1
|
Dai X, Feng S, Zheng Y. Cold Atmospheric Plasma: Possible Cure of Autoimmune Disorders and Cancer via Attenuating Inflammation. Int J Biol Sci 2024; 20:5436-5449. [PMID: 39494336 PMCID: PMC11528447 DOI: 10.7150/ijbs.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases and cancers, two seemingly unrelated diseases, have been threatening human health, and many of them have no cure. By identifying pathological inflammation as the driving cause of uncontrolled cell proliferation in both classes of diseases, and differentiating autoimmune disorders and cancers by whether the cell death programs are under control, we propose the attenuation of prolonged inflammation via maintaining mitochondrial reduction-oxidation (redox) homeostasis being a possible cure of both diseases. Importantly, we propose the feasibility of applying cold atmospheric plasma (CAP) in treating autoimmune disorders and cancers given its redox-modulatory nature, which not only extends the medical utilities of CAP to autoimmune diseases and all other inflammation-driven disorders, but also positions the efficacy of CAP against cancer cells to its suppressive role on prolonged inflammation. Our insights may open an innovative avenue towards a unified view on the molecular mechanism driving the diversified types of medical miracles of CAP and what CAP can do in the field of plasma medicine.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
2
|
Zhao H, Meng W, Lv X, Li J, Cai Z, Guo X, Wang Z, Guo L, Rong M, Shen C, Liu D, Song L. Nebulized inhalation of plasma-activated water in the treatment of progressive moderate COVID-19 patients with antiviral treatment failure: a randomized controlled pilot trial. BMC Infect Dis 2024; 24:960. [PMID: 39266946 PMCID: PMC11391605 DOI: 10.1186/s12879-024-09886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Antiviral drugs show significant efficacy in non-severe COVID-19 cases, yet there remains a subset of moderate COVID-19 patients whose pneumonia continues to progress post a complete course of treatment. Plasma-activated water (PAW) possesses anti-SARS-CoV-2 properties. To explore the potential of PAW in improving pneumonia in COVID-19 patients following antiviral treatment failure, we conducted this study. METHODS This was a randomized, controlled trial. Moderate COVID-19 patients with antiviral treatment failure were randomly assigned to the experimental group or the control group. They inhaled nebulized PAW or saline respectively. This was done twice daily for four consecutive days. We assessed improvement in chest CT on day 5, the rate of symptom resolution within 10 days, and safety. RESULTS A total of 23 participants were included, with 11 receiving PAW and 12 receiving saline. The baseline characteristics of both groups were comparable. The experimental group showed a higher improvement rate in chest CT on day 5 (81.8% vs. 33.3%, p = 0.036). The cumulative disappearance rate of cough within 10 days was higher in the experimental group. Within 28 days, 4 patients in each group progressed to severe illness, and no patients died. No adverse reactions were reported from inhaling nebulized PAW. CONCLUSION This pilot trial preliminarily confirmed that nebulized inhalation of PAW can alleviate pneumonia in moderate COVID-19 patients with antiviral treatment failure, with no adverse reactions observed. This still needs to be verified by large-scale studies. TRIAL REGISTRATION Chinese Clinical Trial Registry; No.: ChiCTR2300078706 (retrospectively registered, 12/15/2023); URL: www.chictr.org.cn .
Collapse
Affiliation(s)
- Heng Zhao
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Wanting Meng
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Xing Lv
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Zhigui Cai
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Xingxing Guo
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Shen
- Department of PET-CT, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Liqiang Song
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Liu H, Liang X, Teng M, Li Z, Peng Y, Wang P, Chen H, Cheng H, Liu G. Cold Atmospheric Plasma: An Emerging Immunomodulatory Therapy. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/16/2025]
Abstract
AbstractCold atmospheric plasma (CAP) is a novel technology that generates a unique combination of reactive oxygen and nitrogen species (ROS/RNS), electric fields, and UV radiation. CAP has shown promise in regulating the immune system and has potential clinical applications in wound healing, cancer treatment, and infection control. This review provides an overview of the immunological regulation activity of CAP, highlighting its substantial impact on cytokines production, immune cell phagocytosis, and immune cell proliferation. CAP has also been demonstrated to have potent therapeutic effect in anti‐inflammation, wound repair, viral and bacterial infections. Furthermore, CAP has been investigated as an adjuvant therapy for tumor treatment, eliciting a robust antitumor immune response and remarkable synergistic effects in diverse combination therapies. Further research is needed to fully understand the mechanisms underlying the effects of CAP on the immune system and to optimize its clinical application.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Zhenjie Li
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Yisheng Peng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Peiyu Wang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
- University of Macau Macau SAR 999078 China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
4
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
5
|
Hofmeyer S, Weber F, Gerds S, Emmert S, Thiem A. A Prospective Randomized Controlled Pilot Study to Assess the Response and Tolerability of Cold Atmospheric Plasma for Rosacea. Skin Pharmacol Physiol 2023; 36:205-213. [PMID: 37490882 PMCID: PMC10652650 DOI: 10.1159/000533190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Rosacea is a common, facial, chronic inflammatory skin disease. Due to its complex pathogenesis, adequate therapy of rosacea can be challenging. An innovative recent therapeutic tool is cold atmospheric plasma (CAP), which is already established in the treatment of chronic wounds and promising in different other skin diseases. METHODS In a split-face pilot study we investigated dielectric-barrier-discharged CAP in erythemato-telangiectatic (ETR) and/or papulopustular rosacea (PPR). CAP treatment was applied on lesional skin of a randomized side once daily (90 s/area) for 6 weeks. The other untreated side served as control. Co-primary endpoints were ≥1 improvement of the Investigator Global Assessment (IGA) score on the treated side compared to control and a decline of the Dermatology Life Quality Index (DLQI) after 6 weeks. Secondary endpoints included inflammatory lesion count (papules and pustules), skin redness intensity and erythema size. Adverse events (AEs) were recorded constantly. Additionally, participants were weekly assessed for symptoms, skin condition, trigger factors, skin care, treatment success, and local tolerance parameters. All p values were calculated using the Wilcoxon signed-rank test. RESULTS Twelve subjects (ETR, n = 3; ETR and PPR, n = 9) completed the study. DLQI was significantly improved after 6 weeks (p = 0.007). On the CAP-treated side, lesions (p = 0.007) and erythema size (p = 0.041) were significantly reduced compared to the control. IGA (p = 0.2) and skin redness intensity (p = 0.5) did not differ significantly between control and CAP-treated side. No serious AEs occurred and treatment was well tolerated. CONCLUSION CAP is a promising new treatment of rosacea, especially for PPR.
Collapse
Affiliation(s)
- Stella Hofmeyer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Frank Weber
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medical Center Rostock, Rostock, Germany
| | - Sandra Gerds
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
6
|
Aziz Hazari S, Kaur H, Karwasra R, Abourehab MAS, Ali Khan A, Kesharwani P. An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int J Pharm 2023; 638:122938. [PMID: 37031809 DOI: 10.1016/j.ijpharm.2023.122938] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Psoriasis is a consistently recurring, inflammatory skin disease, affecting about 2 - 5 % of the world population. Different types of psoriasis can be observed such as guttate psoriasis, pustular psoriasis, psoriatic arthritis, scalp psoriasis, flexural psoriasis etc. Several therapeutic approaches are available for the treatment of psoriasis. However, none of them are entirely safe and effective to treat the disease without compromising patient compliance. The traditional treatment plan is associated with harmful side effects such asimmune system suppression and damage of essential organs at high doses, which poses a challenge to treat psoriasis. Novel drug delivery systems are being developed to replace traditional therapy in order to address these shortcomings. Currently, nanoformulations have gained widespread application for treatment of psoriasis. Researchers have developed different types of lipid-based nanoparticles like liposomes, niosomes, ethosomes, transethosomes, nanostructured lipid carriers and solid lipid nanoparticles. These innovative formulations provide advantages in terms of reduction in dose, dosing frequency, dose-dependency with enhanced efficacy, improved encapsulation efficiency, controlled release, increased surface area, high bioavailability and greater stratum corneum permeability. This review highlights detailed and comparative discussion of lipid-based and polymer-based nanoparticles for psoriasis along with the pathophysiology and other treatments of psoriasis.
Collapse
Affiliation(s)
- Sahim Aziz Hazari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Govt of India, New Delhi-110058, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, Ministry of Ayush, Janakpuri, New Delhi-110058, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| |
Collapse
|
7
|
He Q, Wu X, Shi Q. Triptolide Inhibits Th17 Response by Upregulating microRNA-204-5p and Suppressing STAT3 Phosphorylation in Psoriasis. Genet Res (Camb) 2022; 2022:7468396. [PMID: 36474621 PMCID: PMC9691328 DOI: 10.1155/2022/7468396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Psoriasis is an immune and inflammation-related skin disease. Triptolide with immunosuppressive and anti-inflammatory properties has been utilized for psoriasis treatment. However, the potential immunological mechanisms of triptolide have not been fully elucidated. Methods Using an imiquimod (IMQ)-induced psoriatic mouse model, we detected the effects of triptolide on psoriasis-like lesions including scales, thickening, and erythema. Methyl thiazol tetrazolium (MTT) cytotoxicity assay was performed for evaluating the influence of triptolide on cell viability. Gene expression at mRNA and protein levels were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analysis, respectively. The combination between microRNA-204-5p (miR-204-5p) and signal transduction and transcription activator-3 (STAT3) was confirmed by luciferase reporter assay. Enzyme-linked immunosorbent assay was conducted to examine interleukin (IL)-17 and interferon-γ (IFN-γ) levels using corresponding kits. Hematoxylin and eosin staining was used for the visualization of epidermal thickness. Flow cytometry analysis was employed for examining T helper (Th) 17 cells. Results Triptolide ameliorated IMQ-induced psoriatic skin lesions manifested by the decreased psoriasis area and severity indexes (PASI) scores. Triptolide inhibited Th17 cell differentiation from splenocytes. Additionally, triptolide elevated miR-204-5p expression, whereas it downregulated STAT3 expression levels both in vitro and in vivo. Moreover, miR-204-5p directly targeted STAT3 in HaCaT cells. Furthermore, triptolide repressed the expression of proinflammatory cytokines in IMQ-evoked psoriasis-like mice. Conclusion Triptolide inhibits STAT3 phosphorylation via upregulating miR-204-5p and thus suppressing Th17 response in psoriasis.
Collapse
Affiliation(s)
- Qi He
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, Hubei, China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, Hubei, China
| | - Xingyue Wu
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, Hubei, China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, Hubei, China
| | - Quan Shi
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, Hubei, China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, Hubei, China
| |
Collapse
|
8
|
Non-thermal plasma directly accelerates neuronal proliferation by stimulating axon formation. Sci Rep 2022; 12:15868. [PMID: 36151253 PMCID: PMC9508269 DOI: 10.1038/s41598-022-20063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Among the various methods, Non Thermal Plasma (NTP) has been recently introduced and is being studied to recover the damaged nerve. In the recent years, several studies have suggested that NTP accelerates nerve cell regeneration, but the mechanism remains unknown. This study evaluated the effect of NTP on neuronal proliferation in SH-SY5Y (Human neuroblastoma cells) cells differentiated by retinoic acid (RA) and investigated the mechanism by which NTP promotes cell proliferation. We analyzed the morphology of differentiated SH-SY5Y cells, and performed western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Immunofluorescence analysis was performed in an in vivo study by categorizing Wistar A rats into three groups: non-nerve damage (Non-ND), nerve damage (ND), and nerve damage + NTP treatment (ND + NTP). The cell morphology analysis revealed that the number of cells increased and axonal elongation progressed after NTP treatment. In addition, western blots indicated that tau expression increased significantly after NTP treatment. The RT-PCR results revealed that the expression of tau, wnt3a, and β-catenin increased after NTP treatment. The in vivo immunofluorescence assay showed that NTP increased the markers for tau and S100B while regulating the over-expression of MAP2 and GAP43. NTP treatment accelerated cell proliferation and regeneration of damaged neurons in differentiated SH-SY5Y cells. These results establish the fact of NTP as a noninvasive and effective treatment for nerve injury.
Collapse
|
9
|
Wang XH, Guo W, Qiu W, Ao LQ, Yao MW, Xing W, Yu Y, Chen Q, Wu XF, Li Z, Hu XT, Xu X. Fibroblast-like cells Promote Wound Healing via PD-L1-mediated Inflammation Resolution. Int J Biol Sci 2022; 18:4388-4399. [PMID: 35864974 PMCID: PMC9295062 DOI: 10.7150/ijbs.69890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic non-healing wounds fail to progress beyond the inflammatory phase, characterized by a disorder of inflammation resolution. PD-1/PD-L1, a major co-inhibitory checkpoint signaling, plays critical roles in tumor immune surveillance and the occurrence of inflammatory or autoimmune diseases, but its roles in wound healing remains unclear. Here, we described a novel function of PD-L1 in fibroblast-like cells as a positive regulator of wound healing. PD-L1 dynamically expressed on the fibroblast-like cells in the granulation tissue during wound healing to form a wound immunosuppressive microenvironment, modulate macrophages polarization from M1-type to M2-type, and initiates resolution of inflammation, finally accelerate wound healing. Loss of PD-L1 delayed wound healing, especially in mice with LPS-induced severe inflammation. Furthermore, the mainly regulatory mechanism is that combination of FGF-2 and TGF-β1 promotes PD-L1 translation in fibroblasts through enhancing the eIF4E availability regulated by both PI3K-AKT-mTOR-4EBP1 and p38-ERK-MNK signaling pathways. Our results reveal the positive role of PD-L1 in wound healing, and provide a new strategy for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China.,College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Wei Qiu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China.,Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Luo-Quan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yang Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Quan Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
10
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Inhibitory Effects of Cold Atmospheric Plasma on Inflammation and Tumor-Like Feature of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Inflammation 2022; 45:2433-2448. [PMID: 35713788 DOI: 10.1007/s10753-022-01703-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating systemic disease characterized by chronic inflammation and progressive joint destruction. Fibroblast-like synoviocytes (FLSs) are one of the most important players in the pathophysiology of RA, acting like tumor cells and secreting inflammatory cytokines. Previous research has shown that cold atmospheric plasma (CAP) inhibits cancer cells and may have anti-inflammatory properties. This study examined the effects of argon plasma jet-produced CAP on the suppression of invasion and inflammation caused by cultured RA-FLS. The findings revealed that CAP reduced cell viability and elevated the percentage of apoptotic RA-FLS by producing reactive oxygen species. Carboxyfluorescein diacetate succinimidyl ester (CFSE) staining confirmed that CAP could decrease the proliferation of RA-FLS. Furthermore, CAP effectively reduced the production of inflammatory factors (e.g., NF-κB and IL-6) as well as destructive factors like receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metalloproteinases-3 (MMP-3). These data suggest that CAP could be a promising treatment for slowing the progression of RA by reducing tumor-like features and inflammation in RA-FLS.
Collapse
|
12
|
Zhai SY, Kong MG, Xia YM. Cold Atmospheric Plasma Ameliorates Skin Diseases Involving Reactive Oxygen/Nitrogen Species-Mediated Functions. Front Immunol 2022; 13:868386. [PMID: 35720416 PMCID: PMC9204314 DOI: 10.3389/fimmu.2022.868386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin diseases are mainly divided into infectious diseases, non-infectious inflammatory diseases, cancers, and wounds. The pathogenesis might include microbial infections, autoimmune responses, aberrant cellular proliferation or differentiation, and the overproduction of inflammatory factors. The traditional therapies for skin diseases, such as oral or topical drugs, have still been unsatisfactory, partly due to systematic side effects and reappearance. Cold atmospheric plasma (CAP), as an innovative and non-invasive therapeutic approach, has demonstrated its safe and effective functions in dermatology. With its generation of reactive oxygen species and reactive nitrogen species, CAP exhibits significant efficacies in inhibiting bacterial, viral, and fungal infections, facilitating wound healing, restraining the proliferation of cancers, and ameliorating psoriatic or vitiligous lesions. This review summarizes recent advances in CAP therapies for various skin diseases and implicates future strategies for increasing effectiveness or broadening clinical indications.
Collapse
Affiliation(s)
- Si-yue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Michael G. Kong
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu-min Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Chen Y, Yang B, Xu L, Shi Z, Han R, Yuan F, Ouyang J, Yan X, Ostrikov KK. Inhalation of Atmospheric-Pressure Gas Plasma Attenuates Brain Infarction in Rats With Experimental Ischemic Stroke. Front Neurosci 2022; 16:875053. [PMID: 35516812 PMCID: PMC9063166 DOI: 10.3389/fnins.2022.875053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggest the potential efficacy of neuroprotective effects of gaseous atmospheric-pressure plasma (APP) treatment on neuronal cells. However, it remains unclear if the neuroprotective properties of the gas plasmas benefit the ischemic stroke treatment, and how to use the plasmas in the in vivo ischemic stroke models. Rats were subjected to 90 min middle cerebral artery occlusion (MCAO) to establish the ischemic stroke model and then intermittently inhaled the plasma for 2 min at 60 min MCAO. The regional cerebral blood flow (CBF) was monitored. Animal behavior scoring, magnetic resonance imaging (MRI), 2,3,5-triphenyltetrazolium chloride (TTC) staining, and hematoxylin and eosin (HE) staining were performed to evaluate the therapeutic efficacy of the gas plasma inhalation on MCAO rats. Intermittent gas plasma inhalation by rats with experimental ischemic stroke could improve neurological function, increase regional CBF, and decrease brain infarction. Further MRI tests showed that the gas plasma inhalation could limit the ischemic lesion progression, which was beneficial to improve the outcomes of the MCAO rats. Post-stroke treatment with intermittent gas plasma inhalation could reduce the ischemic lesion progression and decrease cerebral infarction volume, which might provide a new promising strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bingyan Yang
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Han
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiting Ouyang
- School of Physics, Beijing Institute of Technology, Beijing, China
- *Correspondence: Jiting Ouyang,
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xu Yan,
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Milhan NVM, Chiappim W, Sampaio ADG, Vegian MRDC, Pessoa RS, Koga-Ito CY. Applications of Plasma-Activated Water in Dentistry: A Review. Int J Mol Sci 2022; 23:ijms23084131. [PMID: 35456947 PMCID: PMC9029124 DOI: 10.3390/ijms23084131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The activation of water by non-thermal plasma creates a liquid with active constituents referred to as plasma-activated water (PAW). Due to its active constituents, PAW may play an important role in different fields, such as agriculture, the food industry and healthcare. Plasma liquid technology has received attention in recent years due to its versatility and good potential, mainly focused on different health care purposes. This interest has extended to dentistry, since the use of a plasma–liquid technology could bring clinical advantages, compared to direct application of non-thermal atmospheric pressure plasmas (NTAPPs). The aim of this paper is to discuss the applicability of PAW in different areas of dentistry, according to the published literature about NTAPPs and plasma–liquid technology. The direct and indirect application of NTAPPs are presented in the introduction. Posteriorly, the main reactors for generating PAW and its active constituents with a role in biomedical applications are specified, followed by a section that discusses, in detail, the use of PAW as a tool for different oral diseases.
Collapse
Affiliation(s)
- Noala Vicensoto Moreira Milhan
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Correspondence: ; Tel.: +55-12-991851206
| | - William Chiappim
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Aline da Graça Sampaio
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Mariana Raquel da Cruz Vegian
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Rodrigo Sávio Pessoa
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12247-016, Brazil
| |
Collapse
|
15
|
Zhai S, Xu M, Li Q, Guo K, Chen H, Kong MG, Xia Y. Successful Treatment of Vitiligo with Cold Atmospheric Plasma‒Activated Hydrogel. J Invest Dermatol 2021; 141:2710-2719.e6. [PMID: 34029575 DOI: 10.1016/j.jid.2021.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Vitiligo shows insufficient response to current therapies largely owing to T-lymphocyte dysfunction, abnormal inflammatory activation, and excessive oxidative stress in lesions. Cold atmospheric plasma (CAP) possesses pleiotropic antioxidant and anti-inflammatory properties and may offer an improvement to current treatment options. In this study, the efficacy and safety of CAP were investigated in a mouse model of vitiligo and a randomized and controlled trial of patients with active focal vitiligo. Skin biopsies showed that topical treatment of vitiligo-like lesions on mouse dorsal skin by CAP restored the distribution of melanin. In addition, CAP treatment reduced the infiltration of CD11c+ dendritic cells, CD3+ T cells, and CD8+ T cells; inhibited the release of CXCL10 and cytokine IFN-γ; and enhanced cellular resistance to oxidative stress and excessive immune response by enhancing the expression of the transcription factor NRF2 and attenuating the activity of inducible nitric oxide synthase. In a randomized and controlled trial, CAP treatment achieved partial and complete repigmentation in 80% and 20% of vitiligo lesions, respectively, without hyperpigmentation in surrounding areas or other adverse events during the treatment period and its follow-up period. In conclusion, CAP offers a promising option for the management of vitiligo.
Collapse
Affiliation(s)
- Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China; Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Meifeng Xu
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiaosong Li
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China; School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hailan Chen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Michael G Kong
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA; Department of Electrical & Computer Engineering, Batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia, USA
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Bekeschus S, Kramer A, Schmidt A. Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine. Molecules 2021; 26:molecules26185682. [PMID: 34577153 PMCID: PMC8469854 DOI: 10.3390/molecules26185682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
The loss of skin integrity is inevitable in life. Wound healing is a necessary sequence of events to reconstitute the body’s integrity against potentially harmful environmental agents and restore homeostasis. Attempts to improve cutaneous wound healing are therefore as old as humanity itself. Furthermore, nowadays, targeting defective wound healing is of utmost importance in an aging society with underlying diseases such as diabetes and vascular insufficiencies being on the rise. Because chronic wounds’ etiology and specific traits differ, there is widespread polypragmasia in targeting non-healing conditions. Reactive oxygen and nitrogen species (ROS/RNS) are an overarching theme accompanying wound healing and its biological stages. ROS are signaling agents generated by phagocytes to inactivate pathogens. Although ROS/RNS’s central role in the biology of wound healing has long been appreciated, it was only until the recent decade that these agents were explicitly used to target defective wound healing using gas plasma technology. Gas plasma is a physical state of matter and is a partially ionized gas operated at body temperature which generates a plethora of ROS/RNS simultaneously in a spatiotemporally controlled manner. Animal models of wound healing have been vital in driving the development of these wound healing-promoting technologies, and this review summarizes the current knowledge and identifies open ends derived from in vivo wound models under gas plasma therapy. While gas plasma-assisted wound healing in humans has become well established in Europe, veterinary medicine is an emerging field with great potential to improve the lives of suffering animals.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
- Correspondence:
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany;
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| |
Collapse
|
17
|
Non-thermal atmospheric pressure plasma activates Wnt/β-catenin signaling in dermal papilla cells. Sci Rep 2021; 11:16125. [PMID: 34373562 PMCID: PMC8352944 DOI: 10.1038/s41598-021-95650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
There is an unmet need for novel, non-pharmacological therapeutics to treat alopecia. Recent studies have shown the potential biological benefits of non-thermal atmospheric pressure plasma (NTAPP), including wound healing, angiogenesis, and the proliferation of stem cells. We hypothesized that NTAPP might have a stimulatory effect on hair growth or regeneration. We designed an NTAPP-generating apparatus which is applicable to in vitro and in vivo experiments. The human dermal papilla (DP) cells, isolated fresh hair follicles, and mouse back skin were exposed with the NTAPP. Biological outcomes were measured using RNA-sequencing, RT-PCR, Western blots, and immunostaining. The NTAPP treatment increased the expression levels of Wnt/β-catenin pathway-related genes (AMER3, CCND1, LEF1, and LRG1) and proteins (β-catenin, p-GSK3β, and cyclin D1) in human DP cells. In contrast, inhibitors of Wnt/β-catenin signaling, endo-IWR1 and IWP2, attenuated the levels of cyclin D1, p-GSK3β, and β-catenin proteins induced by NTAPP. Furthermore, we observed that NTAPP induced the activation of β-catenin in DP cells of hair follicles and the mRNA levels of target genes of the β-catenin signaling pathway (CCND1, LEF1, and TCF4). NTAPP-treated mice exhibited markedly increased anagen induction, hair growth, and the protein levels of β-catenin, p-GSK3β, p-AKT, and cyclin D1. NTAPP stimulates hair growth via activation of the Wnt/β-catenin signaling pathway in DP cells. These findings collectively suggest that NTAPP may be a potentially safe and non-pharmacological therapeutic intervention for alopecia.
Collapse
|
18
|
Head and Neck Cancer Cell Death due to Mitochondrial Damage Induced by Reactive Oxygen Species from Nonthermal Plasma-Activated Media: Based on Transcriptomic Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9951712. [PMID: 34306318 PMCID: PMC8281449 DOI: 10.1155/2021/9951712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Mitochondrial targeted therapy is a next-generation therapeutic approach for cancer that is refractory to conventional treatments. Mitochondrial damage caused by the excessive accumulation of reactive oxygen species (ROS) is a principle of mitochondrial targeted therapy. ROS in nonthermal plasma-activated media (NTPAM) are known to mediate anticancer effects in various cancers including head and neck cancer (HNC). However, the signaling mechanism of HNC cell death via NTPAM-induced ROS has not been fully elucidated. This study evaluated the anticancer effects of NTPAM in HNC and investigated the mechanism using transcriptomic analysis. The viability of HNC cells decreased after NTPAM treatment due to enhanced apoptosis. A human fibroblast cell line and three HNC cell lines were profiled by RNA sequencing. In total, 1 610 differentially expressed genes were identified. Pathway analysis showed that activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were upstream regulators. Mitochondrial damage was induced by NTPAM, which was associated with enhancements of mitochondrial ROS (mtROS) and ATF4/CHOP regulation. These results suggest that NTPAM induces HNC cell death through the upregulation of ATF4/CHOP activity by damaging mitochondria via excessive mtROS accumulation, similar to mitochondrial targeted therapy.
Collapse
|
19
|
Guo W, Xu F, Zhuang Z, Liu Z, Xie J, Bai L. Ebosin Ameliorates Psoriasis-Like Inflammation of Mice via miR-155 Targeting tnfaip3 on IL-17 Pathway. Front Immunol 2021; 12:662362. [PMID: 33981308 PMCID: PMC8107364 DOI: 10.3389/fimmu.2021.662362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a recurrent autoimmune skin disease with aberrant regulation of keratinocytes and immunocytes. There is no universally accepted single treatment available for psoriasis, and the establishment of a common treatment option to control its signs and symptoms is urgently needed. Here, we found Ebosin, a novel exopolysaccharide isolated from Streptomyces sp. 139 by our lab, not only could ameliorate inflammation in LPS-induced keratinocytes through IKK/NF-kapaB pathway, but also attenuate psoriatic skin lesions and reduce inflammatory factors expression in imiquimod (IMQ)-mediated psoriatic mice. Except for inhibiting the expression of epidermal differentiation related proteins, Ebosin significantly increased the percentage of CD4+Foxp3+CD25+ Tregs and decreased CD4+IL17A+ Th17 cells in psoriatic mice. Furthermore, we demonstrate that Ebosin significantly suppressed the IL-17 signaling pathway via A20 (encoded by tnfaip3) in vivo. As the direct binding of tnfaip3 to miR-155 has been demonstrated by luciferase reporter assay, and Ebosin has been demonstrated to inhibit miR-155 level in vitro and in vivo, our study first indicates that Ebosin reduces inflammation through the miR-155-tnfaip3-IL-17 axis and T cell differentiation in a psoriasis-like model. Thus, we conclude that Ebosin can act as a promising therapeutic candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Weiwei Guo
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengying Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Inner Mongolia Medical University, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiming Xie
- Inner Mongolia Medical University, Inner Mongolia People’s Hospital, Hohhot, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Zheng L, Gao J, Cao Y, Yang X, Wang N, Cheng C, Yang C. Two case reports of inverse psoriasis treated with cold atmospheric plasma. Dermatol Ther 2020; 33:e14257. [PMID: 32865271 DOI: 10.1111/dth.14257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Lei Zheng
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
- Department of Dermatology Lu'an Municipal People's Hospital Lu'an China
| | - Jing Gao
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
| | - Yajing Cao
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
| | - Xingyu Yang
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
| | - Na Wang
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
| | - Cheng Cheng
- Institute of Plasma Physics Chinese Academy of Sciences Hefei China
| | - Chunjun Yang
- Department of Dermatology The Second Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
21
|
Smolková B, Frtús A, Uzhytchak M, Lunova M, Kubinová Š, Dejneka A, Lunov O. Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective. Int J Mol Sci 2020; 21:ijms21176226. [PMID: 32872159 PMCID: PMC7503900 DOI: 10.3390/ijms21176226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.
Collapse
Affiliation(s)
- Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Correspondence: ; Tel.: +420-2660-52131
| |
Collapse
|
22
|
Lee MH, Lee YS, Kim HJ, Han CH, Kang SU, Kim CH. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep 2019; 9:13510. [PMID: 31534179 PMCID: PMC6751194 DOI: 10.1038/s41598-019-49938-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Non-thermal plasma (NTP) has many functional activities such as, sterilization, wound healing and anti-cancer activity. Despite of its wide spread biomedical application, the effect of NTP on immune cells and allergic response has not been well studied. In this study, we determined whether NTP suppresses mast cell activation, which is important for allergic response, and ameliorates an atopic dermatitis (AD)-like skin inflammatory disease in mice. Exposure to NTP-treated medium during mast cell activation inhibited the expression and production of IL-6, TNF-α and suppressed NF-κB activation. We also investigated whether NTP treatment ameliorates house dust mite (HDM)-induced AD-like skin inflammation in mice. NTP treatment inhibited increases in epidermal thickness and recruitment of mast cells and eosinophils, which are important cell types in AD pathogenesis. In addition, Th2 cell differentiation was induced by application of HDM and the differentiation was also inhibited in the draining lymph node of NTP-treated mice. Finally, the expression of AD-related cytokines and chemokines was also decreased in NTP-treated mice. Taken together, these results suggest that NTP might be useful in the treatment of allergic skin diseases, such as AD.
Collapse
Affiliation(s)
- Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
23
|
Lee YS, Kang SU, Lee MH, Kim HJ, Han CH, Won HR, Park YU, Kim CH. GnRH impairs diabetic wound healing through enhanced NETosis. Cell Mol Immunol 2019; 17:856-864. [PMID: 31217526 DOI: 10.1038/s41423-019-0252-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/02/2019] [Indexed: 11/09/2022] Open
Abstract
It has been reported that neutrophil extracellular traps (NETs) impair wound healing in diabetes and that inhibiting NET generation (NETosis) improves wound healing in diabetic mice. Gonadotropin-releasing hormone (GnRH) agonists are associated with a greater risk of diabetes. However, the role of GnRH in diabetic wound healing is unclear. We determined whether GnRH-promoted NETosis and induced more severe and delayed diabetic wound healing. A mouse model of diabetes was established using five injections with streptozotocin. Mice with blood glucose levels >250 mg/dL were then used in the experiments. GnRH agonist treatment induced delayed wound healing and increased NETosis at the skin wounds of diabetic mice. In contrast, GnRH antagonist treatment inhibited GnRH agonist-induced delayed wound healing. The expression of NETosis markers PAD4 and citrullinated histone H3 were increased in the GnRH-treated diabetic skin wounds in diabetic mice and patients. In vitro experiments also showed that neutrophils expressed a GnRH receptor and that GnRH agonist treatment increased NETosis markers and promoted phorbol myristate acetate (PMA)-induced NETosis in mouse and human neutrophils. Furthermore, GnRH antagonist treatment suppressed the expression of NETosis markers and PMA-induced NETosis, which were increased by GnRH treatment. These results indicated that GnRH-promoted NETosis and that increased NETosis induced delayed wound healing in diabetic skin wounds. Thus, inhibition of GnRH might be a novel treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang-Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Uk Park
- Department of Orthopedic Surgery, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Chen Y, Zhang Q, Liu H, Lu C, Liang CL, Qiu F, Han L, Dai Z. Esculetin Ameliorates Psoriasis-Like Skin Disease in Mice by Inducing CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2018; 9:2092. [PMID: 30258447 PMCID: PMC6143660 DOI: 10.3389/fimmu.2018.02092] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is an autoimmune and inflammatory skin disease affecting around 2-3% of the world's population. Patients with psoriasis need extensive treatments with global immunosuppressive agents that may cause severe side effects. Esculetin, a type of coumarins, is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla, which has been used to treat inflammatory and autoimmune diseases in China. However, the antipsoriatic effects of esculetin have not been reported. In this study, we aimed to investigate the effects of esculetin on psoriatic skin inflammation in a mouse model and explored the potential molecular mechanisms underlying its action. We found that esculetin ameliorated the skin lesion and reduced PASI scores as well as weight loss in imiquimod-induced psoriasis-like mice, accompanied with weakened proliferation and differentiation of keratinocytes and T cell infiltration in esculetin-treated psoriatic mice. In addition, esculetin reduced the frequency of CD8+CD44highCD62Llow effector T cells in psoriatic mice. In contrast, it increased the frequency of CD4+Foxp3+ Tregs in both lymph nodes and spleens of the psoriatic mice while promoting the differentiation of CD4+CD25- T cells into CD4+Foxp3+ Tregs in vitro. Interestingly, depleting CD4+Foxp3+ Tregs largely reversed esculetin-mediated reduction in PASI scores, indicating that esculetin attenuates murine psoriasis mainly by inducing CD4+Foxp3+ Tregs. Furthermore, the mRNA levels of proinflammatory cytokines in the psoriatic mouse skin, including IL-6, IL-17A, IL-22, IL-23, TNF-α, and IFN-γ, were dramatically decreased by the treatment with esculetin. Finally, we found that esculetin inhibited the phosphorylation of IKKα and P65 in the psoriatic skin, suggesting that it inhibits the activation of NF-κB signaling. Thus, we have demonstrated that esculetin attenuates psoriasis-like skin lesion in mice and may be a potential therapeutic candidate for the treatment of psoriasis in clinic.
Collapse
Affiliation(s)
- Yuchao Chen
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ling Han
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Weishaupt C, Emmert S. Connecting basic cold plasma technology to dermato-oncology. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|