1
|
Wang Y, Shao L, Zhao Z, Huang C, Jiao Y, Sun D, Liu R, Jiang D, Gao X. Simultaneous detection of dual microRNAs related to EV71 using ICP-MS based on metal nanoparticle labeling with hybridization chain reaction. Anal Chim Acta 2024; 1294:342272. [PMID: 38336408 DOI: 10.1016/j.aca.2024.342272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Hand, foot, and mouth (HMFD) disease caused by enterovirus 71 (EV 71), is closely associated with severe clinical manifestations and can be deadly. Early detection of EV 71 can be achieved by detecting the increment in miR296 and miR16 in the serum. Using HCR to amplify signals and convert biological signals into metal nanoparticle signals detectable by ICP-MS is a detection method that can collect more accurate and reliable information, compared with traditional methods, in the detection of biological samples. RESULTS We described a strategy for the simultaneous detection of miR296 and miR16 by ICP-MS based on metal nanoparticles (NPs) labeling with HCR. Briefly, single-stranded DNA (ssDNA) and magnetic beads (MBs), as well as NPs and signal probes for miRNA (Sp-miR) were firstly conjugated via the streptavidin-biotin recognition system, constituting ssDNA-MBs and NPs-Sp-miR complex, respectively. The latter complex then hybridized with the former through HCR, generating the nanosensors for targets. Then, the targets were added and hybridized with ssDNA, and the HCR complex with NPs was released into the solution. Finally, the corresponding signals of the NPs were measured by ICP-MS. Results demonstrated that the developed method had good sensitivity and satisfactory selectivity and precision. Furthermore, when applied to biological samples with a complex matrix, the developed method also showed good recovery (88 % - 92 %) and reproducibility (RSD<10 %). SIGNIFICANCE This method contributes to the early diagnosis of HFMD and opens up ideas for the further development of high-throughput biomarker detection. The strategy has practical potential for miR296 and miR16 detection in biological samples and provides a promising tool for multiple miRNA detection.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China; Department of Transfusion Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Zhigang Zhao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dapeng Sun
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Rui Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
2
|
Chaaban A, Salman Z, Karam L, Kobeissy PH, Ibrahim JN. Updates on the role of epigenetics in familial mediterranean fever (FMF). Orphanet J Rare Dis 2024; 19:90. [PMID: 38409042 PMCID: PMC10898143 DOI: 10.1186/s13023-024-03098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease caused by mutations in the MEFV (MEditerranean FeVer) gene that affects people originating from the Mediterranean Sea. The high variability in severity and clinical manifestations observed not only between ethnic groups but also between and within families is mainly related to MEFV allelic heterogeneity and to some modifying genes. In addition to the genetic factors underlying FMF, the environment plays a significant role in the development and manifestation of this disease through various epigenetic mechanisms, including DNA methylation, histone modification, and noncoding RNAs. Indeed, epigenetic events have been identified as an important pathophysiological determinant of FMF and co-factors shaping the clinical picture and outcome of the disease. Therefore, it is essential to better understand the contribution of epigenetic factors to autoinflammatory diseases, namely, FMF, to improve disease prognosis and potentially develop effective targeted therapies. In this review, we highlight the latest updates on the role of epigenetics in FMF.
Collapse
Affiliation(s)
- Ahlam Chaaban
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Zeina Salman
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
3
|
Chen W, Li J, Li J, Zhang J, Zhang J. Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Curr Microbiol 2022; 79:247. [PMID: 35834056 PMCID: PMC9281230 DOI: 10.1007/s00284-022-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Jinwei Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jiayu Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
4
|
Huang X, Xu X, Ke H, Pan X, Ai J, Xie R, Lan G, Hu Y, Wu Y. microRNA-16-5p suppresses cell proliferation and angiogenesis in colorectal cancer by negatively regulating forkhead box K1 to block the PI3K/Akt/mTOR pathway. Eur J Histochem 2022; 66. [PMID: 35536149 PMCID: PMC9134092 DOI: 10.4081/ejh.2022.3333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Xuan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Huajing Ke
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Xiaolin Pan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Ruyi Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Guilian Lan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Yang Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Yao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| |
Collapse
|
5
|
Hsieh M, Huang PJ, Chou PY, Wang SW, Lu HC, Su WW, Chung YC, Wu MH. Carbonic Anhydrase VIII (CAVIII) Gene Mediated Colorectal Cancer Growth and Angiogenesis through Mediated miRNA 16-5p. Biomedicines 2022; 10:1030. [PMID: 35625769 PMCID: PMC9138292 DOI: 10.3390/biomedicines10051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Carbonic anhydrase VIII (CAVIII) is a member of the CA family, while CA8 is the oncogene. Here we observed increased expression of CAVIII with high expression in colorectal cancer tissues. CAVIII is also expressed in more aggressive types of human colorectal cancer cells. Upregulated CAVIII expression in SW480 cell lines increased vascular endothelial growth factor (VEGF) and reduced miRNA16-5p. Conversely, knockdown of the CAVIII results in VEGF decline by up-regulated miRNA16-5p. Moreover, the collection of different grades of CAVIII expression CRC cells supernatant co-culture with endothelial progenitor cells (EPCs) promotes the ability of tube formation in soft agar and migration in the Transwell experiment, indicating that CAVIII might facilitate cancer-cell-released VEGF via the inhibition of miRNA16-5p signaling. Furthermore, in the xenograft tumor angiogenesis model, knockdown of CAVIII significantly reduced tumor growth and tumor-associated angiogenesis. Taken together, our results prove that the CAVIII/miR-16-5p signaling pathway might function as a metastasis suppressor in CRC. Targeting CAVIII/miR-16-5p may provide a strategy for blocking its metastasis.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan;
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Pei-Yu Chou
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Senior Life and Innovation Technology Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
| | - Shih-Wei Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hsi-Chi Lu
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Food Science Department and Graduate Institute, Tunghai University, Taichung 407, Taiwan
| | - Wei-Wen Su
- Department of Gastroenterology and Hepatology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yuan-Chiang Chung
- Department of Surgery, Cheng-Ching General Hospital, Taichung 407, Taiwan;
- Department of Surgery, Kuang Tien General Hospital, Taichung 407, Taiwan
| | - Min-Huan Wu
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Senior Life and Innovation Technology Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
| |
Collapse
|
6
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
7
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Eyileten C, Wicik Z, Simões SN, Martins-Jr DC, Klos K, Wlodarczyk W, Assinger A, Soldacki D, Chcialowski A, Siller-Matula JM, Postula M. Thrombosis-related circulating miR-16-5p is associated with disease severity in patients hospitalised for COVID-19. RNA Biol 2022; 19:963-979. [PMID: 35938548 PMCID: PMC9361765 DOI: 10.1080/15476286.2022.2100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
SARS-CoV-2 tropism for the ACE2 receptor, along with the multifaceted inflammatory reaction, is likely to drive the generalized hypercoagulable and thrombotic state seen in patients with COVID-19. Using the original bioinformatic workflow and network medicine approaches we reanalysed four coronavirus-related expression datasets and performed co-expression analysis focused on thrombosis and ACE2 related genes. We identified microRNAs (miRNAs) which play role in ACE2-related thrombosis in coronavirus infection and further, we validated the expressions of precisely selected miRNAs-related to thrombosis (miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p) in 79 hospitalized COVID-19 patients and 32 healthy volunteers by qRT-PCR. Consequently, we aimed to unravel whether bioinformatic prioritization could guide selection of miRNAs with a potential of diagnostic and prognostic biomarkers associated with disease severity in patients hospitalized for COVID-19. In bioinformatic analysis, we identified EGFR, HSP90AA1, APP, TP53, PTEN, UBC, FN1, ELAVL1 and CALM1 as regulatory genes which could play a pivotal role in COVID-19 related thrombosis. We also found miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p as regulators in the coagulation and thrombosis process. In silico predictions were further confirmed in patients hospitalized for COVID-19. The expression levels of miR-16-5p and let-7b in COVID-19 patients were lower at baseline, 7-days and 21-day after admission compared to the healthy controls (p < 0.0001 for all time points for both miRNAs). The expression levels of miR-27a-3p and miR-155-5p in COVID-19 patients were higher at day 21 compared to the healthy controls (p = 0.007 and p < 0.001, respectively). A low baseline miR-16-5p expression presents predictive utility in assessment of the hospital length of stay or death in follow-up as a composite endpoint (AUC:0.810, 95% CI, 0.71-0.91, p < 0.0001) and low baseline expression of miR-16-5p and diabetes mellitus are independent predictors of increased length of stay or death according to a multivariate analysis (OR: 9.417; 95% CI, 2.647-33.506; p = 0.0005 and OR: 6.257; 95% CI, 1.049-37.316; p = 0.044, respectively). This study enabled us to better characterize changes in gene expression and signalling pathways related to hypercoagulable and thrombotic conditions in COVID-19. In this study we identified and validated miRNAs which could serve as novel, thrombosis-related predictive biomarkers of the COVID-19 complications, and can be used for early stratification of patients and prediction of severity of infection development in an individual.Abbreviations: ACE2, angiotensin-converting enzyme 2AF, atrial fibrillationAPP, Amyloid Beta Precursor ProteinaPTT, activated partial thromboplastin timeAUC, Area under the curveAβ, amyloid betaBMI, body mass indexCAD, coronary artery diseaseCALM1, Calmodulin 1 geneCaM, calmodulinCCND1, Cyclin D1CI, confidence intervalCOPD, chronic obstructive pulmonary diseaseCOVID-19, Coronavirus disease 2019CRP, C-reactive proteinCV, CardiovascularCVDs, cardiovascular diseasesDE, differentially expressedDM, diabetes mellitusEGFR, Epithelial growth factor receptorELAVL1, ELAV Like RNA Binding Protein 1FLNA, Filamin AFN1, Fibronectin 1GEO, Gene Expression OmnibushiPSC-CMs, Human induced pluripotent stem cell-derived cardiomyocytesHSP90AA1, Heat Shock Protein 90 Alpha Family Class A Member 1Hsp90α, heat shock protein 90αICU, intensive care unitIL, interleukinIQR, interquartile rangelncRNAs, long non-coding RNAsMI, myocardial infarctionMiRNA, MiR, microRNAmRNA, messenger RNAncRNA, non-coding RNANERI, network-medicine based integrative approachNF-kB, nuclear factor kappa-light-chain-enhancer of activated B cellsNPV, negative predictive valueNXF, nuclear export factorPBMCs, Peripheral blood mononuclear cellsPCT, procalcitoninPPI, Protein-protein interactionsPPV, positive predictive valuePTEN, phosphatase and tensin homologqPCR, quantitative polymerase chain reactionROC, receiver operating characteristicSARS-CoV-2, severe acute respiratory syndrome coronavirus 2SD, standard deviationTLR4, Toll-like receptor 4TM, thrombomodulinTP53, Tumour protein P53UBC, Ubiquitin CWBC, white blood cells.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo AndréBrazil
| | - Sérgio N. Simões
- Department of Informatics, Federal Institute of Espírito Santo, Serra, Brazil
| | - David C. Martins-Jr
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo AndréBrazil
| | - Krzysztof Klos
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Wojciech Wlodarczyk
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Dariusz Soldacki
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Chcialowski
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
9
|
Lu Y, Long M, Gao Z, Liu C, Dong K, Zhang H. Long non-coding RNA ENST00000469812 promotes Enterovirus type 71 replication via targeting the miR-4443/NUPR1 axis in rhabdomyosarcoma cells. Arch Virol 2022; 167:2601-2611. [PMID: 36269411 PMCID: PMC9589540 DOI: 10.1007/s00705-022-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by Enterovirus type 71 (EV71) is a serious threat to children's health. However, the pathogenic mechanism of EV71 is still unclear. Long non-coding RNAs (lncRNAs), some of which bind to miRNA as competitive endogenous RNAs (ceRNA) and weaken the silencing effect on the mRNA of downstream target genes, play a key role in regulating the viral infection process. In this study, through experimental verification, we found miR-4443 to be downregulated in cells infected with EV71. Next, by predicting lncRNAs that potentially regulate miR-4443, we found that EV71 infection induced upregulation of lncRNA ENST00000469812 and then further downregulated miR-4443 expression by direct interaction. We also demonstrated that nuclear protein 1 (NUPR1) is one of the target genes of miR-4443 and is involved in the ENST00000469812/miR-4443/NUPR1 regulatory axis. Finally, the ENST00000469812/miR-4443/NUPR1 regulatory axis exhibited a positive effect on EV71 replication. Here, we lay a foundation for exploring the pathogenic mechanism of EV71 and identify potential targets for HFMD treatment.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China ,Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
10
|
Apoptosis Enhances the Replication of Human Coronavirus OC43. Viruses 2021; 13:v13112199. [PMID: 34835005 PMCID: PMC8619903 DOI: 10.3390/v13112199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
Human coronavirus OC43 (HCoV-OC43) is one of the coronaviruses causing a mild common cold, but few studies have been made on this strain. Here, we identified the molecular mechanisms involved in HCoV-OC43-induced apoptosis and its implications for viral reproduction in Vero cells and MRC-5 cells. HCoV-OC43 infection induced apoptosis that was accompanied by cleavage of caspase-3 and PARP, degradation of cyclin D1, and cell cycle arrest at S and G2M phases. Dephosphorylation of STAT1 and STAT3, induced by HCoV-OC43 infection, was also associated with HCoV-OC43-mediated apoptosis. The pan-caspase inhibitor effectively prevented HCoV-OC43-induced apoptosis and reduced viral replication, suggesting that apoptosis contributes to viral replication. Collectively our results indicate that HCoV-OC43 induces caspase-dependent apoptosis to promote viral replication in Vero cells and MRC-5 cells.
Collapse
|
11
|
Han L, Yuan Y, Hu J, Li J, Zhu S, Yang P, Cheng A, Li X, Shen C. Next-generation sequencing sheds light on the interaction between virus and cell during foot-and-mouth disease virus persistent infection. Vet Microbiol 2021; 263:109247. [PMID: 34649012 DOI: 10.1016/j.vetmic.2021.109247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Foot-and-mouth disease virus (FMDV) infection can be either persistent or acute in susceptible animals. The mechanisms involved in FMDV replication and clearance during persistent infection remain unclear. To identify host factors that are critical for FMDV replication during persistent infection, we used RNA-seq to compare the transcriptomes of infected (BHK-Op) cells and bystander (BHK-VEC) cells, which are exposed to FMDV but not infected. In total, 1917 genes were differentially expressed between BHK-Op cells and BHK-VEC cells, which were involved in ribosome biogenesis, cell cycle, and dilated cardiomyopathy. We further identified host genes potentially involved in viral clearance during persistent FMDV infection by comprehensive crossover analysis of differentially expressed genes in ancestral host cells, evolved infected host cells, and evolved bystander cells, which are resistant to infection by wild-type FMDV and FMDV-Op that co-evolved with host cells during persistent infection. Among the identified genes were Cav1 and Ccnd1. Subsequent experiments showed that knockdown of Cav1 and Ccnd1 in host cells significantly promoted and inhibited FMDV replication, respectively, confirming that the overexpression of Cav1 and the downregulation of Ccnd1 contribute to virus clearance during persistent FMDV infection. In addition, we found that BHK-Op cells contained mixtures of multiple genotypes of FMDV viruses, shedding light on the diversity of FMDV genotypes during persistent infection. Our findings provide a detailed overview of the responses of infected cells and bystander cells to persistent FMDV infection.
Collapse
Affiliation(s)
- Lingling Han
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianjun Hu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiadai Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shumin Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pu Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Andi Cheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinmei Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430072, China; China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Leroux C, Chervet ML, German JB. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv Nutr 2021; 12:1625-1635. [PMID: 34022770 PMCID: PMC8483967 DOI: 10.1093/advances/nmab059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Evolutionary selective pressure on lactation has resulted in milk that provides far more than simply essential nutrients, delivering a complex repertoire of agents from hormones to intact cells. Human infants are born with low barrier integrity of their gut, which means that many of the complex biopolymer components of milk enter and circulate in lymph and blood, reaching organs throughout the body. Due to this state of gut maturation, all components of milk are potentially part of the crosstalk between mother and infants. This article highlights the functions of milk's complex biopolymers, more specifically the potential role of microRNAs (miRNAs) contained in extracellular vesicles in human milk. miRNAs are key effectors in the regulation of many biological processes during early-age development, and consequently milk-sourced miRNAs must be considered to provide unique biological assets to the infant during breastfeeding. This article interprets the evidence of the potential action of human milk miRNAs on infant development, taking into account their abundance in milk based on the literature and current knowledge. Human milk miRNAs appear to influence lipid and glucose metabolism, gut maturation, neurogenesis, and immunity. We also show growing evidence that human milk miRNAs are epigenetic modulators that play a pivotal role in the regulation of tissue-specific gene expression throughout life. Furthermore, this article addresses the ongoing debate regarding the potential influence of human milk miRNAs on viral infection as a new research area. This article highlights that these bioactive molecules are now being incorporated into our overall understanding of nutrient needs for healthy infant development, preparing each individual infant to succeed as a healthy and protected adult throughout its life. In essence, miRNAs are a new language in the Rosetta stone of health that is mammalian lactation.
Collapse
Affiliation(s)
| | - Mathilde Lea Chervet
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
13
|
The microRNA analysis portal is a next-generation tool for exploring and analyzing miRNA-focused data in the literature. Sci Rep 2021; 11:9007. [PMID: 33903708 PMCID: PMC8076240 DOI: 10.1038/s41598-021-88617-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs constitute a class of noncoding small RNAs involved in the posttranscriptional regulation of many biological pathways. In recent years, microRNAs have also been associated with regulation across kingdoms, demonstrating that exogenous miRNAs can function in mammals in a fashion similar to mammalian miRNAs. The growing interest in microRNAs and the increasing amount of literature and molecular and biomedical data available make it difficult to identify records of interest and keep up to date with novel findings. For these reasons, we developed the microRNA Analysis Portal (MAP). MAP selects relevant miRNA-focused articles from PubMed, links biomedical and molecular data and applies bioinformatics modules. At the time of this writing, MAP represents the richest, most complete and integrated database focused on microRNAs. MAP also integrates an updated version of MirCompare (2.0), a computational platform used for selecting plant microRNAs on the basis of their ability to regulate mammalian genes. Both MAP and MirCompare functionalities were used to predict that microRNAs from Moringa oleifera have putative roles across kingdoms by regulating human genes coding for proteins of the immune system. Starting from a selection of 94 human microRNAs, MirCompare selected 6 Moringa oleifera functional homologs. The subsequent prediction of human targets and areas of functional enrichment highlighted the central involvement of these genes in regulating immune system processes, particularly the host-virus interaction processes in hepatitis B, cytomegalovirus, papillomavirus and coronavirus. This case of use showed how MAP can help to perform complex queries without any computational background. MAP is available at http://stablab.uniroma2.it/MAP .
Collapse
|
14
|
Wang J, Zhang Y, Zhu F, Chen L, Wei Y, Zhu Q, Jiang J, Huang JA, Guo Q, Yang X. CircRNA expression profiling and bioinformatics analysis indicate the potential biological role and clinical significance of circRNA in influenza A virus-induced lung injury. J Biosci 2021. [PMID: 33969826 PMCID: PMC8060339 DOI: 10.1007/s12038-021-00152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circular RNA (circRNA) plays an important role in the regulation of multiple biological processes. However, circRNA profiling and the potential biological role of circRNA in influenza A virus (IAV)-induced lung injury have not been investigated. In the present study, circRNA expression profiles in lung tissues from mice with and without IAV-induced lung injury were analyzed using high-throughput sequencing, and differentially expressed circRNAs were verified by quantitative PCR. The gene homology of candidate circRNAs was investigated and the expression of plasma circRNAs from patients with IAV-induced acute respiratory distress syndrome (ARDS) was detected. The target microRNAs (miRNAs) of circRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. In total, 781 circRNAs were differentially expressed between ARDS mice and control (467 were up-regulated and 314 were down-regulated). Moreover, the candidate circRNAs (Slco3a1, Nfatc2, Wdr33, and Dmd) expression showed the same trend with the sequencing results. The isoforms of circRNA Slco3a1 and Wdr33 were highly conserved between humans and mice. Plasma circRNA Slco3a1 and Wdr33 presented differential expression in patients with IAV-induced ARDS compared to control. The circRNA-miRNA interaction network and GO and KEGG analyses indicated the potential biological role of circRNAs in the development of IAV-induced lung injury. Taken together, a large number of differentially expressed circRNAs were identified in our study. CircRNA Slco3a1 and Wdr33 had significantly different expression in specimens from mice and humans, and showed a potential biological role in IAV-induced lung injury by bioinformatics analysis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Yanbing Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Fengfeng Zhu
- Department of Emergency and Critical Care Medicine, The Fifth People’s Hospital of Suzhou, Suzhou, 215000 China
| | - Liling Chen
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004 China
| | - Yao Wei
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Qingqing Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Jian-an Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Qiang Guo
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Xinjing Yang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| |
Collapse
|
15
|
Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs 2021; 81:517-531. [PMID: 33638807 PMCID: PMC7910799 DOI: 10.1007/s40265-021-01474-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic, present a significant threat to human health by inflicting a wide variety of health complications and even death. While conventional therapeutics often involve administering small molecules to fight viral infections, small non-coding RNA sequences, known as microRNAs (miRNAs/miR-), may present a novel antiviral strategy. We can take advantage of their ability to modulate host-virus interactions through mediating RNA degradation or translational inhibition. Investigations into miRNA and SARS-CoV-2 interactions can reveal novel therapeutic approaches against this virus. The viral genomes of SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) were searched using the Nucleotide Basic Local Alignment Search Tool (BLASTn) for highly similar sequences, to identify potential binding sites for miRNAs hypothesized to play a role in SARS-CoV-2 infection. miRNAs that target angiotensin-converting enzyme 2 (ACE2), the receptor used by SARS-CoV-2 and SARS-CoV for host cell entry, were also predicted. Several relevant miRNAs were identified, and their potential roles in regulating SARS-CoV-2 infections were further assessed. Current treatment options for SARS-CoV-2 are limited and have not generated sufficient evidence on safety and efficacy for treating COVID-19. Therefore, by investigating the interactions between miRNAs and SARS-CoV-2, miRNA-based antiviral therapies, including miRNA mimics and inhibitors, may be developed as an alternative strategy to fight COVID-19.
Collapse
Affiliation(s)
- Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Julia Loiselle
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
16
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:ijms22062904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Correspondence: ; Tel.: +86-0371-67781453
| |
Collapse
|
17
|
miR-16-5p Promotes Erythroid Maturation of Erythroleukemia Cells by Regulating Ribosome Biogenesis. Pharmaceuticals (Basel) 2021; 14:ph14020137. [PMID: 33572085 PMCID: PMC7915806 DOI: 10.3390/ph14020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
miRNAs constitute a class of non-coding RNA that act as powerful epigenetic regulators in animal and plant cells. In order to identify putative tumor-suppressor miRNAs we profiled the expression of various miRNAs during differentiation of erythroleukemia cells. RNA was purified before and after differentiation induction and subjected to quantitative RT-PCR. The majority of the miRNAs tested were found upregulated in differentiated cells with miR-16-5p showing the most significant increase. Functional studies using gain- and loss-of-function constructs proposed that miR-16-5p has a role in promoting the erythroid differentiation program of murine erythroleukemia (MEL) cells. In order to identify the underlying mechanism of action, we utilized bioinformatic in-silico platforms that incorporate predictions for the genes targeted by miR-16-5p. Interestingly, ribosome constituents, as well as ribosome biogenesis factors, were overrepresented among the miR-16-5p predicted gene targets. Accordingly, biochemical experiments showed that, indeed, miR-16-5p could modulate the levels of independent ribosomal proteins, and the overall ribosomal levels in cultured cells. In conclusion, miR-16-5p is identified as a differentiation-promoting agent in erythroleukemia cells, demonstrating antiproliferative activity, likely as a result of its ability to target the ribosomal machinery and restore any imbalanced activity imposed by the malignancy and the blockade of differentiation.
Collapse
|
18
|
Jafarinejad-Farsangi S, Jazi MM, Rostamzadeh F, Hadizadeh M. High affinity of host human microRNAs to SARS-CoV-2 genome: An in silico analysis. Noncoding RNA Res 2020; 5:222-231. [PMID: 33251388 PMCID: PMC7680021 DOI: 10.1016/j.ncrna.2020.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by a novel betacoronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has attracted top health concerns worldwide within a few months after its appearance. Since viruses are highly dependent on the host small RNAs (microRNAs) for their replication and propagation, in this study, top miRNAs targeting SARS-CoV-2 genome and top miRNAs targeting differentially expressed genes (DEGs) in lungs of patients infected with SARS-CoV-2, were predicted. METHODS All human mature miRNA sequences were acquired from miRBase database. MiRanda tool was used to predict the potential human miRNA binding sites on the SARS-CoV-2 genome. EdgeR identified differentially expressed genes (DEGs) in response to SARS-CoV-2 infection from GEO147507 data. Gene Set Enrichment Analysis (GSEA) and DEGs annotation analysis were performed using ToppGene and Metascape tools. RESULTS 160 miRNAs with a perfect matching in the seed region were identified. Among them, there was 15 miRNAs with more than three binding sites and 12 miRNAs with a free energy binding of -29 kCal/Mol. MiR-29 family had the most binding sites (11 sites) on the SARS-CoV-2 genome. MiR-21 occupied four binding sites and was among the top miRNAs that targeted up-regulated DEGs. In addition to miR-21, miR-16, let-7b, let-7e, and miR-146a were the top miRNAs targeting DEGs. CONCLUSION Collectively, more experimental studies especially miRNA-based studies are needed to explore detailed molecular mechanisms of SARS-CoV-2 infection. Moreover, the role of DEGs including STAT1, CCND1, CXCL-10, and MAPKAPK2 in SARS-CoV-2 should be investigated to identify the similarities and differences between SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Moazzam Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hadizadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ 2020; 8:e9994. [PMID: 32983652 PMCID: PMC7497610 DOI: 10.7717/peerj.9994] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Host miRNAs are known as important regulators of virus replication and pathogenesis. They can interact with various viruses through several possible mechanisms including direct binding of viral RNA. Identification of human miRNAs involved in coronavirus-host interplay becomes important due to the ongoing COVID-19 pandemic. In this article we performed computational prediction of high-confidence direct interactions between miRNAs and seven human coronavirus RNAs. As a result, we identified six miRNAs (miR-21-3p, miR-195-5p, miR-16-5p, miR-3065-5p, miR-424-5p and miR-421) with high binding probability across all analyzed viruses. Further bioinformatic analysis of binding sites revealed high conservativity of miRNA binding regions within RNAs of human coronaviruses and their strains. In order to discover the entire miRNA-virus interplay we further analyzed lungs miRNome of SARS-CoV infected mice using publicly available miRNA sequencing data. We found that miRNA miR-21-3p has the largest probability of binding the human coronavirus RNAs and being dramatically up-regulated in mouse lungs during infection induced by SARS-CoV.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Ksenia Kirdey
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
20
|
Lai Y, Wang M, Cheng A, Mao S, Ou X, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Regulation of Apoptosis by Enteroviruses. Front Microbiol 2020; 11:1145. [PMID: 32582091 PMCID: PMC7283464 DOI: 10.3389/fmicb.2020.01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus infection can cause a variety of diseases and severely impair the health of humans, animals, poultry, and other organisms. To resist viral infection, host organisms clear infected cells and viruses via apoptosis. However, throughout their long-term competition with host cells, enteroviruses have evolved a series of mechanisms to regulate the balance of apoptosis in order to replicate and proliferate. In the early stage of infection, enteroviruses mainly inhibit apoptosis by regulating the PI3K/Akt pathway and the autophagy pathway and by impairing cell sensors, thereby delaying viral replication. In the late stage of infection, enteroviruses mainly regulate apoptotic pathways and the host translation process via various viral proteins, ultimately inducing apoptosis. This paper discusses the means by which these two phenomena are balanced in enteroviruses to produce virus-favoring conditions – in a temporal sequence or through competition with each other. This information is important for further elucidation of the relevant mechanisms of acute infection by enteroviruses and other members of the picornavirus family.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Altered expression of apoptosis-related, circulating cell-free miRNAs in children with familial Mediterranean fever: a cross-sectional study. Rheumatol Int 2020; 41:103-111. [PMID: 32140884 DOI: 10.1007/s00296-020-04541-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Familial Mediterranean Fever (FMF) is the most common hereditary autoinflammatory disorder characterized by recurrent fever and serositis episodes. Identification of low penetrant or heterozygous MEFV mutations in clinically diagnosed FMF patients did raise a concern on whether epigenetic or environmental factors play an additional role in FMF pathogenesis. We aimed to investigate the expression profile of apoptosis-related miRNAs in FMF and their influence on clinical manifestations in the present study. METHOD 191 pediatric FMF patients and 31 healthy children included in the study. Expressions of 33 apoptosis-related, circulating cell-free miRNAs were evaluated by a quantitative polymerase chain reaction, statistically calculated within ΔΔCt values and fold changes were evaluated by Welch T test, in which p < 0.05 were considered to be significant. RESULTS Nineteen miRNAs, including let-7a-5p, let-7c, let-7 g-5p, miR-15b-5p, miR-16-5p, miR-17-5p, miR-23a-3p, miR-24-3p, miR-25-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, miR-29c-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-106b-5p, miR-146a-5p, and miR-195-5p, were found down-regulated; miR-15a-5p, miR-29b-3p, miR-181a-5p, miR-181b-5p, miR-181c-5p, miR-214-3p, and miR-365a-3p were up-regulated in FMF patients. In detail, these miRNAs were similar among FMF patients in terms of genotype, colchicine response, and having an inflammatory attack during analysis. CONCLUSION We found that 26 apoptosis-related circulating miRNAs were deregulated in children with FMF. Thus, we speculate that these miRNAs have a role in FMF pathogenesis via apoptotic mechanisms.
Collapse
|
23
|
Xu P, Xu H, Cheng HS, Chan HH, Wang RYL. MicroRNA 876-5p modulates EV-A71 replication through downregulation of host antiviral factors. Virol J 2020; 17:21. [PMID: 32024541 PMCID: PMC7003331 DOI: 10.1186/s12985-020-1284-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human enterovirus 71 (EV-A71) is a non-enveloped virus that has a single stranded positive sense RNA genome. In a previous study, we showed that miR-876-5p upregulation was observed in the serum of patients with severe EV-A71 infection. Micro-876-5p (miR-876-5p) is a circulating miRNA that can be identified to modulate EV-A71 infections through both in vitro and in vivo studies. However, the regulatory mechanisms that involve miR-876-5p in the EV-A71 infection cycle remain unclear. METHODS We demonstrated that miR-876-5p facilitated EV-A71 replication and expression by overexpression and knocking-down of miR-876-5p through the transfection of miR-876-5p plasmid and miR-876-5p inhibitor. Although miR-876-5p suppressed CREB5 expression, luciferase reporter assay confirmed this. We also evaluated the role of miR-876-5p in the EV-A71 infection cycle by CREB5 mediated by transfection with an anti-miR-876-5P inhibitor or in combination with an si-CREB5 plasmid. RESULTS MicroR-876-5p was upregulated in EV-A71-infected neuroblastoma cells. Overexpression of miR-876-5p or knockdown of cyclic-AMP responsive element binding protein 5 (CREB5) promoted EV-A71 replication. The downregulation of miR-876-5p inhibited the accumulation of viral RNA and the production of viral proteins. Interestingly, CREB5 overexpression also suppressed EV-A71 replication. Our in vitro studies reveal that miR-876-5p directly targets CREB5. Finally, downregulation of CREB5 protein abated the inhibitory effect of anti-miR-876-5p and induced inhibitory effect of EV-A71 replication. CONCLUSIONS Our results suggest that intracellular miR-876-5p promotes EV-A71 replication indirectly by targeting the host CREB5 protein.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's Hospital and Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Hwa Xu
- College of Resources and Environment Qingdao Agricultural Unviersity, Qingdao, China
| | - Hsu Sheng Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Han-Hsiang Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou, 33305, Taiwan.
| |
Collapse
|
24
|
Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication. J Virol 2020; 94:JVI.01724-19. [PMID: 31694944 DOI: 10.1128/jvi.01724-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets and play important roles in the host response to pathogenic infection. Although infectious bursal disease virus (IBDV)-induced apoptosis in host cells has been established, the underlying molecular mechanism is not completely unraveled. Here, we show that infection of DF-1 cells by IBDV induced gga-miR-16-5p (chicken miR-16-5p) expression via demethylation of the pre-miR-16-2 (gga-miR-16-5p precursor) promoter. We found that ectopic expression of gga-miR-16-5p in DF-1 cells enhanced IBDV-induced apoptosis by directly targeting the cellular antiapoptotic protein B-cell lymphoma 2 (Bcl-2), facilitating IBDV replication in DF-1 cells. In contrast, inhibition of endogenous miR-16-5p markedly suppressed apoptosis associated with enhanced Bcl-2 expression, arresting viral replication in DF-1 cells. Furthermore, infection of DF-1 cells with IBDV reduced Bcl-2 expression, and this reduction could be abolished by inhibition of gga-miR-16-5p expression. Moreover, transfection of DF-1 cells with gga-miR-16-5p mimics enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation, and inhibition of caspase-3 decreased IBDV growth in DF-1 cells. Thus, epigenetic upregulation of gga-miR-16-5p expression by IBDV infection enhances IBDV-induced apoptosis by targeting the cellular antiapoptotic protein Bcl-2, facilitating IBDV replication in host cells.IMPORTANCE Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive disease in young chickens, causing severe economic losses to stakeholders across the globe. Although IBD virus (IBDV)-induced apoptosis in the host has been established, the underlying mechanism is not very clear. Here, we show that infection of DF-1 cells by IBDV upregulated gga-miR-16-5p expression via demethylation of the pre-miR-16-2 promoter. Overexpression of gga-miR-16-5p enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation. Importantly, we found that IBDV infection induced expression of gga-miR-16-5p that triggered apoptosis by targeting Bcl-2, favoring IBDV replication, while inhibition of gga-miR-16-5p in IBDV-infected cells restored Bcl-2 expression, slowing down viral growth, indicating that IBDV induces apoptosis by epigenetic upregulation of gga-miR-16-5p expression. These findings uncover a novel mechanism employed by IBDV for its own benefit, which may be used as a potential target for intervening IBDV infection.
Collapse
|
25
|
Yang D, Wang X, Gao H, Chen B, Si C, Wang S. Downregulation of miR-155-5p facilitates enterovirus 71 replication through suppression of type I IFN response by targeting FOXO3/IRF7 pathway. Cell Cycle 2019; 19:179-192. [PMID: 31856677 DOI: 10.1080/15384101.2019.1704512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV71), the major cause of hand-foot-and-mouth disease (HFMD), has evolved diverse strategies to counter the type I interferon (IFN-I) response during infection. Recently, microRNAs have regulatory roles in host innate immune responses to viral infections; however, whether EV71 escapes the IFN-I antiviral response through regulation of miRNAs remains unclear. Using a microarray assay, microRNA-155-5p (miR-155-5p) was found to be significantly up-regulated in serum from patients with EV71 infection and the increased expression of miR-155-5p was further confirmed in vivo and in vitro in response to EV71 infection. miR-155-5p overexpression suppressed EV71 titers and VP1 protein level, while miR-155-5p inhibition had an opposite result. Moreover, we found that miR-155-5p overexpression enhanced EV71 triggered IFN I production and the expressions of IFN-stimulated genes (ISGs), while inhibition of miR-155-5p suppressed these processes. Furthermore, bioinformatics analysis and luciferase reporter assay demonstrated that miR-155-5p directly targeted forkhead box protein O3 (FOXO3) and negatively regulated FOXO3/IRF7 axis, an important regulatory pathway for type I IFN production during EV71 infection. Inhibition of FOXO3 reversed the effects of miR-155-5p inhibitor on EV71 replication and the type I IFN production. Importantly, in EV71 infection mice, agomir-155-5p injection resulted in a significant reduction of viral VP1 protein expressions in brain and lung tissues, increased IFN-α/β production and increased mice survival rate. In contrast, antagomir-155-5p enhanced EV71 induced these effects. Collectively, our study indicates that weaken miR-155-5p facilitates EV71 replication through suppression of type I IFN response by FOXO3/IRF7 pathway, thereby suggesting a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Daokun Yang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinwei Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Haili Gao
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baoxin Chen
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changyun Si
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shasha Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
26
|
Wang JJ, Zheng C, Jiang YZ, Zheng Z, Lin M, Lin Y, Zhang ZL, Wang H, Pang DW. One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core-Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Anal Chem 2019; 92:830-837. [PMID: 31762266 DOI: 10.1021/acs.analchem.9b03317] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The accurate and rapid monitoring of the expression levels of enterovirus 71 (EV71)-related microRNAs (miRNAs) can contribute to diagnosis of hand, foot, and mouth disease (HFMD) at the early stage. However, there is currently a lack of convenient methods for simultaneous monitoring of multiplex miRNAs in one step. Herein a one-step method for the simultaneous monitoring of multiple EV71 infection-related miRNAs is developed based on core-satellite structure assembled with magnetic nanobeads and quantum dots (MNs-ssDNA-QDs). In the presence of target miRNAs, duplex-specific nuclease (DSN)-assisted target recycling can be triggered, resulting in the release of QDs and recycling of target miRNAs. Then the simultaneous quantification can be easily realized by recording the corresponding amplified fluorescence signal of QDs in the suspension. With this method, simultaneous detection of hsa-miRNA-296-5p and hsa-miRNA-16-5p, potential biomarkers of EV71 infection, can be easily achieved with femtomolar sensitivity and single-base mismatch specificity. Moreover, the method is successfully used for monitoring of the expression level of miRNAs in EV71-infected cells at different time points, demonstrating the potential for diagnostic applications. With the merits of one-step operation and single-nucleotide mismatch discrimination, this work opens a new avenue for multiplex miRNAs detection. As different nucleotide sequences and multicolor QDs can be employed, this work is expected to offer great potential for the development of high throughput diagnosis.
Collapse
Affiliation(s)
- Jia-Jia Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Caishang Zheng
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Yong-Zhong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China.,Hubei Provincial Center for Disease Control and Prevention , Wuhan , 430072 , P. R. China
| | - Zhenhua Zheng
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Miao Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China.,College of Chemistry , Nankai University , Tianjin , 300071 , P. R. China
| |
Collapse
|
27
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Sun Y, Feng L, Li J, Xu H, Mei X, Feng L, Sun H, Gao J, Zhang X. miR-545 promoted enterovirus 71 replication via directly targeting phosphatase and tensin homolog and tumor necrosis factor receptor-associated factor 6. J Cell Physiol 2019; 234:15686-15697. [PMID: 30697739 DOI: 10.1002/jcp.28222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Enterovirus 71 (EV71) is a small, nonenveloped icosahedral RNA virus and is the predominant causative pathogen of hand-foot-and-mouth disease. Recently, microRNAs (miRNAs) are reported to play important roles in the pathogenesis of EV71 replication. This study investigated the role of miR-545 in the EV71 replication and explored the underlying molecular mechanisms. We showed that miR-545 was upregulated in the EV71-infected human embryonic kidney (HEK) 293 cells and rhabdomyosarcoma (RD) cells. Overexpression of miR-545 promoted the viral replication of EV71 and attenuated the inhibitory effects of EV71 on cell viability in HEK293 and RD cells; while knockdown of miR-545 significantly suppressed the EV71 replication in these two cell lines. Bioinformatics analysis and luciferase reporter assay showed that miR-545 directly targeted the 3'untranslated region of phosphatase and tensin homolog (PTEN) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in HEK293 cells. Furthermore, miR-545 negatively regulated the messenger RNA (mRNA) and protein expression of PTEN and TRAF6. The mRNA and protein expression of PTEN and TRAF6 was also suppressed by EV71 infection, which was attenuated by miR-545 knockdown in HEK293 cells. Overexpression of PTEN and TRAF6 both suppressed the EV71 replication in HKE293 cells, and also attenuated the enhanced effects of miR-545 overexpression on the EV71 replication in HEK293 cells. Collectively, our study for the first time showed that miR-545 had an enhanced effect on the EV71 replication in HEK293 and RD cells. Further mechanistic results indicated that miR-545 promoted EV71 replication at least partly via targeting PTEN and TRAF6.
Collapse
Affiliation(s)
- Ying Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Long Feng
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huaming Xu
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue Mei
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lingyan Feng
- Medical College, Jianghan University, Wuhan, Hubei, China
| | - Huijuan Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jianfeng Gao
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoli Zhang
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Song J, Hu Y, Zheng H, Guo L, Huang X, Jiang X, Li W, Li J, Yang Z, Dong S, Liu L. Comparative analysis of putative novel microRNA expression profiles induced by enterovirus 71 and coxsackievirus A16 infections in human umbilical vein endothelial cells using high-throughput sequencing. INFECTION GENETICS AND EVOLUTION 2019; 73:401-410. [PMID: 31176031 DOI: 10.1016/j.meegid.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Hand, foot and mouth disease (HFMD) is mainly caused by human enterovirus 71 (EV71) and coxsackievirus A16 (CA16), which circulate alternatively or together in epidemic areas. Although the two viruses exhibit genetic homology, their clinical manifestations have some discrepancies. However, the factors underlying these differences remain unclear. Herein, we mainly focused on the alterations and roles of putative novel miRNAs in human umbilical vein endothelial cells (HUVECs) following EV71 and CA16 infections using high-throughput sequencing. The results identified 247 putative novel, differentially expressed miRNAs, of which only 11 miRNAs presented an opposite trend between the EV71- and CA16-infected samples and were used for target prediction. Gene ontology (GO) and pathway enrichment analysis of the predicted targets displayed the top 15 significant biological processes, molecular functions, cell components and pathways. Subsequently, regulatory miRNA-predicted targets and miRNA-GO and miRNA-pathway networks were constructed to further reveal the complex regulatory mechanisms of the miRNAs during infection. Therefore, our data provide useful insights that will help elucidate the different host-pathogen interactions following EV71 and CA16 infections and may offer novel therapeutic targets for these infections.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Yajie Hu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Lei Guo
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Xing Huang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Xi Jiang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Weiyu Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Jiaqi Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Zening Yang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Shaozhong Dong
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China.
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|