease and ulcerative colitis. Epidemiological findings suggest that inadequate dietary fibers intake may be a risk factor for IBD. Oat beta-glucan is a type of fermentable dietary fiber and has been proved to reduce experimental colitis. However, the mechanism remains unclear. The aim of this study was to explore the role and possible mechanism of oat beta-glucan in reducing experimental colitis. We used a dextran sulfate sodium (DSS)-induced mice acute colitis model to explore the potential mechanism of oat beta-glucan in reducing experimental colitis. As a result, oat beta-glucan upregulated the expressions of Erythropoietin-producing hepatocyte receptor B6 (EPHB6) and transcription factor EB (TFEB), promoted autophagy flux and downregulated the expressions of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in intestinal epithelial cells (IECs). The role of the EPHB6-TFEB axis was explored using a lipopolysaccharide-induced HT-29 cells inflammation model. The results revealed that EPHB6 regulated the expression of TFEB, and knockdown of EPHB6 decreased the protein level of TFEB. When EPHB6 or TFEB was knocked down, autophagy flux was inhibited, and the anti-inflammatory effect of sodium butyrate, a main metabolite of oat beta-glucan in the gut, was blocked. In summary, our findings demonstrated that oat beta-glucan reduced DSS-induced acute colitis in mice, promoted autophagy flux via EPHB6-TFEB axis and downregulated the expressions of IL-1β, IL-6 and TNF-α in IECs, and this effect may be mediated by butyrate.
Collapse
|
9
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. CORE CONSERVED TRANSCRIPTIONAL REGULATORY NETWORKS DEFINE THE INVASIVE TROPHOBLAST CELL LINEAGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534962. [PMID: 37066272 PMCID: PMC10103937 DOI: 10.1101/2023.03.30.534962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The invasive trophoblast cell lineage in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model to study hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus (sn) ATAC-seq data from gestation day (gd) 15.5 and 19.5 rat uterine-placental interface tissues and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells, and compared invasive trophoblast chromatin accessibility to extravillous trophoblast (EVT) cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO, 64108
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| |
Collapse
|
10
|
Lal NK, Le P, Aggarwal S, Zhang A, Wang K, Qi T, Pang Z, Yang D, Nudell V, Yeo GW, Banks AS, Ye L. Xiphoid nucleus of the midline thalamus controls cold-induced food seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533067. [PMID: 36993706 PMCID: PMC10055253 DOI: 10.1101/2023.03.16.533067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maintaining body temperature is calorically expensive for endothermic animals. Mammals eat more in the cold to compensate for energy expenditure, but the neural mechanism underlying this coupling is not well understood. Through behavioral and metabolic analyses, we found that mice dynamically switch between energy conservation and food-seeking states in the cold, the latter of which is primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we use whole-brain cFos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes in cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons recapitulated cold-induced feeding, whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch promoting food-seeking behaviors in cold but not warm conditions. Furthermore, these behaviors are mediated by a Xi to nucleus accumbens projection. Our results establish Xi as a key region for controlling cold-induced feeding, an important mechanism for maintaining energy homeostasis in endothermic animals.
Collapse
|
11
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
12
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
13
|
Invading Bacterial Pathogens Activate Transcription Factor EB in Epithelial Cells through the Amino Acid Starvation Pathway of mTORC1 Inhibition. Mol Cell Biol 2022; 42:e0024122. [PMID: 36005752 PMCID: PMC9476939 DOI: 10.1128/mcb.00241-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon pathogen infection, intricate innate signaling cascades are induced to initiate the transcription of immune effectors, including cytokines and chemokines. Transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy genes, was found recently to be a novel regulator of innate immunity in both Caenorhabditis elegans and mammals. Despite TFEB participating in critical mechanisms of pathogen recognition and in the transcriptional response to infection in mammalian macrophages, little is known about its roles in the infected epithelium or infected nonimmune cells in general. Here, we demonstrate that TFEB is activated in nonimmune cells upon infection with bacterial pathogens through a pathway dependent on mTORC1 inhibition and RAG-GTPase activity, reflecting the importance of membrane damage and amino acid starvation responses during infection. Additionally, we present data demonstrating that although TFEB does not affect bacterial killing or load in nonimmune cells, it alters the host transcriptome upon infection, thus promoting an antibacterial transcriptomic landscape. Elucidating the roles of TFEB in infected nonimmune cells and the upstream signaling cascade provides critical insight into understanding how cells recognize and respond to bacterial pathogens.
Collapse
|
14
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
TFEB Biology and Agonists at a Glance. Cells 2021; 10:cells10020333. [PMID: 33562649 PMCID: PMC7914707 DOI: 10.3390/cells10020333] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a critical regulator of cellular survival, differentiation, development, and homeostasis, dysregulation of which is associated with diverse diseases including cancer and neurodegenerative diseases. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy and lysosome, can enhance autophagic and lysosomal biogenesis and function. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of disease models, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. Therefore, TFEB agonists are a promising strategy to ameliorate diseases implicated with autophagy dysfunction. Recently, several TFEB agonists have been identified and preclinical or clinical trials are applied. In this review, we present an overview of the latest research on TFEB biology and TFEB agonists.
Collapse
|
17
|
Martina JA, Guerrero‐Gómez D, Gómez‐Orte E, Antonio Bárcena J, Cabello J, Miranda‐Vizuete A, Puertollano R. A conserved cysteine-based redox mechanism sustains TFEB/HLH-30 activity under persistent stress. EMBO J 2021; 40:e105793. [PMID: 33314217 PMCID: PMC7849306 DOI: 10.15252/embj.2020105793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization. TFEB oligomers display increased resistance to mTORC1-mediated inactivation and are more stable under prolonged stress conditions. Mutation of the only cysteine residue present in HLH-30 (C284) significantly reduced its activity, resulting in developmental defects and increased pathogen susceptibility in worms. Therefore, cysteine oxidation represents a new type of TFEB post-translational modification that functions as a molecular switch to link changes in redox balance with expression of TFEB/HLH-30 target genes.
Collapse
Affiliation(s)
- José A Martina
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - David Guerrero‐Gómez
- Redox Homeostasis GroupInstituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Eva Gómez‐Orte
- Centro de Investigación Biomédica de la Rioja (CIBIR)LogroñoSpain
| | - José Antonio Bárcena
- Department of Biochemistry and Molecular BiologyUniversity of Córdoba and Córdoba Maimónides Institute for Biomedical Research (IMIBIC)CórdobaSpain
| | - Juan Cabello
- Centro de Investigación Biomédica de la Rioja (CIBIR)LogroñoSpain
| | - Antonio Miranda‐Vizuete
- Redox Homeostasis GroupInstituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
18
|
Kim S, Lee JY, Shin SG, Kim JK, Silwal P, Kim YJ, Shin NR, Kim PS, Won M, Lee SH, Kim SY, Sasai M, Yamamoto M, Kim JM, Bae JW, Jo EK. ESRRA (estrogen related receptor alpha) is a critical regulator of intestinal homeostasis through activation of autophagic flux via gut microbiota. Autophagy 2020; 17:2856-2875. [PMID: 33172329 DOI: 10.1080/15548627.2020.1847460] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The orphan nuclear receptor ESRRA (estrogen related receptor alpha) is critical in mitochondrial biogenesis and macroautophagy/autophagy function; however, the roles of ESRRA in intestinal function remain uncharacterized. Herein we identified that ESRRA acts as a key regulator of intestinal homeostasis by amelioration of colonic inflammation through activation of autophagic flux and control of host gut microbiota. Esrra-deficient mice presented with increased susceptibility to dextran sodium sulfate (DSS)-induced colitis with upregulation of intestinal inflammation. In addition, esrra-null mice had depressed AMP-activated protein kinase phosphorylation (AMPK), lower levels of TFEB (transcription factor EB), and accumulation of SQSTM1/p62 (sequestosome 1) with defective mitochondria in intestinal tissues. Esrra-deficient mice showed distinct gut microbiota composition and significantly higher microbial diversity than wild-type (WT) mice. Cohousing or fecal microbiota transplantation from WT mice to Esrra-deficient mice ameliorated DSS-induced colitis severity. Importantly, patients with ulcerative colitis (UC) had significantly decreased ESRRA expression in intestinal mucosal tissues that correlated with disease activity, suggesting clinical relevance of ESRRA in UC. Taken together, our results show that ESRRA contributes to intestinal homeostasis through autophagy activation and gut microbiota control to protect the host from detrimental inflammation and dysfunctional mitochondria.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Seul Gi Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Na-Ri Shin
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Chungcheongbuk-do Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Chungbuk, Korea
| | - Soo Yeon Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon Korea
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea.,Pathology and.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| |
Collapse
|
19
|
Carey KL, Paulus GLC, Wang L, Balce DR, Luo JW, Bergman P, Ferder IC, Kong L, Renaud N, Singh S, Kost-Alimova M, Nyfeler B, Lassen KG, Virgin HW, Xavier RJ. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep 2020; 33:108371. [PMID: 33176151 DOI: 10.1016/j.celrep.2020.108371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues. Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and infectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find TFEB targets that protect cells from or sensitize cells to lysosomal cell death. BHLHE40 and BHLHE41, genes responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this negative feedback to the current understanding of TFEB regulatory mechanisms.
Collapse
Affiliation(s)
- Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingfei Wang
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica W Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Bergman
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ianina C Ferder
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria Kost-Alimova
- Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kara G Lassen
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
TGF-β promotes fetal gene expression and cell migration velocity in a wound repair model of untransformed intestinal epithelial cells. Biochem Biophys Res Commun 2020; 524:533-541. [PMID: 32014254 DOI: 10.1016/j.bbrc.2020.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022]
Abstract
The early-phase wound repair response of the intestinal epithelium is characterized by rapid and organized cell migration. This response is regulated by several humoral factors, including TGF-β. However, due to a lack of appropriate models, the precise response of untransformed intestinal epithelial cells (IECs) to those factors is unclear. In this study, we established an in vitro wound repair model of untransformed IECs, based on native type-I collagen. In our system, IECs formed a uniform monolayer in a two-chamber culture insert and displayed a stable wound repair response. Gene expression analysis revealed significant induction of Apoa1, Apoa4, and Wnt4 during the collagen-guided wound repair response. The wound repair response was enhanced significantly by the addition of TGF-β. Surprisingly, addition of TGF-β induced a set of genes, including Slc28a2, Tubb2a, and Cpe, that were expressed preferentially in fetal IECs. Moreover, TGF-β significantly increased the peak velocity of migrating IECs and, conversely, reduced the time required to reach the peak velocity, as confirmed by the motion vector prediction (MVP) method. Our current in vitro system could be employed to assess other humoral factors involved in IEC migration and could contribute to a deeper understanding of the wound repair potentials of untransformed IECs.
Collapse
|
21
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
22
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
23
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
24
|
Roles of Autophagy-Related Genes in the Pathogenesis of Inflammatory Bowel Disease. Cells 2019; 8:cells8010077. [PMID: 30669622 PMCID: PMC6356351 DOI: 10.3390/cells8010077] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular catabolic process that is essential for a variety of cellular responses. Due to its role in the maintenance of biological homeostasis in conditions of stress, dysregulation or disruption of autophagy may be linked to human diseases such as inflammatory bowel disease (IBD). IBD is a complicated inflammatory colitis disorder; Crohn’s disease and ulcerative colitis are the principal types. Genetic studies have shown the clinical relevance of several autophagy-related genes (ATGs) in the pathogenesis of IBD. Additionally, recent studies using conditional knockout mice have led to a comprehensive understanding of ATGs that affect intestinal inflammation, Paneth cell abnormality and enteric pathogenic infection during colitis. In this review, we discuss the various ATGs involved in macroautophagy and selective autophagy, including ATG16L1, IRGM, LRRK2, ATG7, p62, optineurin and TFEB in the maintenance of intestinal homeostasis. Although advances have been made regarding the involvement of ATGs in maintaining intestinal homeostasis, determining the precise contribution of autophagy has remained elusive. Recent efforts based on direct targeting of ATGs and autophagy will further facilitate the development of new therapeutic opportunities for IBD.
Collapse
|
25
|
Puertollano R, Ferguson SM, Brugarolas J, Ballabio A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J 2018; 37:embj.201798804. [PMID: 29764979 DOI: 10.15252/embj.201798804] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
The MiT-TFE family of basic helix-loop-helix leucine-zipper transcription factors includes four members: TFEB, TFE3, TFEC, and MITF Originally described as oncogenes, these factors play a major role as regulators of lysosome biogenesis, cellular energy homeostasis, and autophagy. An important mechanism by which these transcription factors are regulated involves their shuttling between the surface of lysosomes, the cytoplasm, and the nucleus. Such dynamic changes in subcellular localization occur in response to nutrient fluctuations and various forms of cell stress and are mediated by changes in the phosphorylation of multiple conserved amino acids. Major kinases responsible for MiT-TFE protein phosphorylation include mTOR, ERK, GSK3, and AKT In addition, calcineurin de-phosphorylates MiT-TFE proteins in response to lysosomal calcium release. Thus, through changes in the phosphorylation state of MiT-TFE proteins, lysosome function is coordinated with the cellular metabolic state and cellular demands. This review summarizes the evidence supporting MiT-TFE regulation by phosphorylation at multiple key sites. Elucidation of such regulatory mechanisms is of fundamental importance to understand how these transcription factors contribute to both health and disease.
Collapse
Affiliation(s)
- Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shawn M Ferguson
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA .,Hematology-Oncology Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy .,Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|