1
|
Arora A, Zareba W, Woosley RL, Klimentidis YC, Patel IY, Quan SF, Wendel C, Shamoun F, Guerra S, Parthasarathy S, Patel SI. Genetic QT score as a predictor of sudden cardiac death in participants with sleep-disordered breathing in the UK Biobank. J Clin Sleep Med 2025; 21:549-557. [PMID: 39589075 PMCID: PMC11874099 DOI: 10.5664/jcsm.11474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
STUDY OBJECTIVES The goal of this study was to evaluate the association between a polygenic risk score (PRS) for QT prolongation (QTc-PRS), corrected QT intervals (QTc) and sudden cardiac death (SCD) in participants enrolled in the UK Biobank with and without sleep-disordered breathing (SDB). METHODS The QTc-PRS was calculated using allele copy number and previously reported effect estimates for each single nuclear polymorphism. Competing-risk regression models adjusting for age, sex, body mass index, QT prolonging medication, race, and comorbid cardiovascular conditions were used for SCD analyses. RESULTS A total of 500,584 participants were evaluated (56.5 ± 8 years, 54% female, 1.4% diagnosed with sleep apnea). A higher QTc-PRS was independently associated with the increased QTc interval duration (P < .0001). The mean QTc for the top QTc-PRS quintile was 15 msec longer than the bottom quintile (P < .001). SDB was found to be an effect modifier in the relationship between QTc-PRS and SCD. The adjusted hazard ratio per 5-unit change in QTc-PRS for SCD was 1.64 (95% confidence interval 1.16-2.31, P = .005) among those with SDB and 1.04 (95% confidence interval 0.95-1.14, P = .44) among those without SDB (P for interaction = .01). Black participants with SDB had significantly elevated adjusted risk of SCD (hazard ratio = 9.6, 95% confidence interval 1.24-74, P = .03). CONCLUSIONS In the UK Biobank population, the QTc-PRS was associated with SCD among participants with SDB but not among those without SDB, indicating that SDB is a significant modifier of the genetic risk. Black participants with SDB had a particularly high risk of SCD. CITATION Arora A, Zareba W, Woosley RL, et al. Genetic QT score as a predictor of sudden cardiac death in participants with sleep-disordered breathing in the UK Biobank. J Clin Sleep Med. 2025;21(3):549-557.
Collapse
Affiliation(s)
- Amit Arora
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Wojciech Zareba
- Division of Cardiology, University of Rochester Medical Center, Rochester, New York
| | - Raymond L. Woosley
- Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Yann C. Klimentidis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Imran Y. Patel
- El Rio Health, Tucson, Arizona
- UAHS Center for Sleep and Circadian Sciences, University of Arizona, Tucson, Arizona
- Division of Pulmonary, Allergy, Critical Care Medicine and Sleep Medicine, University of Arizona College of Medicine – Tucson, Tucson, Arizona
| | - Stuart F. Quan
- UAHS Center for Sleep and Circadian Sciences, University of Arizona, Tucson, Arizona
- Division of Pulmonary, Allergy, Critical Care Medicine and Sleep Medicine, University of Arizona College of Medicine – Tucson, Tucson, Arizona
| | - Christopher Wendel
- UAHS Center for Sleep and Circadian Sciences, University of Arizona, Tucson, Arizona
| | | | - Stefano Guerra
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
- Division of Pulmonary, Allergy, Critical Care Medicine and Sleep Medicine, University of Arizona College of Medicine – Tucson, Tucson, Arizona
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Sairam Parthasarathy
- UAHS Center for Sleep and Circadian Sciences, University of Arizona, Tucson, Arizona
- Division of Pulmonary, Allergy, Critical Care Medicine and Sleep Medicine, University of Arizona College of Medicine – Tucson, Tucson, Arizona
| | - Salma I. Patel
- UAHS Center for Sleep and Circadian Sciences, University of Arizona, Tucson, Arizona
- Division of Pulmonary, Allergy, Critical Care Medicine and Sleep Medicine, University of Arizona College of Medicine – Tucson, Tucson, Arizona
- The University of Arizona College of Health Sciences, Tucson, Arizona
| |
Collapse
|
2
|
Rao H, Weiss MC, Moon JY, Perreira KM, Daviglus ML, Kaplan R, North KE, Argos M, Fernández-Rhodes L, Sofer T. Advancements in genetic research by the Hispanic Community Health Study/Study of Latinos: A 10-year retrospective review. HGG ADVANCES 2025; 6:100376. [PMID: 39473183 PMCID: PMC11754138 DOI: 10.1016/j.xhgg.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/14/2024] Open
Abstract
The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a multicenter, longitudinal cohort study designed to evaluate environmental, lifestyle, and genetic risk factors as they relate to cardiometabolic and other chronic diseases among Hispanic/Latino populations in the United States. Since the study's inception in 2008, as a result of the study's robust genetic measures, HCHS/SOL has facilitated major contributions to the field of genetic research. This 10-year retrospective review highlights the major findings for genotype-phenotype relationships and advancements in statistical methods owing to the HCHS/SOL. Furthermore, we discuss the ethical and societal challenges of genetic research, especially among Hispanic/Latino adults in the United States. Continued genetic research, ancillary study expansion, and consortia collaboration through HCHS/SOL will further drive knowledge and advancements in human genetics research.
Collapse
Affiliation(s)
- Hridya Rao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Margaret C Weiss
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Jee Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Maria Argos
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA; Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Sau A, Ribeiro AH, McGurk KA, Pastika L, Bajaj N, Gurnani M, Sieliwonczyk E, Patlatzoglou K, Ardissino M, Chen JY, Wu H, Shi X, Hnatkova K, Zheng SL, Britton A, Shipley M, Andršová I, Novotný T, Sabino EC, Giatti L, Barreto SM, Waks JW, Kramer DB, Mandic D, Peters NS, O’Regan DP, Malik M, Ware JS, Ribeiro ALP, Ng FS. Prognostic Significance and Associations of Neural Network-Derived Electrocardiographic Features. Circ Cardiovasc Qual Outcomes 2024; 17:e010602. [PMID: 39540287 PMCID: PMC7616866 DOI: 10.1161/circoutcomes.123.010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Subtle, prognostically important ECG features may not be apparent to physicians. In the course of supervised machine learning, thousands of ECG features are identified. These are not limited to conventional ECG parameters and morphology. We aimed to investigate whether neural network-derived ECG features could be used to predict future cardiovascular disease and mortality and have phenotypic and genotypic associations. METHODS We extracted 5120 neural network-derived ECG features from an artificial intelligence-enabled ECG model trained for 6 simple diagnoses and applied unsupervised machine learning to identify 3 phenogroups. Using the identified phenogroups, we externally validated our findings in 5 diverse cohorts from the United States, Brazil, and the United Kingdom. Data were collected between 2000 and 2023. RESULTS In total, 1 808 584 patients were included in this study. In the derivation cohort, the 3 phenogroups had significantly different mortality profiles. After adjusting for known covariates, phenogroup B had a 20% increase in long-term mortality compared with phenogroup A (hazard ratio, 1.20 [95% CI, 1.17-1.23]; P<0.0001; phenogroup A mortality, 2.2%; phenogroup B mortality, 6.1%). In univariate analyses, we found phenogroup B had a significantly greater risk of mortality in all cohorts (log-rank P<0.01 in all 5 cohorts). Phenome-wide association study showed phenogroup B had a higher rate of future atrial fibrillation (odds ratio, 2.89; P<0.00001), ventricular tachycardia (odds ratio, 2.00; P<0.00001), ischemic heart disease (odds ratio, 1.44; P<0.00001), and cardiomyopathy (odds ratio, 2.04; P<0.00001). A single-trait genome-wide association study yielded 4 loci. SCN10A, SCN5A, and CAV1 have roles in cardiac conduction and arrhythmia. ARHGAP24 does not have a clear cardiac role and may be a novel target. CONCLUSIONS Neural network-derived ECG features can be used to predict all-cause mortality and future cardiovascular diseases. We have identified biologically plausible and novel phenotypic and genotypic associations that describe mechanisms for the increased risk identified.
Collapse
Affiliation(s)
- Arunashis Sau
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.)
| | - Antônio H. Ribeiro
- Department of Information Technology, Uppsala University, Sweden (A.H.R.)
| | - Kathryn A. McGurk
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom
| | - Libor Pastika
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Nikesh Bajaj
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Mehak Gurnani
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Ewa Sieliwonczyk
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom
- Faculty of Medicine and Health Sciences, Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium (E. Sieliwonczyk)
| | - Konstantinos Patlatzoglou
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Maddalena Ardissino
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Jun Yu Chen
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Huiyi Wu
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Xili Shi
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Katerina Hnatkova
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Sean L. Zheng
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
| | - Annie Britton
- Research Department of Epidemiology and Public Health, University College London, United Kingdom (A.B., M.S.)
| | - Martin Shipley
- Research Department of Epidemiology and Public Health, University College London, United Kingdom (A.B., M.S.)
| | - Irena Andršová
- Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.)
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.)
| | - Ester C. Sabino
- Department of Infectious Diseases, School of Medicine and Institute of Tropical Medicine, University of São Paulo, Brazil (E. Sabino)
| | - Luana Giatti
- Department of Preventive Medicine, School of Medicine, and Hospital das Clínicas/Empresa Brasileira de Serviços Hospitalares (L.G., S.M.B.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandhi M. Barreto
- Department of Preventive Medicine, School of Medicine, and Hospital das Clínicas/Empresa Brasileira de Serviços Hospitalares (L.G., S.M.B.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonathan W. Waks
- Harvard-Thorndike Electrophysiology Institute (J.W.W.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Daniel B. Kramer
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology (D.B.K.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering (D.M.), Imperial College London, United Kingdom
| | - Nicholas S. Peters
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.)
| | - Declan P. O’Regan
- Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom
| | - Marek Malik
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.)
| | - James S. Ware
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom (J.S.W.)
| | - Antonio Luiz P. Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, and Telehealth Center and Cardiology Service, Hospital das Clínicas (A.L.P.R.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fu Siong Ng
- National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
- Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.)
- Department of Cardiology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom (F.S.N.)
| |
Collapse
|
4
|
Yang H, Sun L, Bai X, Cai B, Tu Z, Fang C, Bian Y, Zhang X, Han X, Lv D, Zhang C, Li B, Luo S, Du B, Li L, Yao Y, Dong Z, Huang Z, Su G, Li H, Wang QK, Zhang M. Dysregulated RBM24 phosphorylation impairs APOE translation underlying psychological stress-induced cardiovascular disease. Nat Commun 2024; 15:10181. [PMID: 39580475 PMCID: PMC11585567 DOI: 10.1038/s41467-024-54519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Psychological stress contributes to cardiovascular disease (CVD) and sudden cardiac death, yet its molecular basis remains obscure. RNA binding protein RBM24 plays a critical role in cardiac development, rhythm regulation, and cellular stress. Here, we show that psychological stress activates RBM24 S181 phosphorylation through eIF4E2-GSK3β signaling, which causally links psychological stress to CVD by promoting APOE translation (apolipoprotein E). Using an Rbm24 S181A KI mouse model, we show that impaired S181 phosphorylation leads to cardiac contractile dysfunction, atrial fibrillation, dyslipidemia, reduced muscle strength, behavioral abnormalities, and sudden death under acute and chronic psychological stressors. The impaired S181 phosphorylation of RBM24 inhibits cardiac translation, including APOE translation. Notably, cardiomyocyte-specific expression of APOE rescues cardiac electrophysiological abnormalities and contractile dysfunction, through preventing ROS stress and mitochondrial dysfunction. Moreover, RBM24-S181 phosphorylation acts as a serum marker for chronic stress in human. These results provide a functional link between RBM24 phosphorylation, eIF4E-regulated APOE translation, and psychological-stress-induced CVD.
Collapse
Affiliation(s)
- He Yang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Sun
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Bai
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bingcheng Cai
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Fang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Bian
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudong Han
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayin Lv
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chi Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Bingbing Du
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Yao
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuowei Huang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Biotechnology of Shandong Polytechnic, Jinan, Shandong, 250101, China.
| | - Qing K Wang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Pastika L, Sau A, Patlatzoglou K, Sieliwonczyk E, Ribeiro AH, McGurk KA, Khan S, Mandic D, Scott WR, Ware JS, Peters NS, Ribeiro ALP, Kramer DB, Waks JW, Ng FS. Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease. NPJ Digit Med 2024; 7:167. [PMID: 38918595 PMCID: PMC11199586 DOI: 10.1038/s41746-024-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The electrocardiogram (ECG) can capture obesity-related cardiac changes. Artificial intelligence-enhanced ECG (AI-ECG) can identify subclinical disease. We trained an AI-ECG model to predict body mass index (BMI) from the ECG alone. Developed from 512,950 12-lead ECGs from the Beth Israel Deaconess Medical Center (BIDMC), a secondary care cohort, and validated on UK Biobank (UKB) (n = 42,386), the model achieved a Pearson correlation coefficient (r) of 0.65 and 0.62, and an R2 of 0.43 and 0.39 in the BIDMC cohort and UK Biobank, respectively for AI-ECG BMI vs. measured BMI. We found delta-BMI, the difference between measured BMI and AI-ECG-predicted BMI (AI-ECG-BMI), to be a biomarker of cardiometabolic health. The top tertile of delta-BMI showed increased risk of future cardiometabolic disease (BIDMC: HR 1.15, p < 0.001; UKB: HR 1.58, p < 0.001) and diabetes mellitus (BIDMC: HR 1.25, p < 0.001; UKB: HR 2.28, p < 0.001) after adjusting for covariates including measured BMI. Significant enhancements in model fit, reclassification and improvements in discriminatory power were observed with the inclusion of delta-BMI in both cohorts. Phenotypic profiling highlighted associations between delta-BMI and cardiometabolic diseases, anthropometric measures of truncal obesity, and pericardial fat mass. Metabolic and proteomic profiling associates delta-BMI positively with valine, lipids in small HDL, syntaxin-3, and carnosine dipeptidase 1, and inversely with glutamine, glycine, colipase, and adiponectin. A genome-wide association study revealed associations with regulators of cardiovascular/metabolic traits, including SCN10A, SCN5A, EXOG and RXRG. In summary, our AI-ECG-BMI model accurately predicts BMI and introduces delta-BMI as a non-invasive biomarker for cardiometabolic risk stratification.
Collapse
Affiliation(s)
- Libor Pastika
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Arunashis Sau
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Ewa Sieliwonczyk
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Laboratory of Medical Sciences, Imperial College London, London, United Kingdom
| | - Antônio H Ribeiro
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Laboratory of Medical Sciences, Imperial College London, London, United Kingdom
| | - Sadia Khan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - William R Scott
- MRC Laboratory of Medical Sciences, Imperial College London, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Laboratory of Medical Sciences, Imperial College London, London, United Kingdom
| | - Nicholas S Peters
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, and Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel B Kramer
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan W Waks
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom.
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
6
|
Zaveri S, Chahine M, Boutjdir M. Arrhythmias and ion channelopathies causing sudden cardiac death in Hispanic/Latino and Indigenous populations. J Cardiovasc Electrophysiol 2024; 35:1219-1228. [PMID: 38654386 PMCID: PMC11176016 DOI: 10.1111/jce.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec City, Québec, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Stoyek MR, Doane SE, Dallaire SE, Long ZD, Ramia JM, Cassidy-Nolan DL, Poon KL, Brand T, Quinn TA. POPDC1 Variants Cause Atrioventricular Node Dysfunction and Arrhythmogenic Changes in Cardiac Electrophysiology and Intracellular Calcium Handling in Zebrafish. Genes (Basel) 2024; 15:280. [PMID: 38540339 PMCID: PMC10969970 DOI: 10.3390/genes15030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by β-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Sarah E. Doane
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Shannon E. Dallaire
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Zachary D. Long
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Jessica M. Ramia
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Donovan L. Cassidy-Nolan
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Kar-Lai Poon
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - Thomas Brand
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - T. Alexander Quinn
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Zhang M, Hillegass WB, Yu X, Majumdar S, Daryl Pollard J, Jackson E, Knudson J, Wolfe D, Kato GJ, Maher JF, Mei H. Genetic variants and effect modifiers of QT interval prolongation in patients with sickle cell disease. Gene 2024; 890:147824. [PMID: 37741592 DOI: 10.1016/j.gene.2023.147824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is a common inherited blood disorder among African Americans (AA), with premature mortality which has been associated with prolongation of the heart rate-corrected QT interval (QTc), a known risk factor for sudden cardiac death. Although numerous genetic variants have been identified as contributors to QT interval prolongation in the general population, their impact on SCD patients remains unclear. This study used an unweighted polygenic risk score (PRS) to validate the previously identified associations between SNPs and QTc interval in SCD patients, and to explore possible interactions with other factors that prolong QTc interval in AA individuals with SCD. METHODS In SCD patients, candidate genetic variants associated with the QTc interval were genotyped. To identify any risk SNPs that may be correlated with QTc interval prolongation, linear regression was employed, and an unweighted PRS was subsequently constructed. The effect of PRS on the QTc interval was evaluated using linear regression, while stratification analysis was used to assess the influence of serum alanine transaminase (ALT), a biomarker for liver disease, on the PRS effect. We also evaluated the PRS with the two subcomponents of QTc, the QRS and JTc intervals. RESULTS Out of 26 candidate SNPs, five risk SNPs were identified for QTc duration under the recessive model. For every unit increase in PRS, the QTc interval prolonged by 4.0 ms (95% CI: [2.0, 6.1]; p-value: <0.001) in the additive model and 9.4 ms in the recessive model (95% CI: [4.6, 14.1]; p-value: <0.001). Serum ALT showed a modification effect on PRS-QTc prolongation under the recessive model. In the normal ALT group, each PRS unit increased QTc interval by 11.7 ms (95% CI: [6.3, 17.1]; p-value: 2.60E-5), whereas this effect was not observed in the elevated ALT group (0.9 ms; 95% CI: [-7.0, 8.8]; p-value: 0.823). CONCLUSION Several candidate genetic variants are associated with QTc interval prolongation in SCD patients, and serum ALT acts as a modifying factor. The association of a CPS1 gene variant in both QTc and JTc duration adds to NOS1AP as evidence of involvement of the urea cycle and nitric oxide metabolism in cardiac repolarization in SCD. Larger replication studies are needed to confirm these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William B Hillegass
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xue Yu
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Suvankar Majumdar
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - J Daryl Pollard
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Erin Jackson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jarrod Knudson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas Wolfe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joseph F Maher
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Internal Medicine/Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
9
|
Krijger Juárez C, Amin AS, Offerhaus JA, Bezzina CR, Boukens BJ. Cardiac Repolarization in Health and Disease. JACC Clin Electrophysiol 2023; 9:124-138. [PMID: 36697193 DOI: 10.1016/j.jacep.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022]
Abstract
Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.
Collapse
Affiliation(s)
- Christian Krijger Juárez
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Hoffmann TJ, Lu M, Oni-Orisan A, Lee C, Risch N, Iribarren C. A large genome-wide association study of QT interval length utilizing electronic health records. Genetics 2022; 222:iyac157. [PMID: 36271874 PMCID: PMC9713425 DOI: 10.1093/genetics/iyac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
QT interval length is an important risk factor for adverse cardiovascular outcomes; however, the genetic architecture of QT interval remains incompletely understood. We conducted a genome-wide association study of 76,995 ancestrally diverse Kaiser Permanente Northern California members enrolled in the Genetic Epidemiology Research on Adult Health and Aging cohort using 448,517 longitudinal QT interval measurements, uncovering 9 novel variants, most replicating in 40,537 individuals in the UK Biobank and Population Architecture using Genomics and Epidemiology studies. A meta-analysis of all 3 cohorts (n = 117,532) uncovered an additional 19 novel variants. Conditional analysis identified 15 additional variants, 3 of which were novel. Little, if any, difference was seen when adjusting for putative QT interval lengthening medications genome-wide. Using multiple measurements in Genetic Epidemiology Research on Adult Health and Aging increased variance explained by 163%, and we show that the ≈6 measurements in Genetic Epidemiology Research on Adult Health and Aging was equivalent to a 2.4× increase in sample size of a design with a single measurement. The array heritability was estimated at ≈17%, approximately half of our estimate of 36% from family correlations. Heritability enrichment was estimated highest and most significant in cardiovascular tissue (enrichment 7.2, 95% CI = 5.7-8.7, P = 2.1e-10), and many of the novel variants included expression quantitative trait loci in heart and other relevant tissues. Comparing our results to other cardiac function traits, it appears that QT interval has a multifactorial genetic etiology.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Neil Risch
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| |
Collapse
|
11
|
Lopes-Marques M, Silva R, Serrano C, Gomes V, Cardoso A, Prata MJ, Amorim A, Azevedo L. Complex interactions between p.His558Arg and linked variants in the sodium voltage-gated channel alpha subunit 5 (Na V 1.5). PeerJ 2022; 10:e13913. [PMID: 35996667 PMCID: PMC9392453 DOI: 10.7717/peerj.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
Common genetic polymorphisms may modify the phenotypic outcome when co-occurring with a disease-causing variant, and therefore understanding their modulating role in health and disease is of great importance. The polymorphic p.His558Arg variant of the sodium voltage-gated channel alpha subunit 5 (Na V 1.5) encoded by the SCN5A gene is a case in point, as several studies have shown it can modify the clinical phenotype in a number of cardiac diseases. To evaluate the genetic backgrounds associated with this modulating effect, we reanalysed previous electrophysiological findings regarding the p.His558Arg variant and further assessed its patterns of genetic diversity in human populations. The Na V 1.5 p.His558Arg variant was found to be in linkage disequilibrium with six other polymorphic variants that previously were also associated with cardiac traits in GWAS analyses. On account of this, incongruent reports that Arg558 allele can compensate, aggravate or have no effect on Na V 1.5, likely might have arose due to a role of p.His558Arg depending on the additional linked variants. Altogether, these results indicate a major influence of the epistatic interactions between SCN5A variants, revealing also that phenotypic severity may depend on the polymorphic background associated to each individual genome.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Raquel Silva
- Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Viseu, Portugal
| | - Catarina Serrano
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Verónica Gomes
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Ana Cardoso
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Maria João Prata
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Antonio Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Luisa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| |
Collapse
|
12
|
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022; 377:eabo1984. [PMID: 35926050 PMCID: PMC9528698 DOI: 10.1126/science.abo1984] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Collapse
Affiliation(s)
- Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikolay Shvetsov
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Emily R Nadelmann
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Daniel M DeLaughter
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Henrik Fox
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jan Gummert
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ruoyan Li
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Barbara McDonough
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Farnoush Shahriaran
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Fabian J Theis
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.,Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| | | | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| |
Collapse
|
13
|
Gruscheski L, Brand T. The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2021; 8:160. [PMID: 34940515 PMCID: PMC8706714 DOI: 10.3390/jcdd8120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.
Collapse
Affiliation(s)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
14
|
Parisi C, Vashisht S, Winata CL. Fish-Ing for Enhancers in the Heart. Int J Mol Sci 2021; 22:3914. [PMID: 33920121 PMCID: PMC8069060 DOI: 10.3390/ijms22083914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.
Collapse
Affiliation(s)
- Costantino Parisi
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
15
|
Šedová L, Buková I, Bažantová P, Petrezsélyová S, Prochazka J, Školníková E, Zudová D, Včelák J, Makovický P, Bendlová B, Šeda O, Sedlacek R. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int J Mol Sci 2021; 22:ijms22083810. [PMID: 33916973 PMCID: PMC8067621 DOI: 10.3390/ijms22083810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7−/− pups died prior to weaning. The most prominent phenotypes in surviving SDNme7−/− animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/− rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.
Collapse
Affiliation(s)
- Lucie Šedová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
- Correspondence:
| | - Ivana Buková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Pavla Bažantová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Silvia Petrezsélyová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Elena Školníková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Selye University, 945 01 Komarno, Slovakia;
| | - Běla Bendlová
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| |
Collapse
|
16
|
A genome-wide association and polygenic risk score study on abnormal electrocardiogram in a Chinese population. Sci Rep 2021; 11:4669. [PMID: 33633301 PMCID: PMC7907205 DOI: 10.1038/s41598-021-84135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Electrocardiography is a common and widely-performed medical examination based on the measurement and evaluation of electrocardiogram (ECG) to assess the up-to-date cardiac rhythms and thus suggest the health conditions of cardiovascular system and on a larger level the individual’s wellness. Abnormal ECG assessment from the detection of abnormal heart rhythms may have clinical implications including blood clots in formation, ongoing heart attack, coronary artery blockage, etc. Past genetic-phenotypic research focused primarily on the physical parameters of ECG but not the medical evaluation. To unbiasedly uncover the underlying links of genetic variants with normal vs. abnormal ECG assessment, a genome-wide association study (GWAS) is carried out in a 1006-participant cohort of Chinese population effectively genotyped for 243487 single nucleotide polymorphisms (SNPs). Both age and sex are influential factors, and six novel SNPs are identified for potential association with abnormal ECG. With the selected SNPs, a polygenic risk score (PRS) differentiates the case–control subgroups, and correlates well with increased risk of abnormal ECG. The findings are reproduced in an independent validation cohort. The derived PRS may function as a potential biomarker for prospectively screening the high-risk subgroup of heart issues in the Chinese population.
Collapse
|
17
|
Davis H, Herring N, Paterson DJ. Downregulation of M Current Is Coupled to Membrane Excitability in Sympathetic Neurons Before the Onset of Hypertension. Hypertension 2020; 76:1915-1923. [PMID: 33040619 PMCID: PMC8360673 DOI: 10.1161/hypertensionaha.120.15922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Neurohumoral activation is an early hallmark of cardiovascular disease and contributes to the etiology of the pathophysiology. Stellectomy has reemerged as a positive therapeutic intervention to modify the progression of dysautonomia, although the biophysical properties underpinning abnormal activity of this ganglia are not fully understood in the initial stages of the disease. We investigated whether stellate ganglia neurons from prehypertensive SHRs (spontaneously hypertensive rats) are hyperactive and describe their electrophysiological phenotype guided by single-cell RNA sequencing, molecular biology, and perforated patch clamp to uncover the mechanism of abnormal excitability. We demonstrate the contribution of a plethora of ion channels, in particular inhibition of M current to stellate ganglia neuronal firing, and confirm the conservation of expression of key ion channel transcripts in human stellate ganglia. We show that hyperexcitability was curbed by M-current activators, nonselective sodium current blockers, or inhibition of Nav1.1-1.3, Nav1.6, or INaP. We conclude that reduced activity of M current contributes significantly to abnormal firing of stellate neurons, which, in part, contributes to the hyperexcitability from rats that have a predisposition to hypertension. Targeting these channels could provide a therapeutic opportunity to minimize the consequences of excessive sympathetic activation.
Collapse
Affiliation(s)
- Harvey Davis
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| | - Neil Herring
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (N.H.)
| | - David J Paterson
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| |
Collapse
|
18
|
Identification and Characterization of a Transcribed Distal Enhancer Involved in Cardiac Kcnh2 Regulation. Cell Rep 2020; 28:2704-2714.e5. [PMID: 31484079 DOI: 10.1016/j.celrep.2019.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/05/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying IKr, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias associated with long-QT syndrome. Here, we investigate the regulation of KCNH2 and identify multiple active enhancers. A transcribed enhancer ∼85 kbp downstream of Kcnh2 physically contacts the promoters of two Kcnh2 isoforms in a cardiac-specific manner in vivo. Knockdown of its ncRNA transcript results in reduced expression of Kcnh2b and two neighboring mRNAs, Nos3 and Abcb8, in vitro. Genomic deletion of the enhancer, including the ncRNA transcription start site, from the mouse genome causes a modest downregulation of both Kcnh2a and Kcnh2b in the ventricles. These findings establish that the regulation of Kcnh2a and Kcnh2b is governed by a complex regulatory landscape that involves multiple partially redundantly acting enhancers.
Collapse
|
19
|
Burnett SD, Blanchette AD, Grimm FA, House JS, Reif DM, Wright FA, Chiu WA, Rusyn I. Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2019; 381:114711. [PMID: 31425687 PMCID: PMC6745256 DOI: 10.1016/j.taap.2019.114711] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022]
Abstract
The potential for cardiotoxicity is carefully evaluated for pharmaceuticals, as it is a major safety liability. However, environmental chemicals are seldom tested for their cardiotoxic potential. Moreover, there is a large variability in both baseline and drug-induced cardiovascular risk in humans, but data are lacking on the degree to which susceptibility to chemically-induced cardiotoxicity may also vary. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an important in vitro model for drug screening. Thus, we hypothesized that a population-based model of iPSC-derived cardiomyocytes from a diverse set of individuals can be used to assess potential hazard and inter-individual variability in chemical effects on these cells. We conducted concentration-response screening of 134 chemicals (pharmaceuticals, industrial and environmental chemicals and food constituents) in iPSC-derived cardiomyocytes from 43 individuals, comprising both sexes and diverse ancestry. We measured kinetic calcium flux and conducted high-content imaging following chemical exposure, and utilized a panel of functional and cytotoxicity parameters in concentration-response for each chemical and donor. We show reproducible inter-individual variability in both baseline and chemical-induced effects on iPSC-derived cardiomyocytes. Further, chemical-specific variability in potency and degree of population variability were quantified. This study shows the feasibility of using an organotypic population-based human in vitro model to quantitatively assess chemicals for which little cardiotoxicity information is available. Ultimately, these results advance in vitro toxicity testing methodologies by providing an innovative tool for population-based cardiotoxicity screening, contributing to the paradigm shift from traditional animal models of toxicity to in vitro toxicity testing methods.
Collapse
Affiliation(s)
- Sarah D Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Fred A Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
20
|
Swenson BR, Louie T, Lin HJ, Méndez-Giráldez R, Below JE, Laurie CC, Kerr KF, Highland H, Thornton TA, Ryckman KK, Kooperberg C, Soliman EZ, Seyerle AA, Guo X, Taylor KD, Yao J, Heckbert SR, Darbar D, Petty LE, McKnight B, Cheng S, Bello NA, Whitsel EA, Hanis CL, Nalls MA, Evans DS, Rotter JI, Sofer T, Avery CL, Sotoodehnia N. GWAS of QRS duration identifies new loci specific to Hispanic/Latino populations. PLoS One 2019; 14:e0217796. [PMID: 31251759 PMCID: PMC6599128 DOI: 10.1371/journal.pone.0217796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored. METHODS We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis. RESULTS We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African descent populations. The most significant QRS duration association was with intronic SNP rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci, CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among Hispanics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to generalize in Hispanics/Latinos. CONCLUSIONS Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations.
Collapse
Affiliation(s)
- Brenton R. Swenson
- Institute for Public Health Genetics, University of Washington, Seattle, WA, United States of America
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Henry J. Lin
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
- Division of Medical Genetics, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Raúl Méndez-Giráldez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jennifer E. Below
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Kathleen F. Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Heather Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Kelli K. Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Elsayed Z. Soliman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Epidemiological Cardiology Research Center (EPICARE), Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Amanda A. Seyerle
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
- Carolina Health Informatics Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lauren E. Petty
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Barbara McKnight
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Natalie A. Bello
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Boston, MA, United States of America
- Division of Cardiology, Columbia University Medical Center, New York, NY, United States of America
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Craig L. Hanis
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, United States of America
| | - Mike A. Nalls
- Data Technical International, Glen Echo, MD, United States of America
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, MD, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
21
|
Yazdani A, Yazdani A, Méndez Giráldez R, Aguilar D, Sartore L. A Multi-Trait Approach Identified Genetic Variants Including a Rare Mutation in RGS3 with Impact on Abnormalities of Cardiac Structure/Function. Sci Rep 2019; 9:5845. [PMID: 30971721 PMCID: PMC6458140 DOI: 10.1038/s41598-019-41362-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/05/2019] [Indexed: 01/29/2023] Open
Abstract
Heart failure is a major cause for premature death. Given the heterogeneity of the heart failure syndrome, identifying genetic determinants of cardiac function and structure may provide greater insights into heart failure. Despite progress in understanding the genetic basis of heart failure through genome wide association studies, the heritability of heart failure is not well understood. Gaining further insights into mechanisms that contribute to heart failure requires systematic approaches that go beyond single trait analysis. We integrated a Bayesian multi-trait approach and a Bayesian networks for the analysis of 10 correlated traits of cardiac structure and function measured across 3387 individuals with whole exome sequence data. While using single-trait based approaches did not find any significant genetic variant, applying the integrative Bayesian multi-trait approach, we identified 3 novel variants located in genes, RGS3, CHD3, and MRPL38 with significant impact on the cardiac traits such as left ventricular volume index, parasternal long axis interventricular septum thickness, and mean left ventricular wall thickness. Among these, the rare variant NC_000009.11:g.116346115C > A (rs144636307) in RGS3 showed pleiotropic effect on left ventricular mass index, left ventricular volume index and maximal left atrial anterior-posterior diameter while RGS3 can inhibit TGF-beta signaling associated with left ventricle dilation and systolic dysfunction.
Collapse
Affiliation(s)
- Akram Yazdani
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Climax Data Pattern, Boston, MA, USA.
| | - Azam Yazdani
- School of Medicine, Boston University, Boston, MA, USA
| | - Raúl Méndez Giráldez
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Luca Sartore
- National Institute of Statistical Science, Washington, DC, USA
| |
Collapse
|
22
|
Šedová L, Školníková E, Hodúlová M, Včelák J, Šeda O, Bendlová B. Expression profiling of Nme7 interactome in experimental models of metabolic syndrome. Physiol Res 2018; 67:S543-S550. [PMID: 30484681 DOI: 10.33549/physiolres.934021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleoside diphosphate kinase 7, non-metastatic cells 7 (NME7) is an acknowledged member of ciliome and is involved in the biogenesis or function of cilia. As obesity and diabetes are common in several ciliopathies, we aimed to analyze changes of gene expression within Nme7 interactome in genetically designed rat models of metabolic syndrome. We assessed the liver transcriptome by Affymetrix microarrays in adult males of 14 PXO recombinant inbred rat strains and their two progenitor strains, SHR-Lx and BXH2. In the strains with the lowest expression of Nme7, we have identified significant enrichment of transcripts belonging to Nme7 interactome. In the subsequent network analysis, we have identified three major upstream regulators - Hnf4a, Ppara and Nr1h4 and liver steatosis (p=0.0001) and liver necrosis/cell death (apoptosis of liver cells, p=0.0003) among the most enriched Tox categories. The mechanistic network reaching the top score showed substantial overlap with Assembly of non-motile cilium and Glucose metabolism disorder gene lists. In summary, we show in a genetic model of metabolic syndrome that rat strains with the lowest expression of Nme7 present gene expression shifts of Nme7 interactome that are perturbing networks relevant for carbohydrate and lipid metabolism as well as ciliogenesis.
Collapse
Affiliation(s)
- L Šedová
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
| | | | | | | | | | | |
Collapse
|