1
|
Schwartz L, Hayut O, Levy J, Gordon I, Feldman R. Sensitive infant care tunes a frontotemporal interbrain network in adolescence. Sci Rep 2024; 14:22602. [PMID: 39349700 PMCID: PMC11442694 DOI: 10.1038/s41598-024-73630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Caregiving plays a critical role in children's cognitive, emotional, and psychological well-being. In the current longitudinal study, we investigated the enduring effects of early maternal behavior on processes of interbrain synchrony in adolescence. Mother-infant naturalistic interactions were filmed when infants were 3-4 months old and interactions were coded for maternal sensitivity and intrusiveness with the Coding Interactive Behavior Manual. In early adolescence (Mean = 12.30, SD = 1.25), mother-adolescent interbrain synchrony was measured using hyperscanning EEG during a naturalistic interaction of positive valence. Guided by previous hyperscanning studies, we focused on interbrain connections within the right frontotemporal interbrain network. Results indicate that maternal sensitivity in early infancy was longitudinally associated with neural synchrony in the right interbrain frontotemporal network. Post-hoc comparisons highlighted enhancement of mother-adolescent frontal-frontal connectivity, a connection that has been implicated in parent-child social communication. In contrast, maternal intrusiveness in infancy was linked with attenuation of interbrain synchrony in the right interbrain frontotemporal network. Sensitivity and intrusiveness are key maternal social orientations that have shown to be individually stable in the mother-child relationship from infancy to adulthood and foreshadow children's positive and negative social-emotional outcomes, respectively. Our findings are the first to demonstrate that these two maternal orientations play a role in enhancing or attenuating the child's interbrain frontotemporal network, which sustains social communication and affiliation. Results suggest that the reported long-term impact of maternal sensitivity and intrusiveness may relate, in part, to its effects on tuning the child's brain to sociality.
Collapse
Affiliation(s)
- Linoy Schwartz
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Olga Hayut
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Jonathan Levy
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
- Department of Criminology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ilanit Gordon
- Department of Psychology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Child Study Center, Yale University, New Haven, USA
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel.
- Child Study Center, Yale University, New Haven, USA.
| |
Collapse
|
2
|
Chen Y, Liu S, Hao Y, Zhao Q, Ren J, Piao Y, Wang L, Yang Y, Jin C, Wang H, Zhou X, Gao JH, Zhang X, Wei Z. Higher emotional synchronization is modulated by relationship quality in romantic relationships and not in close friendships. Neuroimage 2024; 297:120733. [PMID: 39033788 DOI: 10.1016/j.neuroimage.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Emotions are fundamental to social interaction and deeply intertwined with interpersonal dynamics, especially in romantic relationships. Although the neural basis of interaction processes in romance has been widely explored, the underlying emotions and the connection between relationship quality and neural synchronization remain less understood. Our study employed EEG hyperscanning during a non-interactive video-watching paradigm to compare the emotional coordination between romantic couples and close friends. Couples showed significantly greater behavioral and prefrontal alpha synchronization than friends. Notably, couples with low relationship quality required heightened neural synchronization to maintain robust behavioral synchronization. Further support vector machine analysis underscores the crucial role of prefrontal activity in differentiating couples from friends. In summary, our research addresses gaps concerning how intrinsic emotions linked to relationship quality influence neural and behavioral synchronization by investigating a natural non-interactive context, thereby advancing our understanding of the neural mechanisms underlying emotional coordination in romantic relationships.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Shen Liu
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yaru Hao
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Qian Zhao
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Jiecheng Ren
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Yi Piao
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Liuyun Wang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Yunping Yang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Chenggong Jin
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Hangwei Wang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Xuezhi Zhou
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230027, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China; Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei 230031, China; Institute of Health and Medicine, Hefei Comprehensive Science Center, Hefei 230071, China; Business School, Guizhou Education University, Guiyang 550018, China.
| | - Zhengde Wei
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Brain-Machine Intelligence for Information Behavior- Ministry of Education, Shanghai International Studies University, Shanghai 201620, China.
| |
Collapse
|
3
|
Yang MT, Fan HC, Lee HJ, Woudsma KJ, Lin KS, Liang JS, Lin FH. Inter-subject gamma oscillation synchronization as a biomarker of abnormal processing of social interaction in ADHD. Sci Rep 2024; 14:17924. [PMID: 39095651 PMCID: PMC11297305 DOI: 10.1038/s41598-024-68905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Children with attention-deficit hyperactivity disorder (ADHD) have difficulties in social interactions. Studying brain activity during social interactions is difficult with conventional artificial stimuli. This pioneering study examined the neural correlates of social perception in children with ADHD and matched controls using naturalistic stimuli. We presented 20 children with ADHD and 20 age-and-sex-matched controls with tailored movies featuring high- or low-level social interactions while recording electroencephalographic signals. Both groups exhibited synchronized gamma-band oscillations, but controls demonstrated greater inter-subject correlations. Additionally, the difference in inter-subject correlations between high- and low-interaction movies was significantly larger in controls compared to ADHD patients. Between 55 and 75 Hz comparing viewing high interaction movies with low interaction moves, controls had a significantly larger weighting in the right parietal lobe, while ADHD patients had a significantly smaller weighting in the left occipital lobe. These findings reveal distinct spatiotemporal neural signatures in social interaction processing among children with ADHD and controls using naturalistic stimuli. These neural markers offer potential for group differentiation and assessing intervention efficacy, advancing our understanding ADHD-related social interaction mechanisms.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan.
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K J Woudsma
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Wang D, Ren Y, Chen W. Relationship evolution shapes inter-brain synchrony in affective sharing: The role of self-expansion. Brain Struct Funct 2024:10.1007/s00429-024-02841-0. [PMID: 39052095 DOI: 10.1007/s00429-024-02841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The development of social relationships influences a person's self-concept, which in turn affects their perceptions and neural correlates in social interactions. This study employed an EEG-based hyperscanning technique and a longitudinal design to investigate how the evolution of interpersonal relationships impacts inter-brain synchrony during nonverbal social-emotional interactions. The framework for this study is based on the self-expansion model. We found that dyads exhibited enhanced affective sharing abilities and increased brain-to-brain synchrony, particularly in the gamma rhythm across the frontal, parietal, and left temporoparietal regions, after seven months together compared to when they first met. Additionally, the results indicate that inter-brain coupling evolves as relationships develop, with synchrony in nonverbal social-emotional interactions increasing as self-expansion progresses. Crucially, in the deep learning model, interpersonal closeness can be successfully classified by inter-brain synchrony during emotional-social interactions. The longitudinal EEG-hyperscanning design of our study allows for capturing dynamic changes over time, offering new insights into the neurobiological foundations of social interaction and the potential of neural synchrony as a biomarker for relationship dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yong Ren
- Department of Psychology, Renmin University of China, Beijing, China
| | - Wenfeng Chen
- Department of Psychology, Renmin University of China, Beijing, China.
| |
Collapse
|
5
|
Kykyri VL, Nyman-Salonen P, Tschacher W, Tourunen A, Penttonen M, Seikkula J. Exploring the role of emotions and conversation content in interpersonal synchrony: A case study of a couple therapy session. Psychother Res 2024:1-17. [PMID: 38861657 DOI: 10.1080/10503307.2024.2361432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE This exploratory study investigated the association between interpersonal movement and physiological synchronies, emotional processing, and the conversational structure of a couple therapy session using a multimodal, mixed-method approach. METHOD The video recordings of a couple therapy session, in which the participants' electrodermal activity was recorded, were analyzed. The session was divided into topical episodes, a qualitative analysis was conducted on each topical episode's emotional aspects, conversational structure and content. In addition, movement and physiological synchrony were calculated in each topical episode. Regression models were used to discover the associations between qualitative variables and synchronies. RESULTS Physiological synchrony was associated with the emotional aspects of the session and to episodes in which the spouses' relationship was addressed, while movement synchrony was only related to emotional valence. No association between synchrony and conversational structure was found. CONCLUSION The findings suggest that physiological and movement synchrony play distinct roles in psychotherapy. The exploratory study sheds light on the association between momentary synchrony, emotions, and conversational structure in a couple therapy session.
Collapse
Affiliation(s)
- Virpi-Liisa Kykyri
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Petra Nyman-Salonen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Social Sciences and Philosophy, Faculty of Humanities and Social Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Wolfgang Tschacher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Anu Tourunen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Seikkula
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
6
|
Cohen M, Abargil M, Ahissar M, Atzil S. Social and nonsocial synchrony are interrelated and romantically attractive. COMMUNICATIONS PSYCHOLOGY 2024; 2:57. [PMID: 39242962 PMCID: PMC11332061 DOI: 10.1038/s44271-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/30/2024] [Indexed: 09/09/2024]
Abstract
The mechanisms of romantic bonding in humans are largely unknown. Recent research suggests that physiological synchrony between partners is associated with bonding. This study combines an experimental approach with a naturalistic dating setup to test whether the individual differences in social and nonsocial synchrony are interdependent, and linked to romantic attractiveness. In a preregistered online experiment with 144 participants, we discover that inducing physiological synchrony between an actor and an actress determines their attractiveness ratings by participants, indicating that synchrony can increase perceived attraction. In a lab-based naturalistic speed-dating experiment, we quantify in 48 participants the individual tendency for social physiological synchrony, nonsocial sensorimotor synchrony, and romantic attractiveness. We discover that the individual propensity to synchronize in social and nonsocial tasks is correlated. Some individuals synchronize better regardless of partners or tasks, and such Super Synchronizers are rated as more attractive. Altogether, this demonstrates that humans prefer romantic partners who can synchronize.
Collapse
Affiliation(s)
- M Cohen
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Abargil
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Ahissar
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Atzil
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Zhong Y, Zhang Y, Zhang C, Liu J, Wang H, Liu Y. Who takes the lead in consumer choices within romantic relationships: the evidence from electroencephalography hyperscanning and granger causality analysis. Cereb Cortex 2024; 34:bhae260. [PMID: 38904082 DOI: 10.1093/cercor/bhae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
In real-life scenarios, joint consumption is common, particularly influenced by social relationships such as romantic ones. However, how romantic relationships affect consumption decisions and determine dominance remains unclear. This study employs electroencephalography hyperscanning to examine the neural dynamics of couples during joint-consumption decisions. Results show that couples, compared to friends and strangers, prefer healthier foods, while friends have significantly faster reaction times when selecting food. Time-frequency analysis indicates that couples exhibit significantly higher theta power, reflecting deeper emotional and cognitive involvement. Strangers show greater beta1 power, indicating increased cognitive effort and alertness due to unfamiliarity. Friends demonstrate higher alpha2 power when choosing unhealthy foods, suggesting increased cognitive inhibition. Inter-brain phase synchrony analysis reveals that couples display significantly higher inter-brain phase synchrony in the beta1 and theta bands across the frontal-central, parietal, and occipital regions, indicating more coordinated cognitive processing and stronger emotional bonds. Females in couples may be more influenced by emotions during consumption decisions, with detailed sensory information processing, while males exhibit higher cognitive control and spatial integration. Granger-causality analysis shows a pattern of male dominance and female dependence in joint consumption within romantic relationships. This study highlights gender-related neural synchronous patterns during joint consumption among couples, providing insights for further research in consumer decision-making.
Collapse
Affiliation(s)
- Yifei Zhong
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| | - Ye Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| | - Chenyu Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| | - Jingyue Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| | - He Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| | - Yingjie Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, Hebei Province, 063210, China
| |
Collapse
|
8
|
Grootjans Y, Harrewijn A, Fornari L, Janssen T, de Bruijn ERA, van Atteveldt N, Franken IHA. Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience. Dev Cogn Neurosci 2024; 67:101391. [PMID: 38759529 PMCID: PMC11127236 DOI: 10.1016/j.dcn.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.
Collapse
Affiliation(s)
- Yvette Grootjans
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Anita Harrewijn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Laura Fornari
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Tieme Janssen
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
9
|
Marriot Haresign I, A M Phillips E, V Wass S. Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction. Dev Cogn Neurosci 2024; 67:101384. [PMID: 38657470 PMCID: PMC11059326 DOI: 10.1016/j.dcn.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Modern technology allows for simultaneous neuroimaging from interacting caregiver-child dyads. Whereas most analyses that examine the coordination between brain regions within an individual brain do so by measuring changes relative to observed events, studies that examine coordination between two interacting brains generally do this by measuring average intra-brain coordination across entire blocks or experimental conditions. In other words, they do not examine changes in inter-brain coordination relative to individual behavioural events. Here, we discuss the limitations of this approach. First, we present data suggesting that fine-grained temporal interdependencies in behaviour can leave residual artifact in neuroimaging data. We show how artifact can manifest as both power and (through that) phase synchrony effects in EEG and affect wavelet transform coherence in fNIRS analyses. Second, we discuss different possible mechanistic explanations of how inter-brain coordination is established and maintained. We argue that non-event-locked approaches struggle to differentiate between them. Instead, we contend that approaches which examine how interpersonal dynamics change around behavioural events have better potential for addressing possible artifactual confounds and for teasing apart the overlapping mechanisms that drive changes in inter-brain coordination.
Collapse
Affiliation(s)
| | | | - Sam V Wass
- Department of Psychology, University of East London, London, UK
| |
Collapse
|
10
|
Lee J, Kwak D, Lee GU, Kim CY, Kim J, Park SH, Choi JH, Lee SQ, Choe HK. Social context modulates multibrain broadband dynamics and functional brain-to-brain coupling in the group of mice. Sci Rep 2024; 14:11439. [PMID: 38769416 PMCID: PMC11106301 DOI: 10.1038/s41598-024-62070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Brain Science Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42996, Republic of Korea
| | - Damhyeon Kwak
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Gwang Ung Lee
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Chan Yeong Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Jihoon Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42996, Republic of Korea
| | - Jee Hyun Choi
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Q Lee
- Electronics Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| | - Han Kyoung Choe
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42996, Republic of Korea.
- Korean Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
11
|
Park W, Jamil MH, Eid M. Alpha interbrain synchrony during mediated interpersonal touch. PLoS One 2024; 19:e0300128. [PMID: 38758733 PMCID: PMC11101020 DOI: 10.1371/journal.pone.0300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/22/2024] [Indexed: 05/19/2024] Open
Abstract
Interpersonal touch plays a crucial role in human communication, development, and wellness. Mediated interpersonal touch (MIT), a technology to distance or virtually simulated interpersonal touch, has received significant attention to counteract the negative consequences of touch deprivation. Studies investigating the effectiveness of MIT have primarily focused on self-reporting or behavioral correlates. It is largely unknown how MIT affects neural processes such as interbrain functional connectivity during human interactions. Given how users exchange haptic information simultaneously during interpersonal touch, interbrain functional connectivity provides a more ecologically valid way of studying the neural correlates associated with MIT. In this study, a palm squeeze task is designed to examine interbrain synchrony associated with MIT using EEG-based hyperscanning methodology. The phase locking value (PLV) index is used to measure interbrain synchrony. Results demonstrate that MIT elicits a significant increase in alpha interbrain synchronization between participants' brains. Especially, there was a significant difference in the alpha PLV indices between no MIT and MIT conditions in the early stage (130-470 ms) of the interaction period (t-test, p < 0.05). Given the role that alpha interbrain synchrony plays during social interaction, a significant increase in PLV index during MIT interaction seems to indicate an effect of social coordination. The findings and limitations of this study are further discussed, and perspectives on future research are provided.
Collapse
Affiliation(s)
- Wanjoo Park
- Engineering Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Muhammad Hassan Jamil
- Engineering Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mohamad Eid
- Engineering Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Bonnaire J, Dumas G, Cassell J. Bringing together multimodal and multilevel approaches to study the emergence of social bonds between children and improve social AI. FRONTIERS IN NEUROERGONOMICS 2024; 5:1290256. [PMID: 38827377 PMCID: PMC11140154 DOI: 10.3389/fnrgo.2024.1290256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
This protocol paper outlines an innovative multimodal and multilevel approach to studying the emergence and evolution of how children build social bonds with their peers, and its potential application to improving social artificial intelligence (AI). We detail a unique hyperscanning experimental framework utilizing functional near-infrared spectroscopy (fNIRS) to observe inter-brain synchrony in child dyads during collaborative tasks and social interactions. Our proposed longitudinal study spans middle childhood, aiming to capture the dynamic development of social connections and cognitive engagement in naturalistic settings. To do so we bring together four kinds of data: the multimodal conversational behaviors that dyads of children engage in, evidence of their state of interpersonal rapport, collaborative performance on educational tasks, and inter-brain synchrony. Preliminary pilot data provide foundational support for our approach, indicating promising directions for identifying neural patterns associated with productive social interactions. The planned research will explore the neural correlates of social bond formation, informing the creation of a virtual peer learning partner in the field of Social Neuroergonomics. This protocol promises significant contributions to understanding the neural basis of social connectivity in children, while also offering a blueprint for designing empathetic and effective social AI tools, particularly for educational contexts.
Collapse
Affiliation(s)
| | - Guillaume Dumas
- Research Center of the CHU Sainte-Justine, Department of Psychiatry, University of Montréal, Montreal, QC, Canada
- Mila–Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Justine Cassell
- Inria Paris Centre, Paris, France
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Wang D, Liu C, Chen W. The role of self-representation in emotional contagion. Front Hum Neurosci 2024; 18:1361368. [PMID: 38784524 PMCID: PMC11111881 DOI: 10.3389/fnhum.2024.1361368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Although prior research has implied that emotional contagion occurs automatically and unconsciously, convincing evidence suggests that it is significantly influenced by individuals' perceptions of their relationships with others or with collectives within specific social contexts. This implies a role for self-representation in the process. The present study aimed to offer a novel explanation of the interplay between social contexts and emotional contagion, focusing on the contextualized nature of self-representation and exploring the social factors that shape emotional contagion. It further posits a causal loop among social contexts, self-representation, and emotional contagion. Drawing from the lens of self-representation, this study concludes with a discussion on potential research directions in this field, commencing with an exploration of the antecedents and consequences of emotional contagion and self-representation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Changhong Liu
- Department of Psychology, Bournemouth University, Dorset, United Kingdom
| | - Wenfeng Chen
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
14
|
Peng X, Li T, Liu G, Ni W, Yi L. Enhanced neural synchronization during social communications between dyads with high autistic traits. Cereb Cortex 2024; 34:104-111. [PMID: 38696603 DOI: 10.1093/cercor/bhae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 05/04/2024] Open
Abstract
Autism is characterized by atypical social communication styles. To investigate whether individuals with high autistic traits could still have effective social communication among each other, we compared the behavioral patterns and communication quality within 64 dyads of college students paired with both high, both low, and mixed high-low (HL) autistic traits, with their gender matched. Results revealed that the high-high (HH) autistic dyads exhibited atypical behavioral patterns during conversations, including reduced mutual gaze, communicational turns, and emotional sharing compared with the low-low and/or HL autistic dyads. However, the HH autistic dyads displayed enhanced interpersonal neural synchronization during social communications measured by functional near-infrared spectroscopy, suggesting an effective communication style. Besides, they also provided more positive subjective evaluations of the conversations. These findings highlight the potential for alternative pathways to effectively communicate with the autistic community, contribute to a deeper understanding of how high autistic traits influence social communication dynamics among autistic individuals, and provide important insights for the clinical practices for supporting autistic people.
Collapse
Affiliation(s)
- Xinyue Peng
- Peking-Tsinghua Center for Life Sciences, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Tianbi Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Guangfang Liu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Wei Ni
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Li Yi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research at PKU, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| |
Collapse
|
15
|
Moreau Q, Brun F, Ayrolles A, Nadel J, Dumas G. Distinct social behavior and inter-brain connectivity in Dyads with autistic individuals. Soc Neurosci 2024; 19:124-136. [PMID: 39023438 DOI: 10.1080/17470919.2024.2379917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Autism Spectrum Disorder (ASD) is defined by distinctive socio-cognitive behaviors that deviate from typical patterns. Notably, social imitation skills appear to be particularly impacted, manifesting early on in development. This paper compared the behavior and inter-brain dynamics of dyads made up of two typically developing (TD) participants with mixed dyads made up of ASD and TD participants during social imitation tasks. By combining kinematics and EEG-hyperscanning, we show that individuals with ASD exhibited a preference for the follower rather than the lead role in imitating scenarios. Moreover, the study revealed inter-brain synchrony differences, with low-alpha inter-brain synchrony differentiating control and mixed dyads. The study's findings suggest the importance of studying interpersonal phenomena in dynamic and ecological settings and using hyperscanning methods to capture inter-brain dynamics during actual social interactions.
Collapse
Affiliation(s)
- Quentin Moreau
- Precision Psychiatry and Social Physiology Laboratory (PPSP), CHU Sainte-Justine Research Center, Montréal, Canada
- Department of Psychiatry, University of Montréal, Québec, Canada
| | - Florence Brun
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anaël Ayrolles
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Jacqueline Nadel
- CNRS, La Salpêtrière Hospital, Psychiatry Department, Sorbonne University, Paris, France
| | - Guillaume Dumas
- Precision Psychiatry and Social Physiology Laboratory (PPSP), CHU Sainte-Justine Research Center, Montréal, Canada
- Department of Psychiatry, University of Montréal, Québec, Canada
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- CNRS, La Salpêtrière Hospital, Psychiatry Department, Sorbonne University, Paris, France
- Mila - Quebec AI Institute, University of Montréal, Montreal, Canada
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
16
|
De Felice S, Hakim U, Gunasekara N, Pinti P, Tachtsidis I, Hamilton A. Having a chat and then watching a movie: how social interaction synchronises our brains during co-watching. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae006. [PMID: 38707237 PMCID: PMC11069416 DOI: 10.1093/oons/kvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.
Collapse
Affiliation(s)
- S De Felice
- Department of Psychology, University of Cambridge, 2 Free School Lane, CB2 3RF, UK
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| | - U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - N Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, 33 Torrington place, London WC1E 7JL, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
17
|
Newman LA, Cao M, Täuber S, van Vugt M. Working memory load impairs tacit coordination but not inter-brain EEG synchronization. Soc Cogn Affect Neurosci 2024; 19:nsae017. [PMID: 38451878 PMCID: PMC10919395 DOI: 10.1093/scan/nsae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Coordinating actions with others is thought to require Theory of Mind (ToM): the ability to take perspective by attributing underlying intentions and beliefs to observed behavior. However, researchers have yet to establish a causal role for specific cognitive processes in coordinated action. Since working memory load impairs ToM in single-participant paradigms, we tested whether load manipulation affects two-person coordination. We used EEG to measure P3, an assessment of working memory encoding, as well as inter-brain synchronization (IBS), which is thought to capture mutual adjustment of behavior and mental states during coordinated action. In a computerized coordination task, dyads were presented with novel abstract images and tried selecting the same image, with selections shown at the end of each trial. High working memory load was implemented by a concurrent n-back task. Compared with a low-load control condition, high load significantly diminished coordination performance and P3 amplitude. A significant relationship between P3 and performance was found. Load did not affect IBS, nor did IBS affect performance. These findings suggest a causal role for working memory in two-person coordination, adding to a growing body of evidence challenging earlier claims that social alignment is domain-specific and does not require executive control in adults.
Collapse
Affiliation(s)
- Lionel A Newman
- Engineering and Technology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Ming Cao
- Engineering and Technology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Susanne Täuber
- Department of Human Resource Management & Organizational Behavior, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marieke van Vugt
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
18
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
19
|
Papoutselou E, Harrison S, Mai G, Buck B, Patil N, Wiggins I, Hartley D. Investigating mother-child inter-brain synchrony in a naturalistic paradigm: A functional near infrared spectroscopy (fNIRS) hyperscanning study. Eur J Neurosci 2024; 59:1386-1403. [PMID: 38155106 DOI: 10.1111/ejn.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Successful social interactions between mothers and children are hypothesised to play a significant role in a child's social, cognitive and language development. Earlier research has confirmed, through structured experimental paradigms, that these interactions could be underpinned by coordinated neural activity. Nevertheless, the extent of neural synchrony during real-life, ecologically valid interactions between mothers and their children remains largely unexplored. In this study, we investigated mother-child inter-brain synchrony using a naturalistic free-play paradigm. We also examined the relationship between neural synchrony, verbal communication patterns and personality traits to further understand the underpinnings of brain synchrony. Twelve children aged between 3 and 5 years old and their mothers participated in this study. Neural synchrony in mother-child dyads were measured bilaterally over frontal and temporal areas using functional Near Infra-red Spectroscopy (fNIRS) whilst the dyads were asked to play with child-friendly toys together (interactive condition) and separately (independent condition). Communication patterns were captured via video recordings and conversational turns were coded. Compared to the independent condition, mother-child dyads showed increased neural synchrony in the interactive condition across the prefrontal cortex and temporo-parietal junction. There was no significant relationship found between neural synchrony and turn-taking and between neural synchrony and the personality traits of each member of the dyad. Overall, we demonstrate the feasibility of measuring inter-brain synchrony between mothers and children in a naturalistic environment. These findings can inform future study designs to assess inter-brain synchrony between parents and pre-lingual children and/or children with communication needs.
Collapse
Affiliation(s)
- Efstratia Papoutselou
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Samantha Harrison
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Guangting Mai
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Bryony Buck
- Hearing Sciences - Scottish Section, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikita Patil
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Wiggins
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Douglas Hartley
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
20
|
Kurihara Y, Takahashi T, Osu R. The topology of interpersonal neural network in weak social ties. Sci Rep 2024; 14:4961. [PMID: 38418895 PMCID: PMC11336176 DOI: 10.1038/s41598-024-55495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
The strategies for social interaction between strangers differ from those between acquaintances, whereas the differences in neural basis of social interaction have not been fully elucidated. In this study, we examined the geometrical properties of interpersonal neural networks in pairs of strangers and acquaintances during antiphase joint tapping. Dual electroencephalogram (EEG) of 29 channels per participant was measured from 14 strangers and 13 acquaintance pairs.Intra-brain synchronizations were calculated using the weighted phase lag index (wPLI) for intra-brain electrode combinations, and inter-brain synchronizations were calculated using the phase locking value (PLV) for inter-brain electrode combinations in the theta, alpha, and beta frequency bands. For each participant pair, electrode combinations with larger wPLI/PLV than their surrogates were defined as the edges of the neural networks. We calculated global efficiency, local efficiency, and modularity derived from graph theory for the combined intra- and inter-brain networks of each pair. In the theta band networks, stranger pairs showed larger local efficiency than acquaintance pairs, indicating that the two brains of stranger pairs were more densely connected. Hence, weak social ties require extensive social interactions and result in high efficiency of information transfer between neighbors in neural network.
Collapse
Affiliation(s)
- Yuto Kurihara
- Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Toru Takahashi
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| |
Collapse
|
21
|
Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-brain map of prairie vole pair bonding. eLife 2024; 12:RP87029. [PMID: 38381037 PMCID: PMC10942618 DOI: 10.7554/elife.87029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area, and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward, and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.
Collapse
Affiliation(s)
- Morgan L Gustison
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Department of Psychology, Western UniversityLondonCanada
| | - Rodrigo Muñoz-Castañeda
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Pavel Osten
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Institute for Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
22
|
Xu X, Kong Q, Zhang D, Zhang Y. An evaluation of inter-brain EEG coupling methods in hyperscanning studies. Cogn Neurodyn 2024; 18:67-83. [PMID: 38406199 PMCID: PMC10881924 DOI: 10.1007/s11571-022-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
EEG-based hyperscanning technology has been increasingly applied to analyze interpersonal interactions in social neuroscience in recent years. However, different methods are employed in various of studies without a complete investigation of the suitability of these methods. Our study aimed to systematically compare typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data. In particular, two critical metrics of noise level and time delay were manipulated, and three different coupling models were tested. The results revealed that: (1) under certain conditions, various methods were leveraged by noise level and time delay, leading to different performances; (2) most algorithms achieved better experimental results and performance under high coupling degree; (3) with our simulation process, temporal and spectral models showed relatively good results, while data simulated with phase coupling model performed worse. This is the first systematic comparison of typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data from different subjects. Existing methods mainly focused on intra-brain coupling. To our knowledge, there was only one previous study that compared five inter-brain EEG coupling methods (Burgess in Front Human Neurosci 7:881, 2013). However, the simulated data used in this study were generated time series with varied degrees of phase coupling without considering any EEG characteristics. For future research, appropriate methods need to be selected based on possible underlying mechanisms (temporal, spectral and phase coupling model hypothesis) of a specific study, as well as the expected coupling degree and conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09911-1.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Institute of Education, Tsinghua University, Beijing, China
| | - Qiuyue Kong
- School of Public Health, Harvard University, Cambridge, MA USA
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Schwartz L, Levy J, Hayut O, Netzer O, Endevelt-Shapira Y, Feldman R. Generation WhatsApp: inter-brain synchrony during face-to-face and texting communication. Sci Rep 2024; 14:2672. [PMID: 38302582 PMCID: PMC10834538 DOI: 10.1038/s41598-024-52587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
Texting has become one of the most prevalent ways to interact socially, particularly among youth; however, the effects of text messaging on social brain functioning are unknown. Guided by the biobehavioral synchrony frame, this pre-registered study utilized hyperscanning EEG to evaluate interbrain synchrony during face-to-face versus texting interactions. Participants included 65 mother-adolescent dyads observed during face-to-face conversation compared to texting from different rooms. Results indicate that both face-to-face and texting communication elicit significant neural synchrony compared to surrogate data, demonstrating for the first time brain-to-brain synchrony during texting. Direct comparison between the two interactions highlighted 8 fronto-temporal interbrain links that were significantly stronger in the face-to-face interaction compared to texting. Our findings suggest that partners co-create a fronto-temporal network of inter-brain connections during live social exchanges. The degree of improvement in the partners' right-frontal-right-frontal connectivity from texting to the live social interaction correlated with greater behavioral synchrony, suggesting that this well-researched neural connection may be specific to face-to-face communication. Our findings suggest that while technology-based communication allows humans to synchronize from afar, face-to-face interactions remain the superior mode of communication for interpersonal connection. We conclude by discussing the potential benefits and drawbacks of the pervasive use of texting, particularly among youth.
Collapse
Affiliation(s)
- Linoy Schwartz
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel
| | - Jonathan Levy
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel
- Department of Criminology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Olga Hayut
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel
| | - Ofir Netzer
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel
| | - Yaara Endevelt-Shapira
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel
| | - Ruth Feldman
- Center for Developmental, Social, and Relationship Neuroscience, Reichman University, Herzliya, Israel.
- Child Study Center, Yale University, New Haven, USA.
| |
Collapse
|
24
|
Mayo O, Shamay-Tsoory S. Dynamic mutual predictions during social learning: A computational and interbrain model. Neurosci Biobehav Rev 2024; 157:105513. [PMID: 38135267 DOI: 10.1016/j.neubiorev.2023.105513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
During social interactions, we constantly learn about the thoughts, feelings, and personality traits of our interaction partners. Learning in social interactions is critical for bond formation and acquiring knowledge. Importantly, this type of learning is typically bi-directional, as both partners learn about each other simultaneously. Here we review the literature on social learning and propose a new computational and neural model characterizing mutual predictions that take place within and between interactions. According to our model, each partner in the interaction attempts to minimize the prediction error of the self and the interaction partner. In most cases, these inferential models become similar over time, thus enabling mutual understanding to develop. At the neural level, this type of social learning may be supported by interbrain plasticity, defined as a change in interbrain coupling over time in neural networks associated with social learning, among them the mentalizing network, the observation-execution system, and the hippocampus. The mutual prediction model constitutes a promising means of providing empirically verifiable accounts of how relationships develop over time.
Collapse
Affiliation(s)
- Oded Mayo
- The Department of Psychology, University of Haifa, Haifa, Israel.
| | | |
Collapse
|
25
|
Boukarras S, Ferri D, Borgogni L, Aglioti SM. Neurophysiological markers of asymmetric emotional contagion: implications for organizational contexts. Front Integr Neurosci 2024; 18:1321130. [PMID: 38357225 PMCID: PMC10861795 DOI: 10.3389/fnint.2024.1321130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Emotions play a vital role within organizations, impacting various crucial aspects of work such as job satisfaction, performance, and employee well-being. Understanding how emotional states spread in organizational settings is therefore essential. Recent studies have highlighted that a leader's emotional state can influence their followers, with significant consequences on job performance. Leaders thus possess the ability to influence their employees' psychological state and, consequently, their well-being. However, the biological underpinnings of emotional contagion from leaders to followers remain unexplored. The field of interpersonal (neuro)physiology, which involves recording brain and peripheral activity of multiple individuals during interactions, holds great potential for investigating this phenomenon. Analyzing the time-lagged synchronization of neurophysiological activity during interactions may serve as a measure of the leader's influence on their followers in organizational contexts. In this "mini review," we examine empirical studies that have employed interpersonal (neuro)physiology to quantify the asymmetrical contagion of emotions in different contexts. Asymmetrical contagion was operationalized as the unidirectional influence exerted by one individual (i.e., the "sender") to another one (i.e., the "receiver"), whereby the receiver's state can be predicted by the sender's one. The reviewed literature reveals that delayed synchronization of physiological states is a widespread phenomenon that may underpin the transmission of emotions. These findings have significant implications for various aspects of organizational life, including leader-to-employee communication, and could drive the development of effective leadership training programs. We propose that Organizational Neuroscience may benefit from including interpersonal neurophysiology in its methodological toolkit for laboratory and field studies of leader-follower dynamics.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ernst and Young (EY), Rome, Italy
| | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLN2S@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
26
|
Lo FY, Su CY, Chen CH. Identifying Factor Associations Emerging from an Academic Metaverse Event for Scholars in a Postpandemic World: Social Presence and Technology Self-Efficacy in Gather.Town. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:19-27. [PMID: 38197841 DOI: 10.1089/cyber.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
COVID-19 has prompted conferences to transition to online formats, inadvertently diminishing their emphasis on the social element. In online events, a sense of presence leading to a sense of companionship is limited in conventional conferencing platforms. Although the extant body of research on virtual conferences is growing, academic events in the Metaverse get little attention. Such events and their relevance to social presence within the Metaverse and associations among observable factors are seldom discussed. This study examined the perspectives of scholars in an online seminar during COVID-19 hosted in Gather.Town, a Metaverse-like conferencing environment. A hypothetical model was built to determine whether social presence and technology self-efficacy impact scholars' satisfaction and facilitate academic interactions. Ninety-three scholars in an academic seminar for research projects in information and computer education were polled to obtain data, which was then evaluated using partial least squares structural equation modeling (PLS-SEM). The proposed model explained 57.1 percent of the variables, and the findings showed that social presence and technology self-efficacy had a positive and significant impact on academic interactions and exchanges, as well as technology self-efficacy playing an essential role in determining overall satisfaction. However, social presence does not appear to have a direct impact on satisfaction, implying that a positive academic experience may still be achieved with or without the feature of being with others supported by the Metaverse. Although digital communication will only become more diverse and intense, it is important to understand how to maintain the basic character of human interactions virtually, even amid a pandemic. This research attempts to shed light on some critical factors in creating a conducive environment for future Metaverse-like academic events.
Collapse
Affiliation(s)
- Fang-Ying Lo
- Center for General Education, Asia University, Taichung, Taiwan
| | - Chien-Yuan Su
- Department of Education, National University of Tainan, Tainan, Taiwan
| | - Cheng-Huan Chen
- Department of M-Commerce and Multimedia Applications, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Ramírez-Moreno MA, Cruz-Garza JG, Acharya A, Chatufale G, Witt W, Gelok D, Reza G, Contreras-Vidal JL. Brain-to-brain communication during musical improvisation: a performance case study. F1000Res 2023; 11:989. [PMID: 37809054 PMCID: PMC10558998 DOI: 10.12688/f1000research.123515.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 10/10/2023] Open
Abstract
Understanding and predicting others' actions in ecological settings is an important research goal in social neuroscience. Here, we deployed a mobile brain-body imaging (MoBI) methodology to analyze inter-brain communication between professional musicians during a live jazz performance. Specifically, bispectral analysis was conducted to assess the synchronization of scalp electroencephalographic (EEG) signals from three expert musicians during a three-part 45 minute jazz performance, during which a new musician joined every five minutes. The bispectrum was estimated for all musician dyads, electrode combinations, and five frequency bands. The results showed higher bispectrum in the beta and gamma frequency bands (13-50 Hz) when more musicians performed together, and when they played a musical phrase synchronously. Positive bispectrum amplitude changes were found approximately three seconds prior to the identified synchronized performance events suggesting preparatory cortical activity predictive of concerted behavioral action. Moreover, a higher amount of synchronized EEG activity, across electrode regions, was observed as more musicians performed, with inter-brain synchronization between the temporal, parietal, and occipital regions the most frequent. Increased synchrony between the musicians' brain activity reflects shared multi-sensory processing and movement intention in a musical improvisation task.
Collapse
Affiliation(s)
- Mauricio A. Ramírez-Moreno
- School of Engineering and Sciences, Mechatronics Department, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64849, Mexico
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF IUCRC BRAIN, University of Houston, Houston, Texas, 77004, USA
| | - Jesús G. Cruz-Garza
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF IUCRC BRAIN, University of Houston, Houston, Texas, 77004, USA
| | - Akanksha Acharya
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF IUCRC BRAIN, University of Houston, Houston, Texas, 77004, USA
| | - Girija Chatufale
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF IUCRC BRAIN, University of Houston, Houston, Texas, 77004, USA
- University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Woody Witt
- Moores School of Music, University of Houston, Houston, Texas, 77004, USA
- Houston Community College, Houston, Texas, 77004, USA
| | - Dan Gelok
- Moores School of Music, University of Houston, Houston, Texas, 77004, USA
| | | | - José L. Contreras-Vidal
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF IUCRC BRAIN, University of Houston, Houston, Texas, 77004, USA
| |
Collapse
|
28
|
Goldman E, Bou-Dargham S, Lai M, Guda A, Fallon J, Hauptman M, Reinoso A, Phillips S, Abrams E, Parrish A, Pylkkänen L. MEG correlates of speech planning in simple vs. interactive picture naming in children and adults. PLoS One 2023; 18:e0292316. [PMID: 37847686 PMCID: PMC10581494 DOI: 10.1371/journal.pone.0292316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The picture naming task is common both as a clinical task and as a method to study the neural bases of speech production in the healthy brain. However, this task is not reflective of most naturally occurring productions, which tend to happen within a context, typically in dialogue in response to someone else's production. How the brain basis of the classic "confrontation picture naming" task compares to the planning of utterances in dialogue is not known. Here we used magnetoencephalography (MEG) to measure neural activity associated with language production using the classic picture naming task as well as a minimal variant of the task, intended as more interactive or dialogue-like. We assessed how neural activity is affected by the interactive context in children, teenagers, and adults. The general pattern was that in adults, the interactive task elicited a robust sustained increase of activity in frontal and temporal cortices bilaterally, as compared to simple picture naming. This increase was present only in the left hemisphere in teenagers and was absent in children, who, in fact, showed the reverse effect. Thus our findings suggest a robustly bilateral neural basis for the coordination of interaction and a very slow developmental timeline for this network.
Collapse
Affiliation(s)
- Ebony Goldman
- Department of Psychology, New York University, New York, NY, United States of America
| | | | - Marco Lai
- Department of Psychology, New York University, New York, NY, United States of America
| | - Anvita Guda
- Department of Linguistics, New York University, New York, NY, United States of America
| | - Jacqui Fallon
- Department of Psychology, New York University, New York, NY, United States of America
| | - Miriam Hauptman
- Department of Psychology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Alejandra Reinoso
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States of America
| | - Sarah Phillips
- Department of Linguistics, New York University, New York, NY, United States of America
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, DC, United States of America
| | - Ellie Abrams
- Department of Psychology, New York University, New York, NY, United States of America
| | - Alicia Parrish
- Department of Linguistics, New York University, New York, NY, United States of America
| | - Liina Pylkkänen
- Department of Psychology, New York University, New York, NY, United States of America
- NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Linguistics, New York University, New York, NY, United States of America
| |
Collapse
|
29
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Marzoratti A, Liu ME, Krol KM, Sjobeck GR, Lipscomb DJ, Hofkens TL, Boker SM, Pelphrey KA, Connelly JJ, Evans TM. Epigenetic modification of the oxytocin receptor gene is associated with child-parent neural synchrony during competition. Dev Cogn Neurosci 2023; 63:101302. [PMID: 37734257 PMCID: PMC10518595 DOI: 10.1016/j.dcn.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Interpersonal neural synchrony (INS) occurs when neural electrical activity temporally aligns between individuals during social interactions. It has been used as a metric for interpersonal closeness, often during naturalistic child-parent interactions. This study evaluated whether other biological correlates of social processing predicted the prevalence of INS during child-parent interactions, and whether their observed cooperativity modulated this association. Child-parent dyads (n = 27) performed a visuospatial tower-building task in cooperative and competitive conditions. Neural activity was recorded using mobile electroencephalogram (EEG) headsets, and experimenters coded video-recordings post-hoc for behavioral attunement. DNA methylation of the oxytocin receptor gene (OXTRm) was measured, an epigenetic modification associated with reduced oxytocin activity and socioemotional functioning. Greater INS during competition was associated with lower child OXTRm, while greater behavioral attunement during competition and cooperation was associated with higher parent OXTRm. These differential relationships suggest that interpersonal dynamics as measured by INS may be similarly reflected by other biological markers of social functioning, irrespective of observed behavior. Children's self-perceived communication skill also showed opposite associations with parent and child OXTRm, suggesting complex relationships between children's and their parents' social functioning. Our findings have implications for ongoing developmental research, supporting the utility of biological metrics in characterizing interpersonal relationships.
Collapse
Affiliation(s)
- Analia Marzoratti
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Megan E Liu
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kathleen M Krol
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Gus R Sjobeck
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Daniel J Lipscomb
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Tara L Hofkens
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Steven M Boker
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kevin A Pelphrey
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Pfaus JG, Safron A, Zakreski E. From distal to proximal to interactive: behavioral and brain synchrony during attraction, courtship, and sexual interaction-implications for clinical assessments of relationship style and quality. Sex Med Rev 2023; 11:312-322. [PMID: 37544764 DOI: 10.1093/sxmrev/qead034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Synchronous behaviors between individuals are nonverbal signs of closeness and common purpose. In the flow from initial attraction to intimate sexual interaction, attention and synchrony move from distal to proximal to interactive and are mediated by sensitized activation of neural systems for sexual motivation, arousal, and desire and those that recognize and mimic common facial and body movements between individuals. When reinforced by sexual pleasure and other relationship rewards, this results in the strengthening of attraction and bonding and the display of more common motor patterns. As relationships falter, nonverbal behaviors likely become asynchronous. OBJECTIVES To define behavioral, romantic, and sexual synchrony during phases of attraction and how their disruption can be observed and utilized by clinicians to assess individual relationship styles and quality. METHODS We review the literature on behavioral and attentional synchrony in humans and animals in an effort to understand experiential and innate mechanisms of synchrony and asynchrony and how they develop, as well as implications for attraction, relationship initiation, maintenance of romantic and sexual closeness, and relationship disintegration. RESULTS Evidence is presented that behavioral synchrony and the neural mechanisms that underlie it are vital to relationship formation and satisfaction. CONCLUSION Behavioral synchrony helps to create feelings of sexual and romantic synergy, cohesion, and arousal among individuals. Asynchrony is aversive and can spark feelings of discontent, aversion, and jealousy. Thus, observing patterns of nonverbal sexual and romantic synchrony between individuals offers insights into the potential quality of their relationships.
Collapse
Affiliation(s)
- James G Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, 18200, Czech Republic
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, 25067, Czech Republic
| | - Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins Bayview Medical Center, Baltimore, MD, 21224, United States
| | - Ellen Zakreski
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, 18200, Czech Republic
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, 25067, Czech Republic
| |
Collapse
|
32
|
Dziura SL, Hosangadi A, Shariq D, Merchant JS, Redcay E. Partner similarity and social cognitive traits predict social interaction success among strangers. Soc Cogn Affect Neurosci 2023; 18:nsad045. [PMID: 37698369 PMCID: PMC10516339 DOI: 10.1093/scan/nsad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/02/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Social interactions are a ubiquitous part of engaging in the world around us, and determining what makes an interaction successful is necessary for social well-being. This study examined the separate contributions of individual social cognitive ability and partner similarity to social interaction success among strangers, measured by a cooperative communication task and self-reported interaction quality. Sixty participants engaged in a 1-h virtual social interaction with an unfamiliar partner (a laboratory confederate) including a 30-min cooperative 'mind-reading' game and then completed several individual tasks and surveys. They then underwent a separate functional MRI session in which they passively viewed video clips that varied in content. The neural responses to these videos were correlated with those of their confederate interaction partners to yield a measure of pairwise neural similarity. We found that trait empathy (assessed by the interpersonal reactivity index) and neural similarity to partner both predicted communication success in the mind-reading game. In contrast, perceived similarity to partner and (to a much lesser extent) trait mind-reading motivation predicted self-reported interaction quality. These results highlight the importance of sharing perspectives in successful communication as well as differences between neurobiological similarity and perceived similarity in supporting different types of interaction success.
Collapse
Affiliation(s)
- Sarah L Dziura
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Aditi Hosangadi
- Center for Mind and Brain University of California Davis, Davis, CA 95618, USA
| | - Deena Shariq
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Junaid S Merchant
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Redcay
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
33
|
Mazzini S, Holler J, Drijvers L. Studying naturalistic human communication using dual-EEG and audio-visual recordings. STAR Protoc 2023; 4:102370. [PMID: 37421617 PMCID: PMC10511849 DOI: 10.1016/j.xpro.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 07/10/2023] Open
Abstract
We present a protocol to study naturalistic human communication using dual-electroencephalography (EEG) and audio-visual recordings. We describe preparatory steps for data collection including setup preparation, experiment design, and piloting. We then describe the data collection process in detail which consists of participant recruitment, experiment room preparation, and data collection. We also outline the kinds of research questions that can be addressed with the current protocol, including several analysis possibilities, from conversational to advanced time-frequency analyses. For complete details on the use and execution of this protocol, please refer to Drijvers and Holler (2022).1.
Collapse
Affiliation(s)
- Sara Mazzini
- The Communicative Brain, Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands.
| | - Judith Holler
- Communication in Social Interaction, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands; Communication in Social Interaction, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525GD, the Netherlands
| | - Linda Drijvers
- The Communicative Brain, Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands; The Communicative Brain, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525GD, the Netherlands.
| |
Collapse
|
34
|
Chen Y, Youk S, Wang PT, Pinti P, Weber R. A calculus of probability or belief? Neural underpinnings of social decision-making in a card game. Neuropsychologia 2023; 188:108635. [PMID: 37423422 DOI: 10.1016/j.neuropsychologia.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
For decades, the prefrontal cortex (PFC) has been the focus of social neuroscience research, specifically regarding its role in competitive social decision-making. However, the distinct contributions of PFC subregions when making strategic decisions involving multiple types of information (social, non-social, and mixed information) remain unclear. This study investigates decision-making strategies (pure probability calculation vs. mentalizing) and their neural representations using functional near-infrared spectroscopy (fNIRS) data collected during a two-person card game. We observed individual differences in information processing strategy, indicating that some participants relied more on probability than others. Overall, the use of pure probability decreased over time in favor of other types of information (e.g., mixed information), with this effect being more pronounced within-round trials than across rounds. In the brain, (1) the lateral PFC activates when decisions are driven by probability calculations; (2) the right lateral PFC responds to trial difficulty; and (3) the anterior medial PFC is engaged when decision-making involves mentalizing. Furthermore, neural synchrony, which reflects the real-time interplay between individuals' cognitive processes, did not consistently contribute to correct decisions and fluctuated throughout the experiment, suggesting a hierarchical mentalizing mechanism at work.
Collapse
Affiliation(s)
- Yibei Chen
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Sungbin Youk
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Paula T Wang
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Paola Pinti
- Birkbeck, University of London, Center for Brain and Cognitive Development, USA
| | - René Weber
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA; University of California Santa Barbara, Department of Psychological and Brain Sciences, USA; Ewha Womans University, School of Communication and Media, South Korea.
| |
Collapse
|
35
|
Atilla F, Alimardani M, Kawamoto T, Hiraki K. Mother-child inter-brain synchrony during a mutual visual search task: A study of feedback valence and role. Soc Neurosci 2023; 18:232-244. [PMID: 37395457 DOI: 10.1080/17470919.2023.2228545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 07/04/2023]
Abstract
Parent and child have been shown to synchronize their behaviors and physiology during social interactions. This synchrony is an important marker of their relationship quality and subsequently the child's social and emotional development. Therefore, understanding the factors that influence parent-child synchrony is an important undertaking. Using EEG hyperscanning, this study investigated brain-to-brain synchrony in mother-child dyads when they took turns performing a visual search task and received positive or negative feedback. In addition to the effect of feedback valence, we studied how their assigned role, i.e., observing or performing the task, influenced synchrony. Results revealed that mother-child synchrony was higher during positive feedback relative to negative feedback in delta and gamma frequency bands. Furthermore, a main effect was found for role in the alpha band with higher synchrony when a child observed their mother performing the task compared to when the mother observed their child. These findings reveal that a positive social context could lead a mother and child to synchronize more on a neural level, which could subsequently improve the quality of their relationship. This study provides insight into mechanisms that underlie mother-child brain-to-brain synchrony, and establishes a framework by which the impact of emotion and task demand on a dyad's synchrony can be investigated.
Collapse
Affiliation(s)
- Fred Atilla
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Maryam Alimardani
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | | | - Kazuo Hiraki
- Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Vicente U, Ara A, Marco-Pallarés J. Intra- and inter-brain synchrony oscillations underlying social adjustment. Sci Rep 2023; 13:11211. [PMID: 37433866 DOI: 10.1038/s41598-023-38292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Humans naturally synchronize their behavior with other people. However, although it happens almost automatically, adjusting behavior and conformity to others is a complex phenomenon whose neural mechanisms are still yet to be understood entirely. The present experiment aimed to study the oscillatory synchronization mechanisms underlying automatic dyadic convergence in an EEG hyperscanning experiment. Thirty-six people performed a cooperative decision-making task where dyads had to guess the correct position of a point on a line. A reinforcement learning algorithm was used to model different aspects of the participants' behavior and their expectations of their peers. Intra- and inter-connectivity among electrode sites were assessed using inter-site phase clustering in three main frequency bands (theta, alpha, beta) using a two-level Bayesian mixed-effects modeling approach. The results showed two oscillatory synchronization dynamics related to attention and executive functions in alpha and reinforcement learning in theta. In addition, inter-brain synchrony was mainly driven by beta oscillations. This study contributes preliminary evidence on the phase-coherence mechanism underlying inter-personal behavioral adjustment.
Collapse
Affiliation(s)
- Unai Vicente
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, 08035, Barcelona, Spain.
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, 08907, L'Hospitalet de Llobregat, Spain.
| | - Alberto Ara
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, Canada
- BRAMS: International Laboratory for Brain, Music and Sound Research, H3C 3J7, Montreal, Canada
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, 08035, Barcelona, Spain.
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
37
|
Farrell S, Valdes AL. 'The Mind' promotes brain synchronization: an ecological evaluation of brain synchronization in co-operative tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082864 DOI: 10.1109/embc40787.2023.10340212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This paper presents an ecologically valid approach for using EEG hyperscanning methods to assess levels of interbrain synchrony (IBS) in teams during co-operative tasks. We employ a card-based task in an out-of-the-lab setting to evaluate levels of neural synchrony between team members completing a co-operative task. We also examine the interplay between the recorded synchronization levels and the collective performance of the team.Clinical Relevance- This study provides a simplistic and ecologically valid setup with potential to bring a better understanding of brain synchronization in clinical settings where co-operation would improve outcomes, such as home care facilities and memory clinics.
Collapse
|
38
|
Koul A, Ahmar D, Iannetti GD, Novembre G. Spontaneous dyadic behaviour predicts the emergence of interpersonal neural synchrony. Neuroimage 2023:120233. [PMID: 37348621 DOI: 10.1016/j.neuroimage.2023.120233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Synchronization of neural activity across brains - interpersonal neural synchrony (INS) - is emerging as a powerful marker of social interaction that predicts success of multi-person coordination, communication, and cooperation. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements and facial expressions) while dyads of participants were instructed to look at each other without speaking or making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three notable social behavioral cues - body movement, eye contact, and smiling - and demonstrated that these behaviors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social behaviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an entrainment phenomenon, promoted by real-time dyadic behavior.
Collapse
Affiliation(s)
- Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| | - Davide Ahmar
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy
| | - Gian Domenico Iannetti
- Neuroscience and Behavior Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| |
Collapse
|
39
|
Shao C, Zhang X, Wu Y, Zhang W, Sun B. Increased Interpersonal Brain Synchronization in Romantic Couples Is Associated with Higher Honesty: An fNIRS Hyperscanning Study. Brain Sci 2023; 13:brainsci13050833. [PMID: 37239304 DOI: 10.3390/brainsci13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies on the brain-brain interaction of deception have shown different patterns of interpersonal brain synchronization (IBS) between different genders. However, the brain-brain mechanisms in the cross-sex composition need to be better understood. Furthermore, there needs to be more discussion about how relationships (e.g., romantic couples vs. strangers) affect the brain-brain mechanism under interactive deception. To elaborate on these issues, we used the functional near-infrared spectroscopy (fNIRS)-based hyperscanning approach to simultaneously measure interpersonal brain synchronization (IBS) in romantic couples (heterosexual) and cross-sex stranger dyads during the sender-receiver game. The behavioral results found that the deception rate of males was lower than that of females, and romantic couples were deceived less than strangers. Significantly increased IBS was observed in the frontopolar cortex (FPC) and right temporoparietal junction (rTPJ) of the romantic couple group. Moreover, the IBS is negatively correlated with the deception rate. No significantly increased IBS was observed in cross-sex stranger dyads. The result corroborated the lower deception of males and romantic couples in cross-sex interactions. Furthermore, IBS in the PFC and rTPJ was the underlying dual-brain neural basis for supporting honesty in romantic couples.
Collapse
Affiliation(s)
- Chong Shao
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Xuecheng Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - You Wu
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Wenhai Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Big Data Center for Educational Neuroscience and Artificial Intelligence, Hengyang Normal University, Hengyang 421001, China
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
40
|
Feldman R. The neurobiology of hatred: Tools of Dialogue© intervention for youth reared amidst intractable conflict impacts brain, behaviour, and peacebuilding attitudes. Acta Paediatr 2023; 112:603-616. [PMID: 36655828 DOI: 10.1111/apa.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Myths, drama, and sacred texts have warned against the fragile nature of human love; the closer the affiliative bond, the quicker it can turn into hatred, suggesting similarities in the neurobiological underpinnings of love and hatred. Here, I offer a theoretical account on the neurobiology of hatred based on our model on the biology of human attachments and its three foundations; the oxytocin system, the "affiliative brain", comprising the neural network sustaining attachment, and biobehavioural synchrony, the process by which humans create a coupled biology through coordinated action. These systems mature in mammals in the context of the mother-infant bond and then transfer to support life within social groups. During this transition, they partition to support affiliation and solidarity to one's group and fear and hatred towards out-group based on minor variations in social behaviour. I present the Tools of Dialogue© intervention for outgroup members based on social synchrony. Applied to Israeli and Palestinian youth and implementing RCT, we measured social behaviour, attitudes, hormones, and social brain response before and after the 8-session intervention. Youth receiving the intervention increased reciprocity and reduced hostile behaviour towards outgroup, attenuated the neural marker of prejudice and increased neural empathic response, reduced cortisol and elevated oxytocin, and adapted attitudes of compromise. These neural changes predicted peacebuilding support 7 years later, when young adults can engage in civil responsibilities. Our intervention, the first to show long-term effects of inter-group intervention on brain and behaviour, demonstrates how social synchrony can tilt the neurobiology of hatred towards the pole of affiliation.
Collapse
Affiliation(s)
- Ruth Feldman
- Center of Developmental Social Neuroscience, Reichman University, Herzlia, Israel
| |
Collapse
|
41
|
Abu Salih M, Abargil M, Badarneh S, Klein Selle N, Irani M, Atzil S. Evidence for cultural differences in affect during mother-infant interactions. Sci Rep 2023; 13:4831. [PMID: 36964204 PMCID: PMC10039016 DOI: 10.1038/s41598-023-31907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
Maternal care is considered a universal and even cross-species set of typical behaviors, which are necessary to determine the social development of children. In humans, most research on mother-infant bonding is based on Western cultures and conducted in European and American countries. Thus, it is still unknown which aspects of mother-infant behaviors are universal and which vary with culture. Here we test whether typical mother-infant behaviors of affect-communication and affect-regulation are equally represented during spontaneous interaction in Palestinian-Arab and Jewish cultures. 30 Palestinian-Arab and 43 Jewish mother-infant dyads were recruited and videotaped. Using AffectRegulation Coding System (ARCS), we behaviorally analyzed the second-by-second display of valence and arousal in each participant and calculated the dynamic patterns of affect co-regulation. The results show that Palestinian-Arab infants express more positive valence than Jewish infants and that Palestinian-Arab mothers express higher arousal compared to Jewish mothers. Moreover, we found culturally-distinct strategies to regulate the infant: increased arousal in Palestinian-Arab dyads and increased mutual affective match in Jewish dyads. Such cross-cultural differences in affect indicate that basic features of emotion that are often considered universal are differentially represented in different cultures. Affect communication and regulation patterns can be transmitted across generations in early-life socialization with caregivers.
Collapse
Affiliation(s)
- Miada Abu Salih
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | - Maayan Abargil
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | - Saja Badarneh
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | | | - Merav Irani
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | - Shir Atzil
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel.
| |
Collapse
|
42
|
Marriott Haresign I, Phillips EAM, Whitehorn M, Lamagna F, Eliano M, Goupil L, Jones EJH, Wass SV. Gaze onsets during naturalistic infant-caregiver interaction associate with 'sender' but not 'receiver' neural responses, and do not lead to changes in inter-brain synchrony. Sci Rep 2023; 13:3555. [PMID: 36864074 PMCID: PMC9981599 DOI: 10.1038/s41598-023-28988-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Temporal coordination during infant-caregiver social interaction is thought to be crucial for supporting early language acquisition and cognitive development. Despite a growing prevalence of theories suggesting that increased inter-brain synchrony associates with many key aspects of social interactions such as mutual gaze, little is known about how this arises during development. Here, we investigated the role of mutual gaze onsets as a potential driver of inter-brain synchrony. We extracted dual EEG activity around naturally occurring gaze onsets during infant-caregiver social interactions in N = 55 dyads (mean age 12 months). We differentiated between two types of gaze onset, depending on each partners' role. 'Sender' gaze onsets were defined at a time when either the adult or the infant made a gaze shift towards their partner at a time when their partner was either already looking at them (mutual) or not looking at them (non-mutual). 'Receiver' gaze onsets were defined at a time when their partner made a gaze shift towards them at a time when either the adult or the infant was already looking at their partner (mutual) or not (non-mutual). Contrary to our hypothesis we found that, during a naturalistic interaction, both mutual and non-mutual gaze onsets were associated with changes in the sender, but not the receiver's brain activity and were not associated with increases in inter-brain synchrony above baseline. Further, we found that mutual, compared to non-mutual gaze onsets were not associated with increased inter brain synchrony. Overall, our results suggest that the effects of mutual gaze are strongest at the intra-brain level, in the 'sender' but not the 'receiver' of the mutual gaze.
Collapse
Affiliation(s)
| | - E A M Phillips
- Department of Psychology, University of East London, London, E15 4LZ, UK
| | - M Whitehorn
- Department of Psychology, University of East London, London, E15 4LZ, UK
| | - F Lamagna
- Department of Psychology, University of East London, London, E15 4LZ, UK
| | - M Eliano
- Department of Psychology, University of East London, London, E15 4LZ, UK
| | - L Goupil
- LPNC/CNRS, Grenoble Alpes University, Grenoble, France
| | - E J H Jones
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - S V Wass
- Department of Psychology, University of East London, London, E15 4LZ, UK
| |
Collapse
|
43
|
Lotter LD, Kohl SH, Gerloff C, Bell L, Niephaus A, Kruppa JA, Dukart J, Schulte-Rüther M, Reindl V, Konrad K. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neurosci Biobehav Rev 2023; 146:105042. [PMID: 36641012 DOI: 10.1016/j.neubiorev.2023.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchronization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared spectroscopy hyperscanning experiments (740 and 3721 subjects) revealed robust brain regional correlates of INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic information with public databases, biobehavioral and brain-functional association analyses suggested that INS involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new testable hypotheses on the neurobiological basis of INS.
Collapse
Affiliation(s)
- Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | - Simon H Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Laura Bell
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Audiovisual Media Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexandra Niephaus
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana A Kruppa
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Schulte-Rüther
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, S639818, Singapore
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
44
|
Rashid M, Murugan M. Neural Correlates of Cue-Evoked Synchronous Fear Responses. Biol Psychiatry 2023; 93:294-295. [PMID: 36653104 DOI: 10.1016/j.biopsych.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Maha Rashid
- Department of Biology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
45
|
Endevelt-Shapira Y, Feldman R. Mother-Infant Brain-to-Brain Synchrony Patterns Reflect Caregiving Profiles. BIOLOGY 2023; 12:biology12020284. [PMID: 36829560 PMCID: PMC9953313 DOI: 10.3390/biology12020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Biobehavioral synchrony, the coordination of physiological and behavioral signals between mother and infant during social contact, tunes the child's brain to the social world. Probing this mechanism from a two-brain perspective, we examine the associations between patterns of mother-infant inter-brain synchrony and the two well-studied maternal behavioral orientations-sensitivity and intrusiveness-which have repeatedly been shown to predict positive and negative socio-emotional outcomes, respectively. Using dual-electroencephalogram (EEG) recordings, we measure inter-brain connectivity between 60 mothers and their 5- to 12-month-old infants during face-to-face interaction. Thirty inter-brain connections show significantly higher correlations during the real mother-infant face-to-face interaction compared to surrogate data. Brain-behavior correlations indicate that higher maternal sensitivity linked with greater mother-infant neural synchrony, whereas higher maternal intrusiveness is associated with lower inter-brain coordination. Post hoc analysis reveals that the mother-right-frontal-infant-left-temporal connection is particularly sensitive to the mother's sensitive style, while the mother-left-frontal-infant-right-temporal connection indexes the intrusive style. Our results support the perspective that inter-brain synchrony is a mechanism by which mature brains externally regulate immature brains to social living and suggest that one pathway by which sensitivity and intrusiveness exert their long-term effect may relate to the provision of coordinated inputs to the social brain during its sensitive period of maturation.
Collapse
Affiliation(s)
- Yaara Endevelt-Shapira
- Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
- Correspondence: (Y.E.-S.); (R.F.)
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Correspondence: (Y.E.-S.); (R.F.)
| |
Collapse
|
46
|
Pinto TM, Jongenelen I, Lamela D, Pasion R, Morais A, Costa R. Childbirth-related post-traumatic stress disorder symptoms and mother-infant neurophysiological and behavioral co-regulation during dyadic interaction: study protocol. BMC Psychol 2023; 11:37. [PMID: 36759926 PMCID: PMC9909987 DOI: 10.1186/s40359-023-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Mother's childbirth-related posttraumatic stress disorder (PTSD) symptoms have a negative impact on mother and infant's behaviors during dyadic interactions which may increase mother-infant neurophysiological and behavioral co-regulation difficulties, leading to dysregulated mother-infant interactions. This study was specifically designed to analyze: (1) the sociodemographic and obstetric factors associated with mother's childbirth-related PTSD symptoms; (2) mother-infant neurophysiological functioning and behavioral co-regulation during dyadic interaction; (3) the impact of mother's childbirth-related PTSD symptoms on neurophysiological and behavioral mother-infant co-regulation during dyadic interaction; (4) the moderator role of previous trauma on the impact of mother's childbirth-related PTSD symptoms on neurophysiological and behavioral mother-infant co-regulation during dyadic interaction; and (5) the moderator role of comorbid symptoms of anxiety and depression on the impact of mother's childbirth-related PTSD symptoms on neurophysiological and behavioral mother-infant co-regulation during dyadic interaction. METHODS At least 250 mothers will be contacted in order to account for refusals and dropouts and guarantee at least 100 participating mother-infant dyads with all the assessment waves completed. The study has a longitudinal design with three assessment waves: (1) 1-3 days postpartum, (2) 8 weeks postpartum, and (3) 22 weeks postpartum. Between 1 and 3 days postpartum, mothers will report on-site on their sociodemographic and obstetric characteristics. At 8 weeks postpartum, mothers will complete online self-reported measures of birth trauma, previous trauma, childbirth-related PTSD, anxiety, and depressive symptoms. At 22 weeks postpartum, mothers will complete online self-reported measures of childbirth-related PTSD, anxiety, and depressive symptoms. Mothers and infants will then be home-visited to observe and record their neurophysiological, neuroimaging and behavioral data during dyadic interactions using the Still-face Paradigm. Activation patterns in the prefrontal cortices of mother and infant will be recorded simultaneously using hyperscanning acquisition devices. Unadjusted and adjusted multilevel linear regression models will be performed to analyze objectives 1 to 3. Moderation models will be performed to analyze objectives 4 and 5. DISCUSSION Data from this study will inform psychological interventions targeting mother-infant interaction, co-regulation, and infant development. Moreover, these results can contribute to designing effective screenings to identify mothers at risk of perinatal mental health problems and those who may need specialized perinatal mental health care.
Collapse
Affiliation(s)
- Tiago Miguel Pinto
- Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098, Porto, Portugal.
| | - Inês Jongenelen
- grid.164242.70000 0000 8484 6281Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098 Porto, Portugal
| | - Diogo Lamela
- grid.164242.70000 0000 8484 6281Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098 Porto, Portugal
| | - Rita Pasion
- grid.164242.70000 0000 8484 6281Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098 Porto, Portugal
| | - Ana Morais
- grid.164242.70000 0000 8484 6281Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098 Porto, Portugal
| | - Raquel Costa
- grid.164242.70000 0000 8484 6281Digital Human-Environment Interaction Labs (HEI-Lab), Lusófona University, R. de Augusto Rosa 24, 4000-098 Porto, Portugal ,grid.5808.50000 0001 1503 7226EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
47
|
Horowitz-Kraus T, Gashri C. Multimodal Approach for Characterizing the Quality of Parent-Child Interaction: A Single Synchronization Source May Not Tell the Whole Story. BIOLOGY 2023; 12:biology12020241. [PMID: 36829518 PMCID: PMC9952901 DOI: 10.3390/biology12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The interaction between the parent and child is essential for the child's cognitive and emotional development and sets the path for future well-being. These interactions, starting from birth, are necessary for providing the sensory stimulation the child needs in the critical time window of brain development. The characterization of parent-child interactions is traditionally performed by human decoding. This approach is considered the leading and most accurate way of characterizing the quality of these interactions. However, the development of computational tools and especially the concept of parent-child synchronization opened up an additional source of data characterizing these interactions in an objective, less human-labor manner. Such sources include brain-to-brain, voice/speech, eye contact, motor, and heart-rate synchronization. However, can a single source synchronization dataset accurately represent parent-child interaction? Will attending to the same stimulation, often resulting in a higher brain-to-brain synchronization, be considered an interactive condition? In this perspective, we will try to convey a new concept of the child-parent interaction synchronization (CHIPS) matrix, which includes the different sources of signals generated during an interaction. Such a model may assist in explaining the source of interaction alterations in the case of child/parent developmental/emotional or sensory deficits and may open up new ways of assessing interventions and changes in parent-child interactions along development. We will discuss this interaction during one of the parent-child joint activities providing opportunities for interaction, i.e., storytelling.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Haifa 3200003, Israel
- Faculty of Biomedical Engineering, Technion, Haifa 3200003, Israel
- Neuropsychology Department, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +972-522-989298
| | - Carmel Gashri
- Faculty of Biomedical Engineering, Technion, Haifa 3200003, Israel
| |
Collapse
|
48
|
Long Y, Zhong M, Aili R, Zhang H, Fang X, Lu C. Transcranial direct current stimulation of the right anterior temporal lobe changes interpersonal neural synchronization and shared mental processes. Brain Stimul 2023; 16:28-39. [PMID: 36572209 DOI: 10.1016/j.brs.2022.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown that interpersonal neural synchronization (INS) is a ubiquitous phenomenon between individuals, and recent studies have further demonstrated close associations between INS and shared external sensorimotor input and/or internal mental processes within a dyad. However, most previous studies have employed an observational approach to describe the behavior-INS correlation, leading to difficulties in causally disentangling the relationship among INS, external sensorimotor input and the internal mental process. OBJECTIVE/HYPOTHESIS The present study aimed to directly change the level of INS through anodal transcranial direct current stimulation (tDCS) to test whether the change in INS would directly impact the internal mental process (Hypothesis 1) or indirectly through external sensorimotor input; the interaction behaviors were also changed (Hypothesis 2) or not (Hypothesis 3). METHODS Thirty pairs of romantically involved heterosexual couples were recruited for a within-subjects design. Three conditions were assessed: a true stimulation condition with 20-min anodal high-definition tDCS to the right anterior temporal lobe (rATL) of women before they communicated with their partners, a sham stimulation condition and a control brain region stimulation condition. The comparison between the true and sham or control brain region conditions allows us to detect the true effect of brain stimulation on INS. Functional near-infrared spectroscopy (fNIRS) hyperscanning was used to simultaneously collect dyadic participants' hemodynamic signals during communication. INS, empathy, and interaction behaviors were examined and compared among different stimulation conditions. RESULTS True brain stimulation significantly decreased INS between the rATL of the women and sensorimotor cortex (SMC) of the men compared to the sham stimulation condition (t(27.8) = -2.821, P = 0.009, d = 0.714) and control brain region stimulation condition (t(27.2) = -2.606, P = 0.015, d = 0.664) during communication. It also significantly decreased the level of emotional empathy (F(2,145) = 6.893, P = 0.001) but did not change sensorimotor processes, such as verbal or nonverbal interaction behaviors. However, nonverbal behaviors mediated the relationship between the changes in INS and emotional empathy (lower limit confidence interval = 0.01, upper limit confidence interval = 2.66). CONCLUSION(S) These findings support the third hypothesis, suggesting that INS is associated with the shared internal mental process indirectly via the sensorimotor process, but the sensorimotor process itself does not covary with the INS and the associated internal mental process. These results provide new insight into the hierarchical architecture of dual-brain function from a bottom-up perspective.
Collapse
Affiliation(s)
- Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Miao Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ruhuiya Aili
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Huan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyi Fang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
49
|
Schwartz L, Levy J, Endevelt-Shapira Y, Djalovski A, Hayut O, Dumas G, Feldman R. Technologically-assisted communication attenuates inter-brain synchrony. Neuroimage 2022; 264:119677. [PMID: 36244598 DOI: 10.1016/j.neuroimage.2022.119677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The transition to technologically-assisted communication has permeated all facets of human social life; yet, its impact on the social brain is still unknown and the effects may be particularly intense during periods of developmental transitions. Applying a two-brain perspective, the current preregistered study utilized hyperscanning EEG to measure brain-to-brain synchrony in 62 mother-child pairs at the transition to adolescence (child age; M = 12.26, range 10-14) during live face-to-face interaction versus technologically-assisted remote communication. The live interaction elicited 9 significant cross-brain links between densely inter-connected frontal and temporal areas in the beta range [14-30 Hz]. Mother's right frontal region connected with the child's right and left frontal, temporal, and central regions, suggesting its regulatory role in organizing the two-brain dynamics. In contrast, the remote interaction elicited only 1 significant cross-brain-cross-hemisphere link, attenuating the robust right-to-right-brain connectivity during live social moments that communicates socio-affective signals. Furthermore, while the level of social behavior was comparable between the two interactions, brain-behavior associations emerged only during the live exchange. Mother-child right temporal-temporal synchrony linked with moments of shared gaze and the degree of child engagement and empathic behavior correlated with right frontal-frontal synchrony. Our findings indicate that human co-presence is underpinned by specific neurobiological processes that should be studied in depth. Much further research is needed to tease apart whether the "Zoom fatigue" experienced during technological communication may stem, in part, from overload on more limited inter-brain connections and to address the potential cost of social technology for brain maturation, particularly among youth.
Collapse
Affiliation(s)
- Linoy Schwartz
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel
| | - Jonathan Levy
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
| | | | - Amir Djalovski
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel
| | - Olga Hayut
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel
| | - Guillaume Dumas
- Precision Psychiatry and Social Physiology laboratory, CHU Sainte-Justine Research Center, Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel; Child Study Center, Yale University, United States.
| |
Collapse
|
50
|
Measurement of interpersonal physiological synchrony in dyads: A review of timing parameters used in the literature. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1215-1230. [PMID: 35556231 DOI: 10.3758/s13415-022-01011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 01/27/2023]
Abstract
When individuals share interpersonal connections, such as the bond between a mother and child or between a therapist and their client, they often exhibit measurable coordination of some physiological response patterns during their interactions known as interpersonal physiological synchrony (IPS Butler, 2011; Palumbo et al., 2016; Tscacher & Meier, 2019). However, as there is no single definition of IPS in the literature, researchers across fields have not established a standardized method for its study. This paper outlines methodological considerations that researchers should take into account when designing studies of IPS. Due to the inherent temporal component of synchrony analyses, we direct particular focus to the issue of measurement timing. Synchrony is described across multiple physiological processes, including electrodermal skin activation, cardiac function, respiration, and neural oscillatory activity, and we make specific recommendations for each. Across physiological measures and analytic strategies, we recommend that when determining an experimental timeframe in which to isolate periods of dyadic IPS, researchers should account for the timing of both the biological systems of interest and the psychological processes theorized to underlie their activity in that particular context. In adopting this strategy, researchers can ensure that they capture all of the fluctuations associated with a psychological process of interest and can add to the growing body of literature examining physiological correlates of interpersonal bonds.
Collapse
|