1
|
Colli C, Bali N, Scrocciolani C, Colosimo BM, Sponchioni M, Mauri E, Moscatelli D, Bandyopadhyay S. Zwitterionic thermoresponsive nanocomposites as functional systems for magnetic hyperthermia-activated drug delivery. Eur Polym J 2025; 224:113650. [DOI: 10.1016/j.eurpolymj.2024.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Haoufazane C, Zaaboul F, El Monfalouti H, Sebbar NK, Hefnawy M, El Hourch A, Kartah BE. A Sustainable Solution for the Adsorption of C.I. Direct Black 80, an Azoic Textile Dye with Plant Stems: Zygophyllum gaetulum in an Aqueous Solution. Molecules 2024; 29:4806. [PMID: 39459176 PMCID: PMC11510349 DOI: 10.3390/molecules29204806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The presence of pollutants in water sources, particularly dyes coming by way of the textile industry, represents a major challenge with far-reaching environmental consequences, including increased scarcity. This phenomenon endangers the health of living organisms and the natural system. Numerous biosorbents have been utilized for the removal of dyes from the textile industry. The aim of this study was to optimize discarded Zygophyllum gaetulum stems as constituting an untreated natural biosorbent for the efficient removal of C.I. Direct Black 80, an azo textile dye, from an aqueous solution, thus offering an ecological and low-cost alternative while recovering the waste for reuse. The biosorbent was subjected to a series of characterization analyses: scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), and infrared spectroscopy (IR) were employed to characterize the biosorbent. Additionally, the moisture and ash content of the plant stem were also examined. The absorption phenomenon was studied for several different parameters including the effect of the absorption time (0 to 360 min), the sorbent mass (3 to 40 g/L), the pH of the solution (3 to 11), the dye concentration (5 to 300 mg/L), and the pH of the zero-charge point (2-12). Thermodynamic studies and desorption studies were also carried out. The results showed that an increase in plant mass from 3 to 40 g/L resulted in a notable enhancement in dye adsorption rates, with an observed rise from 63.96% to 97.08%. The pH at the zero-charge point (pHpzc) was determined to be 7.12. The percentage of dye removal was found to be highest for pH values ≤ 7, with a subsequent decline in removal efficiency as the pH increased. Following an initial increase in the amount of adsorbed dye, equilibrium was reached within 2 h of contact. The kinetic parameters of adsorption were investigated using the pseudo-first-order, pseudo-second-order and Elovich models. The results indicated that the pseudo-first-order kinetic model was the most appropriate for the plant adsorbent. The isotherm parameters were determined using the Langmuir, Frendlich, Temkin, and Dubinin-Radushkevich models. The experimental data were more satisfactory and better fitted using the Langmuir model for the adsorption of dye on the plant. This study demonstrated that Zygophyllum gaetulum stems could be employed as an effective adsorbent for the removal of our organic dye from an aqueous solution.
Collapse
Affiliation(s)
- Chaimaa Haoufazane
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, P.O. Box 1014, Rabat 10090, Morocco; (C.H.); (N.K.S.); (B.E.K.)
| | - Fatima Zaaboul
- Laboratory of Materials, Nanotechnologies and Environment, Chemistry Department, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10090, Morocco; (F.Z.); (A.E.H.)
| | - Hanae El Monfalouti
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, P.O. Box 1014, Rabat 10090, Morocco; (C.H.); (N.K.S.); (B.E.K.)
| | - Nada Kheira Sebbar
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, P.O. Box 1014, Rabat 10090, Morocco; (C.H.); (N.K.S.); (B.E.K.)
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco
| | - Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abderrahim El Hourch
- Laboratory of Materials, Nanotechnologies and Environment, Chemistry Department, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10090, Morocco; (F.Z.); (A.E.H.)
| | - Badr Eddine Kartah
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, P.O. Box 1014, Rabat 10090, Morocco; (C.H.); (N.K.S.); (B.E.K.)
| |
Collapse
|
3
|
Satishkumar P, Isloor AM, Rao LN, Farnood R. Fabrication of 2D Vanadium MXene Polyphenylsulfone Ultrafiltration Membrane for Enhancing the Water Flux and for Effective Separation of Humic Acid and Dyes from Wastewater. ACS OMEGA 2024; 9:25766-25778. [PMID: 38911713 PMCID: PMC11191084 DOI: 10.1021/acsomega.3c10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 06/25/2024]
Abstract
MXene, a new 2D transition metal carbide-based material, is gaining outstanding attention in recent days in the area of separation and purification. In this study, we have successfully synthesized vanadium-based MXene-V2CT x (where T represents functional groups such as -OH, O, and F) by etching an aluminum layer from V2AlC. For the first time, a vanadium-based MXene-V2CT x -embedded mixed matrix membrane was fabricated and utilized for removal of hazardous dye and humic acid from wastewater. With an increase in V2CT x loading, the hydrophilicity of the polyphenylsulfone (PPSU) membrane reasonably improved, and its water contact angle was reduced from 82.8 to 70.9°. V2CT x nanosheet-embedded PPSU membrane exhibited an excellent pure water permeability of 247 L m-2 h-1, which was 266% elevated than the pristine PPSU membrane. The V2CT x -PPSU membrane revealed a good antifouling nature, thermal stability, and 98.5% removal of humic acid. The optimal membrane exhibited 96.6 and 82.02% expulsion of Reactive Black 5 (RB 5) dye and Reactive Orange 16 (RO 16) dye, respectively. The flux for RO 16 and RB 5 dyes and humic acid were remarkable with a value of 202.02, 161.61, and 141.41 L m-2 h-1, respectively. This work provides a new V2CT x -incorporated PPSU ultrafiltration membrane to effectively treat humic acid and dye wastewater.
Collapse
Affiliation(s)
- Prabhakar Satishkumar
- Membrane
and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, 575 025 Mangalore, India
| | - Arun M. Isloor
- Membrane
and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, 575 025 Mangalore, India
| | - Lakshmi Nidhi Rao
- Department
of Conservative Dentistry and Endodontics, A.B. Shetty Memorial Institute
of Dental Sciences, Nitte deemed to be University, Deralakatte, 575018 Mangalore, India
| | - Ramin Farnood
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, M5R OA3 Toronto, Canada
| |
Collapse
|
4
|
El-Khouly AS, Takahashi Y. Synthesis, Characterization, and Evaluation of the Adsorption Behavior of Cellulose-Graft-Poly(Acrylonitrile-co-Acrylic Acid) and Cellulose-Graft-Poly(Acrylonitrile-co-Styrene) towards Ni(II) and Cu(II) Heavy Metals. Polymers (Basel) 2024; 16:445. [PMID: 38337334 DOI: 10.3390/polym16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the synthesis and characterization of grafted cellulose fiber with binary monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acrylonitrile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption conditions were determined, including 8 h contact time, temperature of 30 °C, and pH 5.5. Cell-g-P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II) and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of 379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir model's high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.
Collapse
Affiliation(s)
- Amany S El-Khouly
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yoshiaki Takahashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| |
Collapse
|
5
|
Wei Z, Shen Z, Deng H, Kuang T, Wang J, Gu Z. Metal-polyphenol networks-modified tantalum plate for craniomaxillofacial reconstruction. Sci Rep 2024; 14:1023. [PMID: 38200230 PMCID: PMC10781789 DOI: 10.1038/s41598-024-51640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024] Open
Abstract
Using three-dimensional (3D) printing technology to make the porous tantalum plate and modify its surface. The physicochemical properties, cytocompatibility, antioxidant capacity, and histocompatibility of the modified materials were evaluated to prepare for the repair of craniomaxillofacial bone defects. The porous tantalum plates were 3D printed by selective laser melting technology. Tantalum plates were surface modified with a metal polyphenol network. The surface-modified plates were analyzed for cytocompatibility using thiazolyl blue tetrazolium bromide and live/dead cell staining. The antioxidant capacity of the surface-modified plates was assessed by measuring the levels of intracellular reactive oxygen species, reduced glutathione, superoxide dismutase, and malondialdehyde. The histocompatibility of the plates was evaluated by animal experiments. The results obtained that the tantalum plates with uniform small pores exhibited a high mechanical strength. The surface-modified plates had much better hydrophilicity. In vitro cell experiments showed that the surface-modified plates had higher cytocompatibility and antioxidant capacity than blank tantalum plates. Through subcutaneous implantation in rabbits, the surface-modified plates demonstrated good histocompatibility. Hence, surface-modified tantalum plates had the potential to be used as an implant material for the treatment of craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jinggang Wang
- Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, Guo Y, Wang R, Gan D, Shi J, Ma P, Gao F, Su H. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int J Nanomedicine 2023; 18:4485-4505. [PMID: 37576462 PMCID: PMC10416793 DOI: 10.2147/ijn.s418534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Cheng Yang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Junqiang Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Chao Zhang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Liaoliao Zhu
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yang Song
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yongdong Guo
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Ronglin Wang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Dongxue Gan
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Jingjie Shi
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Peixiang Ma
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Fei Gao
- Center for Peptide Functional Materials and Innovative Drugs, Institute of Translational Medicine, Shanghai University, ShangHai City, People’s Republic of China
| | - Haichuan Su
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| |
Collapse
|
7
|
Děkanovský L, Azadmanjiri J, Havlík M, Bhupender P, Šturala J, Mazánek V, Michalcová A, Zeng L, Olsson E, Khezri B, Sofer Z. Universal Capacitance Boost-Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor. SMALL METHODS 2023; 7:e2201329. [PMID: 36526601 DOI: 10.1002/smtd.202201329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3 C2 , Nb2 C, and V2 C), coated with functional and charged organic molecules (zwitterions-ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems.
Collapse
Affiliation(s)
- Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Martin Havlík
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Pal Bhupender
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jiří Šturala
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Alena Michalcová
- Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Lunjie Zeng
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96, Gothenburg, Sweden
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96, Gothenburg, Sweden
| | - Bahareh Khezri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
8
|
Duarte-Peña L, Magaña H, Bucio E. Catheters with Dual-Antimicrobial Properties by Gamma Radiation-Induced Grafting. Pharmaceutics 2023; 15:pharmaceutics15030960. [PMID: 36986822 PMCID: PMC10056229 DOI: 10.3390/pharmaceutics15030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Dual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized by infrared spectroscopy, thermogravimetric analysis, swelling tests, and contact angle to determine their surface characteristics. In addition, the capacity of the materials to deliver ciprofloxacin, inhibit bacterial growth, decrease bacterial and protein adhesion, and stimulate cell growth were evaluated. These materials have potential applications in the manufacturing of medical devices with antimicrobial properties, which can reinforce prophylactic potential or even help treat infections, through localized delivery systems for antibiotics.
Collapse
Affiliation(s)
- Lorena Duarte-Peña
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: (L.D.-P.); (E.B.)
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: (L.D.-P.); (E.B.)
| |
Collapse
|
9
|
Effect of SiO2 on PSF/PF127 nanocomposite mixed matrix membrane for the separation of oil–water emulsion. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Mohamed SIGP, Zhang T, Jiang Z, Rappe AM, Nejati S. One-Step Synthesis of Cationic Covalent Organic Frameworks. J Phys Chem Lett 2022; 13:10030-10034. [PMID: 36264234 DOI: 10.1021/acs.jpclett.2c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ionic covalent organic frameworks (iCOFs) have attractive properties that make them suitable for use as ion transport materials, as energy storage media, and for metal sorption. However, the synthetic pathways to prepare iCOFs are limited. Herein, we prepare an iCOF via a single-step reaction. The synthesized materials were isolated as polycrystalline nanowires. The theoretical and experimental data reveal that the synthesized iCOFs are predominately assembled into staggered configurations. The materials exhibit an uptake capacity of 3.5 g·g-1 for iodine. The ab initio calculations point to the role of bromide counterions, forming I2Br- as stable ions within the framework.
Collapse
Affiliation(s)
- Syed Ibrahim Gnani Peer Mohamed
- Department of Chemical and Biomolecular Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-8286, United States
| | - Tan Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Siamak Nejati
- Department of Chemical and Biomolecular Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-8286, United States
| |
Collapse
|
11
|
Gnani Peer Mohamed SI, Isloor AM, Farnood R. Catalyst- and Stabilizer-Free Rational Synthesis of Ionic Polymer Nanoparticles in One Step for Oil/Water Separation Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45800-45809. [PMID: 36173105 DOI: 10.1021/acsami.2c11814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ionic polymer nanoparticles (IPNs) were synthesized in one pot by quaternization precipitation polymerization (QPP) as a novel polymerization technique. QPP eliminated the usage of high-cost ionic monomers and reduced the number of steps for the preparation of IPN. The monomers 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 4-vinylbenzyl chloride (VBC) polymerized in the presence of azobisisobutyronitrile (AIBN) and underwent quaternization simultaneously, which yielded ionic poly(DMAEMA-co-VBC) nanoparticles in one step with the size of 50-80 nm without any stabilizer and catalyst. Similarly, 4-vinylpyridine (VP) and VBC polymerized in the presence of AIBN and underwent quaternization simultaneously, which yielded ionic poly(VP-co-VBC) nanoparticles in one step with the size of 70-90 nm without any stabilizer and catalyst. The as-synthesized IPN was further utilized for the fabrication of hydrophilic nanocomposite ultrafiltration membranes for oil/water separation. Fabricated hybrid membranes were characterized and studied for oil rejection properties. It exhibited an oil rejection of >96% with a pure water permeability of 219 L/m2 h bar.
Collapse
Affiliation(s)
- Syed Ibrahim Gnani Peer Mohamed
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Arun M Isloor
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S 3E5 Ontario, Canada
| |
Collapse
|
12
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
13
|
Development of Ti2AlN MAX phase/cellulose acetate nanocomposite membrane for removal of dye, protein and lead ions. Carbohydr Polym 2022; 296:119913. [DOI: 10.1016/j.carbpol.2022.119913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
|
14
|
Duarte-Peña L, Bucio E. Antifouling PVC Catheters by Gamma Radiation-Induced Zwitterionic Polymer Grafting. Polymers (Basel) 2022; 14:1185. [PMID: 35335516 PMCID: PMC8950535 DOI: 10.3390/polym14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
In medical environments, polymeric surfaces tend to become contaminated, hindering the treatment and recovery from diseases. Biofouling-resistant materials, such as zwitterionic polymers, may mitigate this problem. In this work, the modification of PVC catheters with a binary graft of 4-vinylpyridine (4VP) and sulfobetaine methacrylate (SBMA) by the oxidative pre-irradiation method is proposed to develop pH-responsive catheters with an antifouling capacity. The ionizing radiation allowed us to overcome limitations in the synthesis associated with the monomer characteristics. In addition, the grafted materials showed a considerable increase in their hydrophilic character and antifouling capacity, significantly decreasing the protein adsorption compared to the unmodified catheters. These materials have potential for the development of a combined antimicrobial and antifouling capabilities system to enhance prophylactic activity or even to help treat infections.
Collapse
Affiliation(s)
- Lorena Duarte-Peña
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
15
|
Sharma A, Sinha S, Keswani H, Shrivastava N. Kaempferol and Apigenin suppresses the stemness properties of TNBC cells by modulating Sirtuins. Mol Divers 2022; 26:3225-3240. [PMID: 35129762 DOI: 10.1007/s11030-022-10384-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Sirtuins (SIRTs) overexpression serves as a potential therapeutic target for TNBC because it is associated with bioactivities of cancer stem cells (CSCs), resistance to chemotherapy, and metastasis. Irrespective of the availability of synthetic SIRT inhibitors, new SIRT inhibitors with enhanced potency and lesser side effects serve as current unmet needs. Therefore, bioactive dietary compounds; kaempferol (KMP) and apigenin (API) were investigated for their anti-SIRTs potential. We observed KMP and API inhibits cellular proliferation by DNA damage and S-phase cell cycle arrest in TNBC Cells. They also suppress stemness properties in TNBCs as observed in experiments of mammosphere formation and clonogenic potential. Our mechanistic approach indicated that KMP and API inhibited SIRT3 and SIRT6 proteins, as evidenced by our in silico and in vitro experiment. Collectively, our studies suggest that KMP and API are promising candidates to be further developed as sirtuin modulators against TNBCs.
Collapse
Affiliation(s)
- Abhilasha Sharma
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Sonam Sinha
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Kashiv Biosciences, FP 27/2,43, TP-86, BLOCK-B OPP. Apple Woods Township, SP Ring Road, 382210, Ahmedabad, Gujarat, India
| | - Harshita Keswani
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Department of Biotechnology and Biochemistry, St. Xavier's College, Ahmedabad, India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
- Shri B.V. Patel Education Trust, Ahmedabad, Gujarat, India.
| |
Collapse
|
16
|
King BM, Fiegel J. Zwitterionic Polymer Coatings Enhance Gold Nanoparticle Stability and Uptake in Various Biological Environments. AAPS J 2022; 24:18. [PMID: 34984558 DOI: 10.1208/s12248-021-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Zwitterionic polymers are a class of materials that have demonstrated utility as non-fouling surfaces for medical devices and drug delivery vehicles. Here, we develop a synthesis protocol to produce zwitterionic polymers as coatings for gold nanoparticles and evaluate nanoparticle stability and biological function after exposure to various biological fluids. Thiol-functionalized polymethacryloyloxyethyl phosphorylcholine polymers (pMPC) were synthesized in nontoxic solvents via photoinitiated free radical polymerization with a radical addition-fragmentation chain transfer (RAFT) agent and coated onto gold nanoparticles. pMPC-coated nanoparticles exhibited reduced particle aggregation, improved suspension stability, and decreased protein adsorption upon exposure to serum and lung lavage fluid (BALF). Cell uptake in A549 cells was greater for pMPC-coated particles than uncoated particles after exposure to serum and BALF, with no observed cell toxicity, but pMPC-coated particles experienced higher levels of cell uptake after serum exposure than BALF exposure, suggesting that differences in the composition of the fluids result in differing impacts on particle fate. These zwitterionic polymers may serve as useful nanoparticle coatings to enhance particle stability and uptake in various biological environments.
Collapse
Affiliation(s)
- Benjamin M King
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
17
|
Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119822] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
A review of the design of packing materials for ion chromatography. J Chromatogr A 2021; 1653:462313. [PMID: 34332319 DOI: 10.1016/j.chroma.2021.462313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022]
Abstract
The development of ion chromatography has made remarkable progress in the past few decades, and it is now widely used for the analysis of common ions and organic compounds. Ion chromatography has many advantages, such as fast, high sensitivity, good selectivity and support for simultaneous analysis of multiple ionic compounds. In order to meet the high requirements of material analysis, new packing materials for ion chromatography with higher sensitivity and selectivity have been developed. In this paper, a lot of knowledge of ion chromatography is reviewed, and the development of ion chromatographic packings in recent years, especially in the last five years, is summarized.
Collapse
|
20
|
Chen P, Lang J, Franklin T, Yu Z, Yang R. Reduced Biofilm Formation at the Air-Liquid-Solid Interface via Introduction of Surfactants. ACS Biomater Sci Eng 2021. [PMID: 33821617 DOI: 10.1021/acsbiomaterials.0c01691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reduced biofilm formation is highly desirable in applications ranging from transportation to separations and healthcare. Biofilms often form at the three-phase interface where air, liquid, and solid coexist due to the close proximity to nutrients and oxygen. Reducing biofilm formation at the triple interface presents challenges because of the conflicting requirements for hydrophobicity at the air-solid interface (for self-cleaning properties) and for hydrophilicity at the liquid-solid interface (for reduced foulant adhesion). Meeting those needs simultaneously likely entails a dynamic surface, capable of shifting the surface energy landscape in response to wetting conditions and thus enabling hydrophobicity in air and hydrophilicity in water. Here, we designed a facile approach to render existing surfaces resistant to biofilm formation at the triple interface. By adding trace amounts (∼0.1 mM) of surfactants, biofilm formation of Pseudomonas aeruginosa (known to form biofilm at the triple interface) was reduced on all surfaces tested, ranging from hydrophilic to hydrophobic, polar to nonpolar. That reduced fouling was not a result of the known antimicrobial effects. Instead, it was attributed to the surface-adsorbed surfactants that dynamically control surface energy at the triple interface. To further understand the effect of surfactant-surface interactions on biofilm reduction, we systematically varied the surfactant charge type and surface properties (surface energy and charge). Electrostatic interactions between surfactants and surfaces were identified as an influential factor when predicting the relative fouling reduction upon introduction of surfactants. Nevertheless, biofilm formation was reduced even on the charge-neutral, fluorinated surface made of poly(1H, 1H, 2H, 2H-perfluorodecyl acrylate) by more than 2-fold simply via adding 0.2 mM dodecyl trimethylammonium chloride or 0.3 mM sodium dodecyl sulfate. Given its robustness, this strategy is broadly applicable for reducing fouling on existing surfaces, which in turn improves the cost-effectiveness of membrane separations and mitigates contaminations and nosocomial infections in healthcare.
Collapse
Affiliation(s)
- Pengyu Chen
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jiayan Lang
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Trevor Franklin
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zichen Yu
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
G.N. M, M. HK. Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Ibrahim S, Mohammadi Ghaleni M, Isloor AM, Bavarian M, Nejati S. Poly(Homopiperazine-Amide) Thin-Film Composite Membrane for Nanofiltration of Heavy Metal Ions. ACS OMEGA 2020; 5:28749-28759. [PMID: 33195928 PMCID: PMC7659160 DOI: 10.1021/acsomega.0c04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The development of membrane-based technologies for the treatment of wastewater streams and resources containing heavy metal ions is in high demand. Among various technologies, nanofiltration (NF) membranes are attractive choices, and the continuous development of novel materials to improve the state-of-the-art NF membranes is highly desired. Here, we report on the synthesis of poly(homopiperazine-amide) thin-film composite (HTFC)-NF membranes, using homopiperazine (HP) as a monomer. The surface charge, hydrophilicity, morphology, cross-linking density, water permeation, solute rejection, and antifouling properties of the fabricated NF membranes were evaluated. The fabricated HTFC NF membranes demonstrated water permeability of 7.0 ± 0.3 L/(m2 h bar) and rejected Na2SO4, MgSO4, and NaCl with rejection values of 97.0 ± 0.6, 97.4 ± 0.5, and 23.3 ± 0.6%, respectively. The membranes exhibit high rejection values of 98.1 ± 0.3 and 96.3 ± 0.4% for Pb2+ and Cd2+ ions, respectively. The fouling experiment with humic acid followed by cross-flow washing of the membranes indicates that a flux recovery ratio (FRR) of 96.9 ± 0.4% can be obtained.
Collapse
Affiliation(s)
- Syed Ibrahim
- Membrane
Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Mahdi Mohammadi Ghaleni
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| | - Arun M. Isloor
- Membrane
Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Apahatech
Solutions LLP, Science and
Technology Entrepreneurs Park, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Mona Bavarian
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| | - Siamak Nejati
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| |
Collapse
|
23
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
24
|
Jafar Mazumder MA, Raja PH, Isloor AM, Usman M, Chowdhury SH, Ali SA, Inamuddin, Al-Ahmed A. Assessment of sulfonated homo and co-polyimides incorporated polysulfone ultrafiltration blend membranes for effective removal of heavy metals and proteins. Sci Rep 2020; 10:7049. [PMID: 32341422 PMCID: PMC7184734 DOI: 10.1038/s41598-020-63736-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/07/2022] Open
Abstract
Sulfonated homo and co- polyimide (sPI) were synthesized with new compositional ratios, and used as additives (0.5 wt%, 0.75 wt%, and 1.0 wt%) to prepare blend membranes with polysulfone (PSf). Flat sheet membranes for ultrafiltration (UF) were casted using the phase inversion technique. Surface morphology of the prepared UF membranes were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Surface charge of the membranes were determined by zeta potential, and hydrophilicity was studied by contact angle measurement. The contact angle of the membrane decreased with increasing sPI additive indicates increasing the hydrophilicity of the blend membranes. Filtration studies were conducted for rejection of heavy metals (Pb2+ and Cd2+) and proteins (pepsin and BSA). Blend membranes showed better rejection than pure PSf membrane. Among the blend membranes it was observed that with increasing amount of sPIs enhance the membrane properties and finally, PSf-sPI5 membrane with 1 wt% of sPI5 showed the improved permeability (72.1 L m-2 h-1 bar-1), and the best rejection properties were found for both metal ions (≈98% of Pb2+; ≈92% of Cd2+) and proteins (>98% of BSA; > 86% of Pepsin). Over all, this membrane was having better hydrophilicity, porosity and higher number of sites to attach the metal ions. Its performance was even better than several-reported sulfonic acid based UF membranes. All these intriguing properties directed this new UF membrane for its potential application in wastewater treatment.
Collapse
Affiliation(s)
| | - Panchami H Raja
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Muhammad Usman
- Center for Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shakhawat H Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Amir Al-Ahmed
- Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
25
|
Syed Ibrahim GP, Isloor AM, Ismail AF, Farnood R. One-step synthesis of zwitterionic graphene oxide nanohybrid: Application to polysulfone tight ultrafiltration hollow fiber membrane. Sci Rep 2020; 10:6880. [PMID: 32327672 PMCID: PMC7181782 DOI: 10.1038/s41598-020-63356-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
In this paper, novel zwitterionic graphene oxide (GO) nanohybrid was synthesized using monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and N,N′-methylenebis(acrylamide) (MBAAm) (GO@poly(SBMA-co-MBAAm), and incorporated into polysulfone (PSF) hollow fiber membrane for the effectual rejection of dye from the wastewater. The synthesized nanohybrid was characterized using FT-IR, PXRD, TGA, EDX, TEM and zeta potential analysis. The occurrence of nanohybrid on the membrane matrix and the elemental composition were analyzed by XPS. The as-prepared tight ultrafiltration hollow fiber membrane exhibited high rejection of reactive black 5 (RB-5, 99%) and reactive orange 16 (RO-16, 74%) at a dye concentration of 10 ppm and pure water flux (PWF) of 49.6 L/m2h. Fabricated nanocomposite membranes were also studied for their efficacy in the removal of both monovalent (NaCl) and divalent salts (Na2SO4). The results revealed that the membrane possesses complete permeation to NaCl with less rejection of Na2SO4 (<5%). In addition, the nanocomposite membrane revealed outstanding antifouling performance with the flux recovery ratio (FRR) of 73% towards bovine serum albumin (BSA). Therefore, the in-house prepared novel nanocomposite membrane is a good candidate for the effective decolorization of wastewater containing dye.
Collapse
Affiliation(s)
- G P Syed Ibrahim
- Membrane and Separation Technology Laboratory, Chemistry Department, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane and Separation Technology Laboratory, Chemistry Department, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575 025, India. .,Apahatech Solutions LLP, Science & Technology Entrepreneurs Park, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India.
| | - A F Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3ES, Canada
| |
Collapse
|
26
|
Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm 2020; 582:119346. [PMID: 32315749 DOI: 10.1016/j.ijpharm.2020.119346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
New insights about nanomaterials' biodistribution revealed their ability to achieve tumor accumulation by taking advantage from the dynamic vents occurring in tumor's vasculature. This paradigm-shift emphasizes the importance of extending nanomaterials' blood circulation time to enhance their tumor uptake. The classic strategy to improve nanomaterials' stability during circulation relies on their functionalization with poly(ethylene glycol). However, recent reports have been showing that PEGylated nanomaterials can suffer from the accelerated blood clearance phenomenon, emphasizing the importance of developing novel coatings for functionalizing the nanomaterials. To address this limitation, the modification of natural carriers' surface to enhance their stability appears to be a promising strategy. Herein, sulfobetaine methacrylate (SBMA)-functionalized bovine serum albumin (BSA) was synthesized for the first time to investigate the capacity of this modification to improve the resulting nanoparticles' physicochemical properties, colloidal stability and in vitro performance. This novel polymer was then employed in the formulation of nanoparticles loaded with IR780 for application in breast cancer phototherapy (IR/SBMA-BSA NPs). When compared to their non-functionalized equivalents, the IR/SBMA-BSA NPs presented a neutral surface charge and a higher stability in biologically relevant media. Due to these features, the IR/SBMA-BSA NPs could achieve a 1.9-fold greater uptake by breast cancer cells than IR/BSA NPs. Furthermore, the IR/SBMA-BSA NPs were cytocompatible towards normal cells and reduced breast cancer cells' viability up to 42%. The phototherapy mediated by IR/SBMA-BSA NPs could further decrease cancer cells' viability to about 12%. Overall, the IR/SBMA-BSA NPs have enhanced features that propel their application in breast cancer phototherapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
27
|
Liu L, Gou S, Zhang H, Zhou L, Tang L, Liu L. A zwitterionic polymer containing a hydrophobic group: enhanced rheological properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01687j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A zwitterionic polymer containing a hydrophobic long chain, named MANPS, was independently developed by free radical solution polymerization.
Collapse
Affiliation(s)
- Ling Liu
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Shaohua Gou
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
| | | | - Lihua Zhou
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Lan Tang
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Lang Liu
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| |
Collapse
|
28
|
Kumar BYS, Isloor AM, Kumar GCM, Inamuddin, Asiri AM. Nanohydroxyapatite Reinforced Chitosan Composite Hydrogel with Tunable Mechanical and Biological Properties for Cartilage Regeneration. Sci Rep 2019; 9:15957. [PMID: 31685836 PMCID: PMC6828803 DOI: 10.1038/s41598-019-52042-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023] Open
Abstract
With the continuous quest of developing hydrogel for cartilage regeneration with superior mechanobiological properties are still becoming a challenge. Chitosan (CS) hydrogels are the promising implant materials due to an analogous character of the soft tissue; however, their low mechanical strength and durability together with its lack of integrity with surrounding tissues hinder the load-bearing application. This can be solved by developing a composite chitosan hydrogel reinforced with Hydroxyapatite Nanorods (HANr). The objective of this work is to develop and characterize (physically, chemically, mechanically and biologically) the composite hydrogels loaded with different concentration of hydroxyapatite nanorod. The concentration of hydroxyapatite in the composite hydrogel was optimized and it was found that, reinforcement modifies the hydrogel network by promoting the secondary crosslinking. The compression strength could reach 1.62 ± 0.02 MPa with a significant deformation of 32% and exhibits time-dependent, rapid self-recoverable and fatigue resistant behavior based on the cyclic loading-unloading compression test. The storage modulus value can reach nearly 10 kPa which is needed for the proposed application. Besides, composite hydrogels show an excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus bacteria's and Candida albicans fungi and their cytocompatibility towards L929 mouse fibroblasts provide a potential pathway to developing a composite hydrogel for cartilage regeneration.
Collapse
Affiliation(s)
- B Y Santosh Kumar
- Polymer Composites Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India.
| | - G C Mohan Kumar
- Polymer Composites Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India.
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
29
|
Kumar M, RaoT. S, Isloor AM, Ibrahim GS, Inamuddin, Ismail N, Ismail AF, Asiri AM. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int J Biol Macromol 2019; 129:715-727. [DOI: 10.1016/j.ijbiomac.2019.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 12/07/2022]
|
30
|
Masilompane TM, Chaukura N, Mishra SB, Mishra AK. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Int J Biol Macromol 2018; 120:1659-1666. [DOI: 10.1016/j.ijbiomac.2018.09.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/03/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
|
31
|
Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Sci Rep 2018; 8:4665. [PMID: 29549259 PMCID: PMC5856751 DOI: 10.1038/s41598-018-22837-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 01/15/2023] Open
Abstract
Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.
Collapse
|