1
|
Baena G, Xia L, Waghmare S, Yu Z, Guo Y, Blatt MR, Zhang B, Karnik R. Arabidopsis SNARE SYP132 impacts on PIP2;1 trafficking and function in salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1036-1053. [PMID: 38289468 DOI: 10.1111/tpj.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - ZhiYi Yu
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Michael R Blatt
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rucha Karnik
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term use of recycled water (RW) for irrigation in arid and semiarid regions usually changes the soil solution composition and soil exchange characteristics, enhancing the risk for salinity and sodicity hazards in soils. This modelling study focuses on developing alternative management options that can reduce the potentially harmful impacts of RW use on the irrigation of wine grapes and almonds. The multicomponent UNSATCHEM add-on module for HYDRUS-1D was used to evaluate the impact of long-term (2018–2050) use of irrigation waters of different compositions: good-quality low-salinity (175 mg/L) water (GW), recycled water with 1200 mg/L salinity (RW), blended water of GW and RW in the 1:1 proportion (B), and monthly (Alt1) and half-yearly (Alt6) alternate use of GW and RW. The management options include different levels of annual gypsum applications (0, 1.7, 4.3, and 8.6 t/ha soil) to the calcareous (Cal) and hard red-brown (HRB) soils occurring in the Northern Adelaide Plain (NAP) region, South Australia. Additional management scenarios involve considering different leaching fractions (LF) (0.2, 0.3, 0.4, and 0.5) to reduce the salinity build-up in the soil. A new routine in UNSATCHEM to simulate annual gypsum applications was developed and tested for its applicability for ameliorating irrigation-induced soil sodicity. The 1970–2017 period with GW irrigation was used as a warmup period for the model. The water quality was switched from 2018 onwards to reflect different irrigation water qualities, gypsum applications, and LF levels. The data showed that the GW, B, Alt1, and Alt6 irrigation scenarios resulted in lower soil solution salinity (ECsw) than the RW irrigation scenario, which led to increased ECsw values (4.1–6.6 dS/m) in the soil. Annual gypsum applications of 1.7, 4.3, and 8.6 t/ha reduced pH, SAR, and ESP in both soils and reduced the adverse impacts of irrigation, especially in surface soils. A combination of water blending or cyclic water use with 3.8 t/ha annual gypsum applications showed promise for the SAR and ESP control. Additionally, irrigation with RW, a 0.2 LF, and annual gypsum applications limited the harmful salinity impacts in the soils. However, in the RW irrigation scenario, ECsw and ESP at the bottom of the crop root zone (90–120 cm depth) in the HRB soil were still higher than the wine grape and almond salinity thresholds. Thus, annual amendment applications, combined with the long-term use of blended water or cyclic use of RW and GW, represent a sustainable management option for crop production at the calcareous and hard red-brown soils.
Collapse
|
3
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
4
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021. [PMID: 34204152 DOI: 10.3390/ijms221161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
5
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021; 22:6119. [PMID: 34204152 PMCID: PMC8201344 DOI: 10.3390/ijms22116119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
6
|
Jaiswal AK, Mengiste TD, Myers JR, Egel DS, Hoagland LA. Tomato Domestication Attenuated Responsiveness to a Beneficial Soil Microbe for Plant Growth Promotion and Induction of Systemic Resistance to Foliar Pathogens. Front Microbiol 2020; 11:604566. [PMID: 33391227 PMCID: PMC7775394 DOI: 10.3389/fmicb.2020.604566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye D Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - James R Myers
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Daniel S Egel
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Lori A Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Cao X, Shen Q, Ma S, Liu L, Cheng J. Physiological and PIP Transcriptional Responses to Progressive Soil Water Deficit in Three Mulberry Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:1310. [PMID: 32983200 PMCID: PMC7488926 DOI: 10.3389/fpls.2020.01310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Although mulberry cultivars Wubu, Yu711, and 7307 display distinct anatomical, morphological, and agronomic characteristics under natural conditions, it remains unclear if they differ in drought tolerance. To address this question and elucidate the underlying regulatory mechanisms at the whole-plant level, 2-month old saplings of the three mulberry cultivars were exposed to progressive soil water deficit for 5 days. The physiological responses and transcriptional changes of PIPs in different plant tissues were analyzed. Drought stress led to reduced leaf relative water content (RWC) and tissue water contents, differentially expressed PIPs, decreased chlorophyll and starch, increased soluble sugars and free proline, and enhanced activities of antioxidant enzymes in all plant parts of the three cultivars. Concentrations of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malonaldehyde (MDA) were significantly declined in roots, stimulated in leaves but unaltered in wood and bark. In contrast, except the roots of 7307, soluble proteins were repressed in roots and leaves but induced in wood and bark of the three cultivars in response to progressive water deficit. These results revealed tissue-specific drought stress responses in mulberry. Comparing to cultivar Yu711 and 7307, Wubu showed generally slighter changes in leaf RWC and tissue water contents at day 2, corresponding well to the steady PIP transcript levels, foliar concentrations of chlorophyll, O2 •-, MDA, and free proline. At day 5, Wubu sustained higher tissue water contents in green tissues, displayed stronger responsiveness of PIP transcription, lower concentrations of soluble sugars and starch, lower foliar MDA, higher proline and soluble proteins, higher ROS accumulation and enhanced activities of several antioxidant enzymes. Our results indicate that whole-plant level responses of PIP transcription, osmoregulation through proline and soluble proteins and antioxidative protection are important mechanisms for mulberry to cope with drought stress. These traits play significant roles in conferring the relatively higher drought tolerance of cultivar Wubu and could be potentially useful for future mulberry improvement programmes.
Collapse
Affiliation(s)
- Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qiudi Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Sang Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jialing Cheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
8
|
Jaiswal AK, Alkan N, Elad Y, Sela N, Philosoph AM, Graber ER, Frenkel O. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci Rep 2020; 10:13934. [PMID: 32811849 PMCID: PMC7434890 DOI: 10.1038/s41598-020-70882-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
Molecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp. radicis lycopersici. RNA-seq transcriptome profiling of tomato, and experiments with jasmonic and salycilic acid deficient tomato mutants, were performed to elucidate the in planta molecular mechanisms involved in induced resistance. Biochar (produced from greenhouse plant wastes) was found to mediate systemic resistance against Fusarium crown rot and to simultaneously improve tomato plant growth and physiological parameters by up to 63%. Transcriptomic analysis (RNA-seq) of tomato demonstrated that biochar had a priming effect on gene expression and upregulated the pathways and genes associated with plant defense and growth such as jasmonic acid, brassinosteroids, cytokinins, auxin and synthesis of flavonoid, phenylpropanoids and cell wall. In contrast, biosynthesis and signaling of the salicylic acid pathway was downregulated. Upregulation of genes and pathways involved in plant defense and plant growth may partially explain the significant disease suppression and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Institute of Plant Harvest and Food Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Amit M Philosoph
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.
| |
Collapse
|
9
|
Root water uptake and its pathways across the root: quantification at the cellular scale. Sci Rep 2019; 9:12979. [PMID: 31506538 PMCID: PMC6737181 DOI: 10.1038/s41598-019-49528-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
The pathways of water across root tissues and their relative contribution to plant water uptake remain debated. This is mainly due to technical challenges in measuring water flux non-invasively at the cellular scale under realistic conditions. We developed a new method to quantify water fluxes inside roots growing in soils. The method combines spatiotemporal quantification of deuterated water distribution imaged by rapid neutron tomography with an inverse simulation of water transport across root tissues. Using this non-invasive technique, we estimated for the first time the in-situ radial water fluxes [m s−1] in apoplastic and cell-to-cell pathways. The water flux in the apoplast of twelve days-old lupins (Lupinus albus L. cv. Feodora) was seventeen times faster than in the cell-to-cell pathway. Hence, the overall contribution of the apoplast in water flow [m3 s−1] across the cortex is, despite its small volume of 5%, as large as 57 ± 8% (Mean ± SD for n = 3) of the total water flow. This method is suitable to non-invasively measure the response of cellular scale root hydraulics and water fluxes to varying soil and climate conditions.
Collapse
|