1
|
Boriskovsky D, Lindner B, Roichman Y. The fluctuation-dissipation relation holds for a macroscopic tracer in an active bath. SOFT MATTER 2024; 20:8017-8022. [PMID: 39359188 DOI: 10.1039/d4sm00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The fluctuation-dissipation relation (FDR) links thermal fluctuations and dissipation at thermal equilibrium through temperature. Extending it beyond equilibrium conditions in pursuit of broadening thermodynamics is often feasible, albeit with system-dependent specific conditions. We demonstrate experimentally that a generalized FDR holds for a harmonically trapped tracer colliding with self-propelled walkers. The generalized FDR remains valid across a large spectrum of active fluctuation frequencies, extending from underdamped to critically damped dynamics, which we attribute to a single primary channel for energy input and dissipation in our system.
Collapse
Affiliation(s)
- Dima Boriskovsky
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Yael Roichman
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Chen X, Yan Y. Enhanced Diffusion and Non-Gaussian Displacements of Colloids in Quasi-2D Suspensions of Motile Bacteria. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5013. [PMID: 39459718 PMCID: PMC11509676 DOI: 10.3390/ma17205013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the real world, active agents interact with surrounding passive objects, thus introducing additional degrees of complexity. The relative contributions of far-field hydrodynamic and near-field contact interactions to the anomalous diffusion of passive particles in suspensions of active swimmers remain a subject of ongoing debate. We constructed a quasi-two-dimensional microswimmer-colloid mixed system by taking advantage of Serratia marcescens' tendency to become trapped at the air-water interface to investigate the origins of the enhanced diffusion and non-Gaussianity of the displacement distributions of passive colloidal tracers. Our findings reveal that the diffusion behavior of colloidal particles exhibits a strong dependence on bacterial density. At moderate densities, the collective dynamics of bacteria dominate the diffusion of tracer particles. In dilute bacterial suspensions, although there are multiple dynamic types present, near-field contact interactions such as collisions play a major role in the enhancement of colloidal transport and the emergence of non-Gaussian displacement distributions characterized by heavy exponential tails in short times. Despite the distinct types of microorganisms and their diverse self-propulsion mechanisms, a generality in the diffusion behavior of passive colloids and their underlying dynamics is observed.
Collapse
Affiliation(s)
- Xiao Chen
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Yaner Yan
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
| |
Collapse
|
3
|
Yoshida M, Mizuno H, Ikeda A. Structural fluctuations in active glasses. SOFT MATTER 2024; 20:7678-7691. [PMID: 39291805 DOI: 10.1039/d4sm00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The glassy dynamics of dense active matter have recently become a topic of interest due to their importance in biological processes such as wound healing and tissue development. However, while the liquid-state properties of dense active matter have been studied in relation to the glass transition of active matter, the solid-state properties of active glasses have yet to be understood. In this work, we study the structural fluctuations in the active glasses composed of self-propelled particles. We develop a formalism to describe the solid-state properties of active glasses in the harmonic approximation limit and use it to analyze the displacement fields in the active glasses. Our findings reveal that the dynamics of high-frequency normal modes become quasi-static with respect to the active forces, and consequently, excitations of these modes are significantly suppressed. This leads to a violation of the equipartition law, suppression of particle displacements, and the apparent collective motion of active glasses. Overall, our results provide a fundamental understanding of the solid-state properties of active glasses.
Collapse
Affiliation(s)
- Masaki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Paoluzzi M, Levis D, Crisanti A, Pagonabarraga I. Noise-Induced Phase Separation and Time Reversal Symmetry Breaking in Active Field Theories Driven by Persistent Noise. PHYSICAL REVIEW LETTERS 2024; 133:118301. [PMID: 39332006 DOI: 10.1103/physrevlett.133.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/23/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024]
Abstract
Within the Landau-Ginzburg picture of phase transitions, scalar field theories develop phase separation because of a spontaneous symmetry-breaking mechanism. This picture works in thermodynamics but also in the dynamics of phase separation. Here we show that scalar nonequilibrium field theories undergo phase separation just because of nonequilibrium fluctuations driven by a persistent noise. The mechanism is similar to what happens in motility-induced phase separation where persistent motion introduces an effective attractive force. We observe that noise-induced phase separation occurs in a region of the phase diagram where disordered field configurations would otherwise be stable at equilibrium. Measuring the local entropy production rate to quantify the time-reversal symmetry breaking, we find that such breaking is concentrated on the boundary between the two phases.
Collapse
|
5
|
Massana-Cid H, Maggi C, Gnan N, Frangipane G, Di Leonardo R. Multiple temperatures and melting of a colloidal active crystal. Nat Commun 2024; 15:6574. [PMID: 39097577 PMCID: PMC11297967 DOI: 10.1038/s41467-024-50937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Thermal fluctuations constantly excite all relaxation modes in an equilibrium crystal. As the temperature rises, these fluctuations promote the formation of defects and eventually melting. In active solids, the self-propulsion of "atomic" units provides an additional source of non-equilibrium fluctuations whose effect on the melting scenario is still largely unexplored. Here we show that when a colloidal crystal is activated by a bath of swimming bacteria, solvent temperature and active temperature cooperate to define dynamic and thermodynamic properties. Our system consists of repulsive paramagnetic particles confined in two dimensions and immersed in a bath of light-driven E. coli. The relative balance between fluctuations and interactions can be adjusted in two ways: by changing the strength of the magnetic field and by tuning activity with light. When the persistence time of active fluctuations is short, a single effective temperature controls both the amplitudes of relaxation modes and the melting transition. For more persistent active noise, energy equipartition is broken and multiple temperatures emerge, whereas melting occurs before the Lindemann parameter reaches its equilibrium critical value. We show that this phenomenology is fully confirmed by numerical simulations and framed within a minimal model of a single active particle in a periodic potential.
Collapse
Affiliation(s)
- Helena Massana-Cid
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Claudio Maggi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Rome, Italy.
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Nicoletta Gnan
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Rome, Italy
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giacomo Frangipane
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Rome, Italy
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Roberto Di Leonardo
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Rome, Italy
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
6
|
Villalobos C, Cordero ML, Clément E, Soto R. Recovering the activity parameters of an active fluid confined in a sphere. Phys Rev E 2024; 110:014610. [PMID: 39160977 DOI: 10.1103/physreve.110.014610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024]
Abstract
The properties of an active fluid, for example, a bacterial bath or a collection of microtubules and molecular motors, can be accessed through the dynamics of passive particle probes. Here, in the perspective of analyzing experimental situations of confinement in droplets, we consider the kinematics of a negatively buoyant probe particle in an active fluid, both confined within a spherical domain. The active bath generates a fluctuating flow that pushes the particle with a velocity that is modeled as a colored stochastic noise, characterized by two parameters, the intensity and memory time of the active flow. When the particle departs a little from the bottom of the spherical domain, the configuration is well approximated by a particle in a two-dimensional harmonic trap subjected to the colored noise, in which case an analytical solution exists, which is the base for quantitative analysis. We numerically simulate the dynamics of the particle and use the planar, two-dimensional mean square displacement to recover the activity parameters of the bath. This approach yields satisfactory results as long as the particle remains relatively confined; that is, as long as the intensity of the colored noise remains low.
Collapse
|
7
|
Dhar T, Saintillan D. Active transport of a passive colloid in a bath of run-and-tumble particles. Sci Rep 2024; 14:11844. [PMID: 38783044 PMCID: PMC11116446 DOI: 10.1038/s41598-024-62396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely by frictionless steric interactions. We estimate the effective long-time diffusivity D of the suspended colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, and the number density of swimmers in the bath. We also propose a semi-analytical model for the colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical simulations and analytical results in the experimentally-relevant regime of low swimmer density, low mobility ratio, and high activity.
Collapse
Affiliation(s)
- Tanumoy Dhar
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Shea J, Jung G, Schmid F. Force renormalization for probes immersed in an active bath. SOFT MATTER 2024; 20:1767-1785. [PMID: 38305056 DOI: 10.1039/d3sm01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Langevin equations or generalized Langevin equations (GLEs) are popular models for describing the motion of a particle in a fluid medium in an effective manner. Here we examine particles immersed in an inherently nonequilibrium fluid, i.e., an active bath, which are subject to an external force. Specifically, we consider two types of forces that are highly relevant for microrheological studies: A harmonic, trapping force and a constant, "drag" force. We study such systems by molecular simulations and use the simulation data to extract an effective GLE description. We find that within this description, in an active bath, the external force in the GLE is not equal to the physical external force, but rather a renormalized external force, which can be significantly smaller. The effect cannot be attributed to the mere temperature renormalization, which is also observed.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
9
|
Valido AA, Coccolo M, Sanjuán MAF. Time-delayed Duffing oscillator in an active bath. Phys Rev E 2023; 108:064205. [PMID: 38243436 DOI: 10.1103/physreve.108.064205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 01/21/2024]
Abstract
During recent decades active particles have attracted an incipient attention as they have been observed in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations amplitude and characteristic frequency of the steady state for different values of the time delay and the driving force. Overall, our results indicate that the role of the time delay is substantially modified with respect to the situation without noise. For instance, we show that the oscillations amplitude grows with increasing noise strength when the time delay acts as a damping term in absence of noise, whereas the trajectories eventually become aperiodic when the oscillations are sustained by the time delay. In short, the interplay among the noises, forcing, and time delay gives rise to a rich dynamics: a regular and periodic motion is destroyed or restored owing to the competition between the noise and the driving force depending on time delay values, whereas an erratic motion insensitive to the driving force emerges when the time delay makes the motion aperiodic. Interestingly, we also show that, for a sufficient noise strength and forcing amplitude, an approximately periodic interwell motion is promoted by means of stochastic resonance.
Collapse
Affiliation(s)
- Antonio A Valido
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Mattia Coccolo
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Miguel A F Sanjuán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
10
|
Caprini L, Löwen H, Marini Bettolo Marconi U. Chiral active matter in external potentials. SOFT MATTER 2023; 19:6234-6246. [PMID: 37555622 DOI: 10.1039/d3sm00793f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We investigate the interplay between chirality and confinement induced by the presence of an external potential. For potentials having radial symmetry, the circular character of the trajectories induced by the chiral motion reduces the spatial fluctuations of the particle, thus providing an extra effective confining mechanism, that can be interpreted as a lowering of the effective temperature. In the case of non-radial potentials, for instance, with an elliptic shape, chirality displays a richer scenario. Indeed, the chirality can break the parity symmetry of the potential that is always fulfilled in the non-chiral system. The probability distribution displays a strong non-Maxwell-Boltzmann shape that emerges in cross-correlations between the two Cartesian components of the position, that vanishes in the absence of chirality or when radial symmetry of the potential is restored. These results are obtained by considering two popular models in active matter, i.e. chiral Active Brownian particles and chiral active Ornstein-Uhlenbeck particles.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Weiche Materie, D-40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Weiche Materie, D-40225 Düsseldorf, Germany.
| | - Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032, Camerino, Italy
- INFN Sezione di Perugia, I-06123 Perugia, Italy.
| |
Collapse
|
11
|
Białas K, Spiechowicz J. Mechanism for giant enhancement of transport induced by active fluctuations. Phys Rev E 2023; 107:064120. [PMID: 37464690 DOI: 10.1103/physreve.107.064120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 07/20/2023]
Abstract
Understanding the role of active fluctuations in physics is a problem in statu nascendi appearing both as a hot topic and a major challenge. The reason for this is the fact that they are inherently nonequilibrium. This feature opens a landscape of phenomena yet to be explored that are absent in the presence of thermal fluctuations alone. Recently a paradoxical effect has been briefly communicated in which a free-particle transport induced by active fluctuations in the form white Poisson shot noise can be enormously boosted when the particle is additionally subjected to a periodic potential. In this work we considerably extend the original predictions and investigate the impact of statistics of active noise on the occurrence of this effect. We construct a toy model of the jump-relaxation process that allow us to identify different regimes of the free-particle transport boost and explain their corresponding mechanisms. Moreover, we formulate and interpret the conditions for statistics of active fluctuations that are necessary for the emergence of giant enhancement of the free-particle transport induced by the periodic potential. Our results are relevant not only for microscopic physical systems but also for biological ones such as, e.g., living cells where fluctuations generated by metabolic activities are active by default.
Collapse
Affiliation(s)
- K Białas
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - J Spiechowicz
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| |
Collapse
|
12
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Crisanti A, Paoluzzi M. Most probable path of active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:034110. [PMID: 37072947 DOI: 10.1103/physreve.107.034110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
Using the path integral representation of the nonequilibrium dynamics, we compute the most probable path between arbitrary starting and final points that is followed by an active particle driven by persistent noise. We focus our attention on the case of active particles immersed in harmonic potentials, where the trajectory can be computed analytically. Once we consider the extended Markovian dynamics where the self-propulsive drive evolves according to an Ornstein-Uhlenbeck process, we can compute the trajectory analytically with arbitrary conditions on position and self-propulsion velocity. We test the analytical predictions against numerical simulations and we compare the analytical results with those obtained within approximated equilibriumlike dynamics.
Collapse
Affiliation(s)
- Andrea Crisanti
- Dipartimento di Fisica, Sapienza Università di Roma Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Białas K, Łuczka J, Spiechowicz J. Periodic potential can enormously boost free-particle transport induced by active fluctuations. Phys Rev E 2023; 107:024107. [PMID: 36932589 DOI: 10.1103/physreve.107.024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Active fluctuations are detected in a growing number of systems due to self-propulsion mechanisms or collisions with an active environment. They drive the system far from equilibrium and can induce phenomena that are forbidden at equilibrium states by, e.g., fluctuation-dissipation relations and detailed balance symmetry. Understanding their role in living matter is emerging as a challenge for physics. Here we demonstrate a paradoxical effect in which a free-particle transport induced by active fluctuations can be boosted by many orders of magnitude when the particle is additionally subjected to a periodic potential. In contrast, within the realm of only thermal fluctuations, the velocity of a free particle exposed to a bias is reduced when the periodic potential is switched on. The presented mechanism is significant for understanding nonequilibrium environments such as living cells, where it can explain from a fundamental point of view why spatially periodic structures known as microtubules are necessary to generate impressively effective intracellular transport. Our findings can be readily corroborated experimentally, e.g., in a setup comprising a colloidal particle in an optically generated periodic potential.
Collapse
Affiliation(s)
- K Białas
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - J Łuczka
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - J Spiechowicz
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| |
Collapse
|
15
|
Goerlich R, Pires LB, Manfredi G, Hervieux PA, Genet C. Harvesting information to control nonequilibrium states of active matter. Phys Rev E 2022; 106:054617. [PMID: 36559455 DOI: 10.1103/physreve.106.054617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
We propose to use a correlated noise bath to drive an optically trapped Brownian particle that mimics active biological matter. Due to the flexibility and precision of our setup, we are able to control the different parameters that drive the stochastic motion of the particle with unprecedented accuracy, thus reaching strongly correlated regimes that are not easily accessible with real active matter. In particular, by using the correlation time (i.e., the "color") of the noise as a control parameter, we can trigger transitions between two nonequilibrium steady states with no expended work, but only a calorific cost. Remarkably, the measured heat production is directly proportional to the spectral entropy of the correlated noise, in a fashion that is reminiscent of Landauer's principle. Our procedure can be viewed as a method for harvesting information from the active fluctuations.
Collapse
Affiliation(s)
- Rémi Goerlich
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| | - Luís Barbosa Pires
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| | - Giovanni Manfredi
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Paul-Antoine Hervieux
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Cyriaque Genet
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, F-67000 Strasbourg, France
| |
Collapse
|
16
|
Shea J, Jung G, Schmid F. Passive probe particle in an active bath: can we tell it is out of equilibrium? SOFT MATTER 2022; 18:6965-6973. [PMID: 36069290 DOI: 10.1039/d2sm00905f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study a passive probe immersed in a fluid of active particles. Despite the system's non-equilibrium nature, the trajectory of the probe does not exhibit non-equilibrium signatures: its velocity distribution remains Gaussian, the second fluctuation dissipation theorem is not fundamentally violated, and the motion does not indicate breaking of time reversal symmetry. To tell that the probe is out of equilibrium requires examination of its behavior in tandem with that of the active fluid: the kinetic temperature of the probe does not equilibrate to that of the surrounding active particles. As a strategy to diagnose non-equilibrium from probe trajectories alone, we propose to examine their response to a small perturbation which reveals a non-equilibrium signature through a violation of the first fluctuation dissipation theorem.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
17
|
Granek O, Kafri Y, Tailleur J. Anomalous Transport of Tracers in Active Baths. PHYSICAL REVIEW LETTERS 2022; 129:038001. [PMID: 35905354 DOI: 10.1103/physrevlett.129.038001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
We derive the long-time dynamics of a tracer immersed in a one-dimensional active bath. In contrast to previous studies, we find that the damping and noise correlations possess long-time tails with exponents that depend on the tracer symmetry. For generic tracers, shape asymmetry induces ratchet effects that alter fluctuations and lead to superdiffusion and friction that grows with time when the tracer is dragged at a constant speed. In the singular limit of a completely symmetric tracer, we recover normal diffusion and finite friction. Furthermore, for small symmetric tracers, the active contribution to the friction becomes negative: active particles enhance motion rather than oppose it. These results show that, in low-dimensional systems, the motion of a passive tracer in an active bath cannot be modeled as a persistent random walker with a finite correlation time.
Collapse
Affiliation(s)
- Omer Granek
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
18
|
Paoluzzi M. Scaling of the entropy production rate in a φ^{4} model of active matter. Phys Rev E 2022; 105:044139. [PMID: 35590560 DOI: 10.1103/physreve.105.044139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
In active φ^{4} field theories the nonequilibrium terms play an important role in describing active phase separation; however, they are irrelevant, in the renormalization group sense, at the critical point. Their irrelevance makes the critical exponents the same as those of the Ising universality class. Despite their irrelevance, they contribute to a nontrivial scaling of the entropy production rate at criticality. We consider the nonequilibrium dynamics of a nonconserved scalar field φ (Model A) driven out-of-equilibrium by a persistent noise that is correlated on a finite timescale τ, as in the case of active baths. We perform the computation of the density of entropy production rate σ and we study its scaling near the critical point. We find that similar to the case of active Model A, and although the nonlinearities responsible for nonvanishing entropy production rates in the two models are quite different, the irrelevant parameter τ makes the critical dynamics irreversible.
Collapse
Affiliation(s)
- Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Caprini L, Sprenger AR, Löwen H, Wittmann R. The parental active model: A unifying stochastic description of self-propulsion. J Chem Phys 2022; 156:071102. [DOI: 10.1063/5.0084213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander R. Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Caprini L, Marini Bettolo Marconi U, Wittmann R, Löwen H. Dynamics of active particles with space-dependent swim velocity. SOFT MATTER 2022; 18:1412-1422. [PMID: 35080576 DOI: 10.1039/d1sm01648b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the dynamical properties of an active particle subject to a swimming speed explicitly depending on the particle position. The oscillating spatial profile of the swim velocity considered in this paper takes inspiration from experimental studies based on Janus particles whose speed can be modulated by an external source of light. We suggest and apply an appropriate model of an active Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary properties, by finding the exact solution of the steady-state probability distribution of particle position and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the one found in the framework of other popular models. The reduced velocity distribution highlights the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state combining numerical and analytical methods derived under suitable approximations. We observe a non-monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the ratio between the persistence length and the spatial period of the swim velocity. In addition, we numerically and analytically study the mean square displacement and the long-time diffusion coefficient. The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim velocity oscillations increases because the diffusion is mainly determined by those regions where the particles are slow.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| | | | - René Wittmann
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Reichert J, Voigtmann T. Tracer dynamics in crowded active-particle suspensions. SOFT MATTER 2021; 17:10492-10504. [PMID: 34751290 DOI: 10.1039/d1sm01092a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We discuss the dynamics of active Brownian particles (ABPs) in crowded environments through the mean-squared displacement (MSD) of active and passive tracer particles in both active and passive host systems. Exact equations for the MSD are derived using a projection operator technique, extending to dense systems the known solution for a single ABP. The interaction of the tracer particle with the host particles gives rise to strong memory effects. Evaluating these approximately in the framework of a recently developed mode-coupling theory for active Brownian particles (ABP-MCT), we discuss the various dynamical regimes that emerge: While self-propelled motion gives rise to super-diffusive MSD, at high densities, this competes with an interaction-induced sub-diffusive regime. The predictions of the theory are shown to be in good agreement with results obtained from an event-driven Brownian dynamics (ED-BD) simulation scheme for the dynamics of two-dimensional active Brownian hard disks.
Collapse
Affiliation(s)
- Julian Reichert
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
- Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Knežević M, Avilés Podgurski LE, Stark H. Oscillatory active microrheology of active suspensions. Sci Rep 2021; 11:22706. [PMID: 34811417 PMCID: PMC8608831 DOI: 10.1038/s41598-021-02103-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Using the method of Brownian dynamics, we investigate the dynamic properties of a 2d suspension of active disks at high Péclet numbers using active microrheology. In our simulations the tracer particle is driven either by a constant or an oscillatory external force. In the first case, we find that the mobility of the tracer initially appreciably decreases with the external force and then becomes approximately constant for larger forces. For an oscillatory driving force we find that the dynamic mobility shows a quite complex behavior-it displays a highly nonlinear behavior on both the amplitude and frequency of the driving force. In the range of forces studied, we do not observe a linear regime. This result is important because it reveals that a phenomenological description of tracer motion in active media in terms of a simple linear stochastic equation even with a memory-mobility kernel is not appropriate, in the general case.
Collapse
Affiliation(s)
- Miloš Knežević
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - Luisa E Avilés Podgurski
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| |
Collapse
|
23
|
Nguyen GHP, Wittmann R, Löwen H. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:035101. [PMID: 34598179 DOI: 10.1088/1361-648x/ac2c3f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Self-propelled particles, which convert energy into mechanical motion, exhibit inertia if they have a macroscopic size or move inside a gaseous medium, in contrast to micron-sized overdamped particles immersed in a viscous fluid. Here we study an extension of the active Ornstein-Uhlenbeck model, in which self-propulsion is described by colored noise, to access these inertial effects. We summarize and discuss analytical solutions of the particle's mean-squared displacement and velocity autocorrelation function for several settings ranging from a free particle to various external influences, like a linear or harmonic potential and coupling to another particle via a harmonic spring. Taking into account the particular role of the initial particle velocity in a nonstationary setup, we observe all dynamical exponents between zero and four. After the typical inertial time, determined by the particle's mass, the results inherently revert to the behavior of an overdamped particle with the exception of the harmonically confined systems, in which the overall displacement is enhanced by inertia. We further consider an underdamped model for an active particle with a time-dependent mass, which critically affects the displacement in the intermediate time-regime. Most strikingly, for a sufficiently large rate of mass accumulation, the particle's motion is completely governed by inertial effects as it remains superdiffusive for all times.
Collapse
Affiliation(s)
- G H Philipp Nguyen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Baldovin M, Caprini L, Vulpiani A. Handy fluctuation-dissipation relation to approach generic noisy systems and chaotic dynamics. Phys Rev E 2021; 104:L032101. [PMID: 34654124 DOI: 10.1103/physreve.104.l032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/17/2021] [Indexed: 11/07/2022]
Abstract
We introduce a general formulation of the fluctuation-dissipation relations (FDRs) holding also in far-from-equilibrium stochastic dynamics. A great advantage of this version of the FDR is that it does not require explicit knowledge of the stationary probability density function. Our formula applies to Markov stochastic systems with generic noise distributions: When the noise is additive and Gaussian, the relation reduces to those known in the literature; for multiplicative and non-Gaussian distributions (e.g., Cauchy noise) it provides exact results in agreement with numerical simulations. Our formula allows us to reproduce, in a suitable small-noise limit, the response functions of deterministic, strongly nonlinear dynamical models, even in the presence of chaotic behavior: This could have important practical applications in several contexts, including geophysics and climate. As a case of study, we consider the Lorenz '63 model, which is paradigmatic for the chaotic properties of deterministic dynamical systems.
Collapse
Affiliation(s)
- M Baldovin
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - L Caprini
- Scuola di Scienze e Tecnologie, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| | - A Vulpiani
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Rivas DP, Hedgecock ND, Stebe KJ, Leheny RL. Dynamic and mechanical evolution of an oil-water interface during bacterial biofilm formation. SOFT MATTER 2021; 17:8195-8210. [PMID: 34525167 DOI: 10.1039/d1sm00795e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.
Collapse
Affiliation(s)
- David P Rivas
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Nathan D Hedgecock
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
26
|
Caprini L, Maggi C, Marini Bettolo Marconi U. Collective effects in confined active Brownian particles. J Chem Phys 2021; 154:244901. [PMID: 34241356 DOI: 10.1063/5.0051315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite the absence of explicit interactions among the velocities or the active forces of different particles, the system displays a transition from a disordered and stuck state to an ordered state of global collective motion where the particles rotate persistently clockwise or anticlockwise. We describe this behavior by introducing a suitable order parameter, the velocity polarization, measuring the global alignment of the particles' velocities along the tangential direction of the ring. We also measure the spatial velocity correlation function and its correlation length to characterize the two states. In the rotating phase, the velocity correlation displays an algebraic decay that is analytically predicted together with its correlation length, while in the stuck regime, the velocity correlation decays exponentially with a correlation length that increases with the persistence time. In the first case, the correlation (and, in particular, its correlation length) does not depend on the active force but the system size only. The global collective motion, an effect caused by the interplay between finite-size, periodicity, and persistent active forces, disappears as the size of the ring becomes infinite, suggesting that this phenomenon does not correspond to a phase transition in the usual thermodynamic sense.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma, Italy
| | | |
Collapse
|
27
|
Caprini L, Marini Bettolo Marconi U. Inertial self-propelled particles. J Chem Phys 2021; 154:024902. [DOI: 10.1063/5.0030940] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
28
|
Abstract
We investigate the non-equilibrium character of self-propelled particles through the study of the linear response of the active Ornstein–Uhlenbeck particle (AOUP) model. We express the linear response in terms of correlations computed in the absence of perturbations, proposing a particularly compact and readable fluctuation–dissipation relation (FDR): such an expression explicitly separates equilibrium and non-equilibrium contributions due to self-propulsion. As a case study, we consider non-interacting AOUP confined in single-well and double-well potentials. In the former case, we also unveil the effect of dimensionality, studying one-, two-, and three-dimensional dynamics. We show that information about the distance from equilibrium can be deduced from the FDR, putting in evidence the roles of position and velocity variables in the non-equilibrium relaxation.
Collapse
|
29
|
Caprini L, Marini Bettolo Marconi U. Active matter at high density: Velocity distribution and kinetic temperature. J Chem Phys 2020; 153:184901. [DOI: 10.1063/5.0029710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Dipartimento di Fisica, Universitá di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
30
|
Maes C. Fluctuating Motion in an Active Environment. PHYSICAL REVIEW LETTERS 2020; 125:208001. [PMID: 33258620 DOI: 10.1103/physrevlett.125.208001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023]
Abstract
We derive the fluctuation dynamics of a probe in weak coupling with a living medium, modeled as particles undergoing an active Ornstein-Uhlenbeck dynamics. Nondissipative corrections to the fluctuation-dissipation relation are written out explicitly in terms of time correlations in the active medium. A first term changes the inertial mass of the probe as a consequence of the persistence of the active medium. A second correction modifies the friction kernel. The resulting generalized Langevin equation benchmarks the motion induced on probes immersed in active versus passive media. The derivation uses nonequilibrium response theory.
Collapse
Affiliation(s)
- Christian Maes
- Instituut voor Theoretische Fysica, KU Leuven 3001, Belgium
| |
Collapse
|
31
|
Joo S, Durang X, Lee OC, Jeon JH. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory. SOFT MATTER 2020; 16:9188-9201. [PMID: 32840541 DOI: 10.1039/d0sm01200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitatively understanding the dynamics of an active Brownian particle (ABP) interacting with a viscoelastic polymer environment is a scientific challenge. It is intimately related to several interdisciplinary topics such as the microrheology of active colloids in a polymer matrix and the athermal dynamics of the in vivo chromosomes or cytoskeletal networks. Based on Langevin dynamics simulation and analytic theory, here we explore such a viscoelastic active system in depth using a star polymer of functionality f with the center cross-linker particle being ABP. We observe that the ABP cross-linker, despite its self-propelled movement, attains an active subdiffusion with the scaling ΔR2(t) ∼ tα with α ≤ 1/2, through the viscoelastic feedback from the polymer. Counter-intuitively, the apparent anomaly exponent α becomes smaller as the ABP is driven by a larger propulsion velocity, but is independent of functionality f or the boundary conditions of the polymer. We set forth an exact theory and show that the motion of the active cross-linker is a Gaussian non-Markovian process characterized by two distinct power-law displacement correlations. At a moderate Péclet number, it seemingly behaves as fractional Brownian motion with a Hurst exponent H = α/2, whereas, at a high Péclet number, the self-propelled noise in the polymer environment leads to a logarithmic growth of the mean squared displacement (∼ln t) and a velocity autocorrelation decaying as -t-2. We demonstrate that the anomalous diffusion of the active cross-linker is precisely described by a fractional Langevin equation with two distinct random noises.
Collapse
Affiliation(s)
- Sungmin Joo
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Xavier Durang
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - O-Chul Lee
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Jae-Hyung Jeon
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
32
|
Paoluzzi M, Angelani L, Puglisi A. Narrow-escape time and sorting of active particles in circular domains. Phys Rev E 2020; 102:042617. [PMID: 33212655 DOI: 10.1103/physreve.102.042617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
It is now well established that microswimmers can be sorted or segregated fabricating suitable microfluidic devices or using external fields. A natural question is how these techniques can be employed for dividing swimmers of different motility. In this paper, using numerical simulations in the dilute limit, we investigate how motility parameters (time of persistence and velocity) impact the narrow-escape time of active particles from circular domains. We show that the escape time undergoes a crossover between two asymptotic regimes. The control parameters of the crossover is the ratio between the persistence length of the active motion and the typical length scale of the circular domain. We explore the possibility of taking advantage of this finding for sorting active particles by motility parameters.
Collapse
Affiliation(s)
- Matteo Paoluzzi
- ISC-CNR, Institute for Complex Systems and Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Luca Angelani
- ISC-CNR, Institute for Complex Systems and Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Andrea Puglisi
- ISC-CNR, Institute for Complex Systems and Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy
| |
Collapse
|
33
|
Park JT, Paneru G, Kwon C, Granick S, Pak HK. Rapid-prototyping a Brownian particle in an active bath. SOFT MATTER 2020; 16:8122-8127. [PMID: 32696794 DOI: 10.1039/d0sm00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particles kicked by external forces to produce mobility distinct from thermal diffusion are an iconic feature of the active matter problem. Here, we map this onto a minimal model for experiment and theory covering the wide time and length scales of usual active matter systems. A particle diffusing in a harmonic potential generated by an optical trap is kicked by programmed forces with time correlation at random intervals following the Poisson process. The model's generic simplicity allows us to find conditions for which displacements are Gaussian (or not), how diffusion is perturbed (or not) by kicks, and quantifying heat dissipation to maintain the non-equilibrium steady state in an active bath. The model reproduces experimental results of tracer mobility in an active bath of swimming algal cells. It can be used as a stochastic dynamic simulator for Brownian objects in various active baths without mechanistic understanding, owing to the generic framework of the protocol.
Collapse
Affiliation(s)
- Jin Tae Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea. and Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Govind Paneru
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea.
| | - Chulan Kwon
- Department Physics, Myongji University, Yongin, Gyeonggi-Do 17058, South Korea.
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea. and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hyuk Kyu Pak
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea. and Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
34
|
Petrelli I, Cugliandolo LF, Gonnella G, Suma A. Effective temperatures in inhomogeneous passive and active bidimensional Brownian particle systems. Phys Rev E 2020; 102:012609. [PMID: 32794963 DOI: 10.1103/physreve.102.012609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 05/15/2023]
Abstract
We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homogeneous phases the diffusive properties and effective temperature are also homogeneous. Instead, in the inhomogeneous phases (close to equilibrium and within the MIPS sector) the particles can be separated in two groups with different diffusion properties and effective temperatures. Notably, at fixed activity strength the effective temperatures in the two phases remain distinct and approximately constant within the MIPS region, with values corresponding to the ones of the whole system at the boundaries of this sector of the phase diagram. We complement the study of the globally averaged properties with the theoretical and numerical characterization of the fluctuation distributions of the single-particle diffusion, linear response, and effective temperature in the homogeneous and inhomogeneous phases. We also distinguish the behavior of the (time-delayed) effective temperature from the (instantaneous) kinetic temperature, showing that the former is independent of the friction coefficient.
Collapse
Affiliation(s)
- Isabella Petrelli
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Antonio Suma
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
35
|
Ye S, Liu P, Ye F, Chen K, Yang M. Active noise experienced by a passive particle trapped in an active bath. SOFT MATTER 2020; 16:4655-4660. [PMID: 32373861 DOI: 10.1039/d0sm00006j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the properties of active noise experienced by a passive particle harmonically trapped in an active bath. The active bath is either explicitly simulated by an ensemble of active Brownian particles or abstractly represented by an active colored noise in theory. Assuming the equivalence of the two descriptions of the active bath, the active noise in the simulation system, which is directly extracted by fitting theoretical predictions to simulation measurements, is shown to depend on the constraint suffered by the passive tracer. This scenario is in significant contrast to the case of thermal noise that is independent of external trap potentials. The constraint dependence of active noise arises from the fact that the persistent force on the passive particle from the active bath can be influenced by the particle relaxation dynamics. Moreover, due to the interplay between the active collisions and particle relaxation dynamics, the effective temperature of the passive tracer quantified as the ratio of fluctuation to dissipation increases as the constraint strengthens, while the average potential and kinetic energies of the passive particle both decrease.
Collapse
Affiliation(s)
- Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Mandal S, Liebchen B, Löwen H. Motility-Induced Temperature Difference in Coexisting Phases. PHYSICAL REVIEW LETTERS 2019; 123:228001. [PMID: 31868412 DOI: 10.1103/physrevlett.123.228001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Unlike in thermodynamic equilibrium where coexisting phases always have the same temperature, here we show that systems comprising "active" self-propelled particles can self-organize into two coexisting phases at different kinetic temperatures, which are separated from each other by a sharp and persistent temperature gradient. Contrasting previous studies that have focused on overdamped descriptions of active particles, we show that a "hot-cold coexistence" occurs if and only if accounting for inertia, which is significant, e.g., in activated dusty plasmas, microflyers, whirling fruits, or beetles at interfaces. Our results exemplify a route to use active particles to create a self-sustained temperature gradient across coexisting phases. This phenomenon is fundamentally beyond equilibrium physics and is accompanied by a slow coarsening law with an exponent significantly smaller than the universal 1/3 exponent seen in both equilibrium systems and overdamped active Brownian particles.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Theorie Weicher Materie, Fachbereich Physik, Technische Universität Darmstadt, Hochschulstraße 12, 64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Caprini L, Hernández-García E, López C, Marini Bettolo Marconi U. A comparative study between two models of active cluster crystals. Sci Rep 2019; 9:16687. [PMID: 31723160 PMCID: PMC6853940 DOI: 10.1038/s41598-019-52420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | - Cristóbal López
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | |
Collapse
|
38
|
Crosato E, Prokopenko M, Spinney RE. Irreversibility and emergent structure in active matter. Phys Rev E 2019; 100:042613. [PMID: 31770893 DOI: 10.1103/physreve.100.042613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
Active matter is rapidly becoming a key paradigm of out-of-equilibrium soft matter exhibiting complex collective phenomena, yet the thermodynamics of such systems remain poorly understood. In this article we study the dynamical irreversibility of large-scale active systems capable of motility-induced phase separation and polar alignment. We use a model with momenta in both translational and rotational degrees of freedom, revealing a hidden component not previously reported in the literature. Steady-state irreversibility is quantified at each point in the phase diagram which exhibits sharp discontinuities at phase transitions. Identification of the irreversibility in individual particles lays the groundwork for discussion of the thermodynamics of microfeatures, such as defects in the emergent structure. The interpretation of the time reversal symmetry in the dynamics of the particles is found to be crucial.
Collapse
Affiliation(s)
- Emanuele Crosato
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
- CSIRO Data61, P.O. Box 76, Epping NSW 1710, Australia
| | - Mikhail Prokopenko
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
| | - Richard E Spinney
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
39
|
Sarracino A, Vulpiani A. On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems. CHAOS (WOODBURY, N.Y.) 2019; 29:083132. [PMID: 31472486 DOI: 10.1063/1.5110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We review generalized fluctuation-dissipation relations, which are valid under general conditions even in "nonstandard systems," e.g., out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperturbed dynamics. In these relations, typically, one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in nonstandard cases, including driven granular media, systems with a multiscale structure, active matter, and systems showing anomalous diffusion.
Collapse
Affiliation(s)
- A Sarracino
- Dipartimento di Ingegneria, Università della Campania "L. Vanvitelli," via Roma 29, 81031 Aversa (CE), Italy
| | - A Vulpiani
- Dipartimento di Fisica, Università Sapienza-p.le A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
40
|
Angelani L. Spontaneous assembly of colloidal vesicles driven by active swimmers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:075101. [PMID: 30523954 DOI: 10.1088/1361-648x/aaf516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explore the self-assembly process of colloidal structures immersed in active baths. By considering low-valence particles we numerically investigate the irreversible aggregation dynamics originated by the presence of run-and-tumble swimmers. We observe the formation of long closed chains-vesicles-densely filled by active swimmers. On the one hand the active bath drives the self-assembly of closed colloidal structures, and on the other hand the vesicles formation fosters the self-trapping of swimmers, suggesting new ways both to build structured nanomaterials and to trap microorganisms.
Collapse
Affiliation(s)
- Luca Angelani
- ISC-CNR, Institute for Complex Systems, and Dipartimento di Fisica, Università Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy
| |
Collapse
|
41
|
Caprini L, Marini Bettolo Marconi U, Puglisi A. Activity induced delocalization and freezing in self-propelled systems. Sci Rep 2019; 9:1386. [PMID: 30718579 PMCID: PMC6361910 DOI: 10.1038/s41598-018-36824-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022] Open
Abstract
We study a system of interacting active particles, propelled by colored noises, characterized by an activity time τ, and confined by a single-well anharmonic potential. We assume pair-wise repulsive forces among particles, modelling the steric interactions among microswimmers. This system has been experimentally studied in the case of a dilute suspension of Janus particles confined through acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are negligible - increasing the persistent time, τ, pushes the particles away from the potential minimum, until a saturation distance is reached. We compute the phase diagram (activity versus interaction length), showing that the interaction does not suppress this delocalization phenomenon but induces a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior is observed: a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher values, when the delocalization occurs, a further increase of τ induces freezing inside the densest regions. An approximate analytical scheme gives fair predictions for the density profiles in the weakly interacting case. The analysis of non-equilibrium heat fluxes reveals that in the region of largest particle concentration equilibrium is restored in several aspects.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | | | - Andrea Puglisi
- Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185, Rome, Italy
| |
Collapse
|