1
|
Quevarec L, Brasseur G, Aragnol D, Robaglia C. Tracking the early events of photosymbiosis evolution. TRENDS IN PLANT SCIENCE 2024; 29:406-412. [PMID: 38016867 DOI: 10.1016/j.tplants.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Oxygenic photosynthesis evolved in cyanobacteria around 3.2 giga-annum (Ga) ago and was acquired by eukaryotes starting around 1.8 Ga ago by endosymbiosis. Photosymbiosis results either from integration of a photosynthetic bacteria by heterotrophic eukaryotes (primary photosymbiosis) or by successive integration of photosymbiotic eukaryotes by heterotrophic eukaryotes (secondary photosymbiosis). Primary endosymbiosis is thought to have been a rare event, whereas secondary and higher-order photosymbiosis evolved multiple times independently in different taxa. Despite its recurrent evolution, the molecular and cellular mechanisms underlying photosymbiosis are unknown. In this opinion, we discuss the primary events leading to the establishment of photosymbiosis, and we present recent research suggesting that, in some cases, domestication occurred instead of symbiosis, and how oxygen and host immunity can be involved in symbiont maintenance.
Collapse
Affiliation(s)
- Loïc Quevarec
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France; Laboratoire de Chimie Bactérienne, IMM, CNRS, Aix-Marseille Université, 13402 Marseille, France
| | - Gaël Brasseur
- Laboratoire de Chimie Bactérienne, IMM, CNRS, Aix-Marseille Université, 13402 Marseille, France
| | - Denise Aragnol
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France.
| |
Collapse
|
2
|
Jacobovitz MR, Hambleton EA, Guse A. Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach. Annu Rev Genet 2023; 57:411-434. [PMID: 37722685 DOI: 10.1146/annurev-genet-072320-125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elizabeth A Hambleton
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria;
| | - Annika Guse
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
3
|
Castillo-Medina RE, Islas-Flores T, Morales-Ruiz E, Villanueva MA. Biochemical and molecular characterization of the SBiP1 chaperone from Symbiodinium microadriaticum CassKB8 and light parameters that modulate its phosphorylation. PLoS One 2023; 18:e0293299. [PMID: 37862348 PMCID: PMC10588850 DOI: 10.1371/journal.pone.0293299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
The coding and promoter region sequences from the BiP-like protein SBiP1 from Symbiodinium microadriaticum CassKB8 were obtained by PCR, sequenced and compared with annotated sequences. The nucleotides corresponding to the full sequence were correctly annotated and the main SBiP1 features determined at the nucleotide and amino acid level. The translated protein was organized into the typical domains of the BiP/HSP70 family including a signal peptide, a substrate- and a nucleotide-binding domain, and an ER localization sequence. Conserved motifs included a highly conserved Thr513 phosphorylation site and two ADP-ribosylation sites from eukaryotic BiP's. Molecular modeling showed the corresponding domain regions and main exposed post-translational target sites in its three-dimensional structure, which also closely matched Homo sapiens BiP further indicating that it indeed corresponds to a BiP/HSP70 family protein. The gene promoter region showed at least eight light regulation-related sequences consistent with the molecule being highly phosphorylated in Thr under dark conditions and dephosphorylated upon light stimuli. We tested light parameter variations that could modulate the light mediated phosphorylation effect and found that SBiP1 Thr dephosphorylation was only significantly detected after 15-30 min light stimulation. Such light-induced dephosphorylation was observed even when dichlorophenyl dimethyl urea, a photosynthesis inhibitor, was also present in the cells during the light stimulation. Dephosphorylation occurred indistinctly under red, yellow, blue or the full visible light spectra. In additon, it was observed at a light intensity of as low as 1 μmole photon m-2 s-1. Our results indicate that: a) SBiP1 is a chaperone belonging to the BiP/HSP70 family proteins; b) its light-modulated phosphorylation/dephosphorylation most likely functions as an activity switch for the chaperone; c) this light-induced modulation occurs relatively slow but is highly sensitive to the full spectrum of visible light; and d) the light induced Thr dephosphorylation is independent of photosynthetic activity in these cells.
Collapse
Affiliation(s)
- Raúl Eduardo Castillo-Medina
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México-UNAM, Puerto Morelos, Quintana Roo, México
| | - Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México-UNAM, Puerto Morelos, Quintana Roo, México
| | - Estefanía Morales-Ruiz
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México-UNAM, Puerto Morelos, Quintana Roo, México
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México-UNAM, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
4
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
5
|
The Porifera microeukaryome: Addressing the neglected associations between sponges and protists. Microbiol Res 2022; 265:127210. [PMID: 36183422 DOI: 10.1016/j.micres.2022.127210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
While bacterial and archaeal communities of sponges are intensively studied, given their importance to the animal's physiology as well as sources of several new bioactive molecules, the potential and roles of associated protists remain poorly known. Historically, culture-dependent approaches dominated the investigations of sponge-protist interactions. With the advances in omics techniques, these associations could be visualized at other equally important scales. Of the few existing studies, there is a strong tendency to focus on interactions with photosynthesizing taxa such as dinoflagellates and diatoms, with fewer works dissecting the interactions with other less common groups. In addition, there are bottlenecks and inherent biases in using primer pairs and bioinformatics approaches in the most commonly used metabarcoding studies. Thus, this review addresses the issues underlying this association, using the term "microeukaryome" to refer exclusively to protists associated with an animal host. We aim to highlight the diversity and community composition of protists associated with sponges and place them on the same level as other microorganisms already well studied in this context. Among other shortcomings, it could be observed that the biotechnological potential of the microeukaryome is still largely unexplored, possibly being a valuable source of new pharmacological compounds, enzymes and metabolic processes.
Collapse
|
6
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
7
|
Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate. Processes (Basel) 2021. [DOI: 10.3390/pr9060983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.
Collapse
|
8
|
Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium 'fitti') among closely related coral hosts. Mol Ecol 2021; 30:3500-3514. [PMID: 33964051 DOI: 10.1111/mec.15952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Mutualisms where hosts are coupled metabolically to their symbionts often exhibit high partner fidelity. Most reef-building coral species form obligate symbioses with a specific species of photosymbionts, dinoflagellates in the family Symbiodiniaceae, despite needing to acquire symbionts early in their development from environmental sources. Three Caribbean acroporids (Acropora palmata, A. cervicornis and their F1 hybrid) are sympatric across much of their range, but often occupy different depth and light habitats. Throughout this range, both species and their hybrid associate with the endosymbiotic dinoflagellate Symbiodinium 'fitti'. Because light (and therefore depth) influences the physiology of dinoflagellates, we investigated whether S. 'fitti' populations from each host taxon were differentiated genetically. Single nucleotide polymorphisms (SNPs) among S. 'fitti' strains were identified by aligning shallow metagenomic sequences of acroporid colonies sampled from across the Caribbean to a ~600-Mb draft assembly of the S. 'fitti' genome (from the CFL14120 A. cervicornis metagenome). Phylogenomic and multivariate analyses revealed that genomic variation among S. 'fitti' strains partitioned to each host taxon rather than by biogeographical origin. This is particularly noteworthy because the hybrid has a sparse fossil record and may be of relatively recent origin. A subset (37.6%) of the SNPs putatively under selection were nonsynonymous mutations predicted to alter protein efficiency. Differences in genomic variation of S. 'fitti' strains from each host taxon may reflect the unique selection pressures created by the microenvironments associated with each host. The nonrandom sorting among S. 'fitti' strains to different hosts could be the basis for lineage diversification via disruptive selection, leading to ecological specialization and ultimately speciation.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Nicole D Fogarty
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol 2021; 19:73. [PMID: 33849527 PMCID: PMC8045281 DOI: 10.1186/s12915-021-00994-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00994-6.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, 4072, Australia.,Present address: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rémi Lagorce
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,École Polytechnique Universitaire de l'Université de Nice, Université Nice-Sophia-Antipolis, 06410, Nice, Provence-Alpes-Côte d'Azur, France
| | - David W Burt
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Yoshioka Y, Yamashita H, Suzuki G, Zayasu Y, Tada I, Kanda M, Satoh N, Shoguchi E, Shinzato C. Whole-Genome Transcriptome Analyses of Native Symbionts Reveal Host Coral Genomic Novelties for Establishing Coral-Algae Symbioses. Genome Biol Evol 2020; 13:5981117. [PMID: 33185681 PMCID: PMC7850063 DOI: 10.1093/gbe/evaa240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 01/14/2023] Open
Abstract
Reef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral–algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit. In order to identify genes specifically involved in symbioses with native symbionts in early life stages, we also investigated transcriptomic responses of Acropora larvae exposed to closely related, nonsymbiotic, and occasionally symbiotic Symbiodinium strains. We found that the number of differentially expressed genes was largest when larvae acquired native symbionts. Repertoires of differentially expressed genes indicated that corals reduced amino acid, sugar, and lipid metabolism, such that metabolic enzymes performing these functions were derived primarily from S. microadriaticum rather than from A. tenuis. Upregulated gene expression of transporters for those metabolites occurred only when coral larvae acquired their natural symbionts, suggesting active utilization of native symbionts by host corals. We also discovered that in Acropora, genes for sugar and amino acid transporters, prosaposin-like, and Notch ligand-like, were upregulated only in response to native symbionts, and included tandemly duplicated genes. Gene duplications in coral genomes may have been essential to establish genomic novelties for coral–algae symbiosis.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Miyuki Kanda
- DNA Sequencing Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
11
|
Shoguchi E, Beedessee G, Hisata K, Tada I, Narisoko H, Satoh N, Kawachi M, Shinzato C. A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis. Genome Biol Evol 2020; 13:5955767. [PMID: 33146374 PMCID: PMC7875005 DOI: 10.1093/gbe/evaa235] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose-methanol-choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ipputa Tada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Haruhi Narisoko
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
12
|
Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 2020; 10:9792. [PMID: 32555361 PMCID: PMC7299967 DOI: 10.1038/s41598-020-66429-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.
Collapse
|
13
|
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 2020; 18:56. [PMID: 32448240 PMCID: PMC7245778 DOI: 10.1186/s12915-020-00782-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free-living species is still lacking. RESULTS Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. CONCLUSIONS Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.
Collapse
Affiliation(s)
- Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, 4067, Australia
| | - David W Burt
- UQ Genomics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
14
|
Camp EF, Kahlke T, Nitschke MR, Varkey D, Fisher NL, Fujise L, Goyen S, Hughes DJ, Lawson CA, Ros M, Woodcock S, Xiao K, Leggat W, Suggett DJ. Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. Environ Microbiol 2020; 22:1294-1309. [DOI: 10.1111/1462-2920.14935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Emma F. Camp
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Tim Kahlke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Matthew R. Nitschke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- School of Biological SciencesVictoria University of Wellington Wellington New Zealand
| | - Deepa Varkey
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- Department of Molecular SciencesMacquarie University Sydney NSW 2109 Australia
| | - Nerissa L. Fisher
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Lisa Fujise
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Samantha Goyen
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Caitlin A. Lawson
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Mickael Ros
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Stephen Woodcock
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Kun Xiao
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - William Leggat
- School of Environmental and Life SciencesUniversity of Newcastle Ourimbah NSW 2308 Australia
| | - David J. Suggett
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| |
Collapse
|
15
|
Alves Monteiro HJ, Brahmi C, Mayfield AB, Vidal-Dupiol J, Lapeyre B, Le Luyer J. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. GLOBAL CHANGE BIOLOGY 2020; 26:1271-1284. [PMID: 31692206 DOI: 10.1111/gcb.14907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.
Collapse
Affiliation(s)
| | - Chloé Brahmi
- Université de la Polynésie Française, UMR Ecosystèmes Insulaires Océaniens, Ifremer, ILM, IRD, Tahiti, Polynésie Française
| | - Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Bruno Lapeyre
- EPHE-CNRS-UPVD, USR3278-CRIOBE, Labex CORAIL, Moorea, Polynésie Française
| | - Jérémy Le Luyer
- IFREMER, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, Polynésie Française
| |
Collapse
|
16
|
Insights on the genetic repertoire of the coral Mussismilia braziliensis endosymbiont Symbiodinium. Symbiosis 2020. [DOI: 10.1007/s13199-020-00664-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Yu L, Li T, Li L, Lin X, Li H, Liu C, Guo C, Lin S. SAGER: a database of Symbiodiniaceae and Algal Genomic Resource. Database (Oxford) 2020; 2020:baaa051. [PMID: 32621601 PMCID: PMC7334889 DOI: 10.1093/database/baaa051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/19/2022]
Abstract
Symbiodiniaceae dinoflagellates are essential endosymbionts of reef building corals and some other invertebrates. Information of their genome structure and function is critical for understanding coral symbiosis and bleaching. With the rapid development of sequencing technology, genome draft assemblies of several Symbiodiniaceae species and diverse marine algal genomes have become publicly available but spread in multiple separate locations. Here, we present a Symbiodiniaceae and Algal Genomic Resource Database (SAGER), a user-friendly online repository for integrating existing genomic data of Symbiodiniaceae species and diverse marine algal gene sets from MMETSP and PhyloDB databases. Relevant algal data are included to facilitate comparative analyses. The database is freely accessible at http://sampgr.org.cn. It provides comprehensive tools for studying gene function, expression and comparative genomics, including search tools to identify gene information from Symbiodiniaceae species, and BLAST tool to find orthologs from marine algae and protists. Moreover, SAGER integrates transcriptome datasets derived from diverse culture conditions of corresponding Symbiodiniaceae species. SAGER was developed with the capacity to incorporate future Symbiodiniaceae and algal genome and transcriptome data, and will serve as an open-access and sustained platform providing genomic and molecular tools that can be conveniently used to study Symbiodiniaceae and other marine algae. Database URL: http://sampgr.org.cn.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chichi Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
18
|
Maor‐Landaw K, van Oppen MJH, McFadden GI. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 2020; 10:451-466. [PMID: 31993121 PMCID: PMC6972872 DOI: 10.1002/ece3.5910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
Collapse
Affiliation(s)
- Keren Maor‐Landaw
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | | |
Collapse
|
19
|
Bellantuono AJ, Dougan KE, Granados‐Cifuentes C, Rodriguez‐Lanetty M. Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol Ecol 2019; 28:5265-5281. [DOI: 10.1111/mec.15300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Katherine E. Dougan
- Department of Biological Sciences Florida International University Miami FL USA
| | - Camila Granados‐Cifuentes
- Department of Biological Sciences Florida International University Miami FL USA
- Baruch College The City University of New York New York NY USA
| | | |
Collapse
|
20
|
González-Pech RA, Bhattacharya D, Ragan MA, Chan CX. Genome Evolution of Coral Reef Symbionts as Intracellular Residents. Trends Ecol Evol 2019; 34:799-806. [DOI: 10.1016/j.tree.2019.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
|
21
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
22
|
Castillo-Medina RE, Islas-Flores T, Villanueva MA. Phosphorylation/dephosphorylation response to light stimuli of Symbiodinium proteins: specific light-induced dephosphorylation of an HSP-like 75 kDa protein from S. microadriaticum. PeerJ 2019; 7:e7406. [PMID: 31423357 PMCID: PMC6694782 DOI: 10.7717/peerj.7406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022] Open
Abstract
Background Some genera of the family Symbiodiniaceae establish mutualistic endosymbioses with various marine invertebrates, with coral being the most important ecologically. Little is known about the biochemical communication of this association and the perception and translation of signals from the environment in the symbiont. However, specific phosphorylation/dephosphorylation processes are fundamental for the transmission of external signals to activate physiological responses. In this work, we searched phosphorylatable proteins in amino acids of Ser, Thr and Tyr from three species of the family Symbiodiniaceae, Symbiodinium kawagutii, Symbiodinium sp. Mf11 and Symbiodinium microadriaticum. Methods We used specific antibodies to the phosphorylated aminoacids pSer, pThr and pTyr to identify proteins harboring them in total extracts from three species of Symbiodinium in culture. Extractions were carried out on logarithmic phase growing cultures under a 12 h light/dark photoperiod. Various light/dark, nutritional and other stimuli were applied to the cultures prior to the extractions, and proteins were subjected to SDS-PAGE and western immunoblotting. Partial peptide sequencing was carried out by MALDI-TOF on specific protein spots separated by 2D electrophoresis. Results At 4 h of the light cycle, several Thr-phosphorylated proteins were consistently detected in the three species suggesting a genus-dependent expression; however, most Ser- and Tyr-phosphorylated proteins were species-specific. Analysis of protein extracts of S. microadriaticum cultures demonstrated that the level of phosphorylation of two Thr-phosphorylated proteins with molecular weights of 43 and 75 kDa, responded inversely to a light stimulus. The 43 kDa protein, originally weakly Thr-phosphorylated when the cells were previously adapted to their 12 h dark cycle, underwent an increase in Thr phosphorylation when stimulated for 30 min with light. On the other hand, the 75 kDa protein, which was significantly Thr-phosphorylated in the dark, underwent dephosphorylation in Thr after 30 min of the light stimulus. The phosphorylation response of the 43 kDa protein only occurred in S. microadriaticum, whereas the dephosphorylation of the 75 kDa protein occurred in the three species studied suggesting a general response. The 75 kDa protein was separated on 2D gels as two isoforms and the sequenced spots corresponded to a BiP-like protein of the HSP70 protein family. The presence of differential phosphorylations on these proteins after a light stimulus imply important light-regulated physiological processes in these organisms.
Collapse
Affiliation(s)
- Raúl E Castillo-Medina
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad Universitaria, Ciudad de México, México.,Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM, Puerto Morelos, Quintana Roo, México
| | - Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM, Puerto Morelos, Quintana Roo, México
| | - Marco A Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
23
|
Cleary DFR. A comparison of microeukaryote communities inhabiting sponges and seawater in a Taiwanese coral reef system. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01476-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci Rep 2018; 8:17175. [PMID: 30464192 PMCID: PMC6249206 DOI: 10.1038/s41598-018-35620-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 01/30/2023] Open
Abstract
Dinoflagellates are a diverse group of unicellular primary producers and grazers that exhibit some of the most remarkable features known among eukaryotes. These include gigabase-sized nuclear genomes, permanently condensed chromosomes and highly reduced organelle DNA. However, the genetic inventory that allows dinoflagellates to thrive in diverse ecological niches is poorly characterised. Here we systematically assess the functional capacity of 3,368,684 predicted proteins from 47 transcriptome datasets spanning eight dinoflagellate orders. We find that 1,232,023 proteins do not share significant sequence similarity to known sequences, i.e. are "dark". Of these, we consider 441,006 (13.1% of overall proteins) that are found in multiple taxa, or occur as alternative splice variants, to comprise the high-confidence dark proteins. Even with unknown function, 43.3% of these dark proteins can be annotated with conserved structural features using an exhaustive search against available data, validating their existence and importance. Furthermore, these dark proteins and their putative homologs are largely lineage-specific and recovered in multiple taxa. We also identified conserved functions in all dinoflagellates, and those specific to toxin-producing, symbiotic, and cold-adapted lineages. Our results demonstrate the remarkable divergence of gene functions in dinoflagellates, and provide a platform for investigations into the diversification of these ecologically important organisms.
Collapse
|
25
|
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol 2018; 28:2570-2580.e6. [PMID: 30100341 DOI: 10.1016/j.cub.2018.07.008] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The advent of molecular data has transformed the science of organizing and studying life on Earth. Genetics-based evidence provides fundamental insights into the diversity, ecology, and origins of many biological systems, including the mutualisms between metazoan hosts and their micro-algal partners. A well-known example is the dinoflagellate endosymbionts ("zooxanthellae") that power the growth of stony corals and coral reef ecosystems. Once assumed to encompass a single panmictic species, genetic evidence has revealed a divergent and rich diversity within the zooxanthella genus Symbiodinium. Despite decades of reporting on the significance of this diversity, the formal systematics of these eukaryotic microbes have not kept pace, and a major revision is long overdue. With the consideration of molecular, morphological, physiological, and ecological data, we propose that evolutionarily divergent Symbiodinium "clades" are equivalent to genera in the family Symbiodiniaceae, and we provide formal descriptions for seven of them. Additionally, we recalibrate the molecular clock for the group and amend the date for the earliest diversification of this family to the middle of the Mesozoic Era (∼160 mya). This timing corresponds with the adaptive radiation of analogs to modern shallow-water stony corals during the Jurassic Period and connects the rise of these symbiotic dinoflagellates with the emergence and evolutionary success of reef-building corals. This improved framework acknowledges the Symbiodiniaceae's long evolutionary history while filling a pronounced taxonomic gap. Its adoption will facilitate scientific dialog and future research on the physiology, ecology, and evolution of these important micro-algae.
Collapse
Affiliation(s)
- Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.
| | - Paul W Gabrielson
- Herbarium and Biology Department, University of North Carolina-Chapel Hill, Coker Hall, CB 3280, Chapel Hill, NC 27599, USA
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Republic of Korea
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
26
|
Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I, Aranda M, Bourne DG, Forêt S, Miller DJ, van Oppen MJH, Voolstra CR, Ragan MA, Chan CX. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 2018; 1:95. [PMID: 30271976 PMCID: PMC6123633 DOI: 10.1038/s42003-018-0098-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis. Huanle Liu et al. report draft genomes of two Symbiodinium species, one from the most dominant type of symbionts in reef-building corals. They find evidence of positive selection in genes related to stress response, meiosis and other traits required for forming successful symbiotic relationships.
Collapse
Affiliation(s)
- Huanle Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Victor H Beltran
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Bruno Lapeyre
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia.,Laboratoire d'excellence CORAIL, Centre de Recherches Insulaires et Observatoire de l'Environnement, Moorea, 98729, French Polynesia
| | - Pim Bongaerts
- Global Change Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia.,School of BioSciences, The University of Melbourne, VIC, 3010, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, Arakaki N, Fujie M, Koyanagi R, Roy MC, Kawachi M, Hidaka M, Satoh N, Shinzato C. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 2018; 19:458. [PMID: 29898658 PMCID: PMC6001144 DOI: 10.1186/s12864-018-4857-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. Results The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. Conclusions Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families. Electronic supplementary material The online version of this article (10.1186/s12864-018-4857-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Ipputa Tada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.,Present address: Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, 1111, Yata, Mishima-shi, Shizuoka, 411-8540, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.,Present address: Center for Information Biology, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michael C Roy
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Michio Hidaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan. .,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa, 277-8564, Japan.
| |
Collapse
|
28
|
González AM, Prada CA, Ávila V, Medina M. Ecological Speciation in Corals. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|