1
|
Park S, Song Y, Ryu B, Song Y, Lee H, Kim Y, Lim J, Lee D, Yoon H, Lee C, Yun C. Highly Conductive Ink Based on Self-Aligned Single-Walled Carbon Nanotubes through Inter-Fiber Sliding in Cellulose Fibril Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402854. [PMID: 39193666 PMCID: PMC11516057 DOI: 10.1002/advs.202402854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Indexed: 08/29/2024]
Abstract
Carbon nanotubes (CNTs), owing to their superior electrical and mechanical properties, are a promising alternative to nonmetallic electrically conducting materials. In practice, cellulose as a low-cost sustainable matrix has been used to prepare the aqueous dispersion of cellulose-CNT (C-CNT) nanocomposites. However, the compatibility with conventional solution-processing and structural rearrangement for improving conductivity has yet to be determined. Herein, a straightforward route to prepare a conductive composite material from single-walled CNTs (SWCNTs) and natural pulp is reported. High-power shaking realizes the self-alignment of individual SWCNTs in a cellulose matrix, resulting from the structural change in molecular orientations owing to countless collisions of zirconia beads in the aqueous mixture. The structural analysis of the dried C-CNT films confirms that the entanglement and dispersion of C-CNT nanowires determine the mechanical and electrical properties. Moreover, the rheological behavior of C-CNT inks explains their coating and printing characteristics. By controlling shaking time, the electrical conductivity of the C-CNT films with only 9 wt.% of SWCNTs from 0.9 to 102.4 S cm-1 are adjusted. the optimized C-CNT ink is highly compatible with the conventional coating and printing processes on diverse substrates, thus finding potential applications in eco-friendly, highly flexible, and stretchable electrodes is also demonstrated.
Collapse
Affiliation(s)
- Sejung Park
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Yeeun Song
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Young‐Woong Song
- Department of Materials Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
- Korea Institute of Industrial Technology (KITECH)Gwangju61012Republic of Korea
| | - Haney Lee
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Yejin Kim
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jinsub Lim
- Korea Institute of Industrial Technology (KITECH)Gwangju61012Republic of Korea
| | - Doojin Lee
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Changkee Lee
- Korea Institute of Industrial Technology (KITECH)Ansan‐si15588Republic of Korea
| | - Changhun Yun
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| |
Collapse
|
2
|
Liu Q, Zhou J, Zeng Q, Sun D, Yu B, Yang L, Zhang Z, Wu J, Zhang Y. Flexible Dry Epidermal Electrophysiological Electrodes Based on One-Dimensional Platinum-Coated Silver Nanowires. ACS APPLIED NANO MATERIALS 2024; 7:18226-18236. [DOI: 10.1021/acsanm.3c03457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
| | - Dexin Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bin Yu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Ananthasubramanian P, Sahay R, Raghavan N. Investigation of the surface mechanical properties of functionalized single-walled carbon nanotube (SWCNT) reinforced PDMS nanocomposites using nanoindentation analysis. RSC Adv 2024; 14:15249-15260. [PMID: 38737970 PMCID: PMC11082875 DOI: 10.1039/d4ra02717e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Functionalizing single-walled carbon nanotubes (SWCNT) with different chemical functional groups directly enhances their chemical adhesion and dispersion in viscous polymeric resins such as polydimethylsiloxane (PDMS). Nevertheless, the ideal surface polarity (hydrophilic or hydrophobic) for SWCNT to foster stronger chemical bonding with PDMS remains uncertain. This investigation delves into the impact of enhanced SWCNT dispersion within PDMS on the surface mechanical characteristics of this flexible composite system. We use carboxylic acid-functionalized SWCNT (COOH-SWCNT) and silane-functionalized SWCNT (sily-SWCNT), recognized for their hydrophilic and hydrophobic surface polarities, respectively, as reinforcing agents at ultra-low weight percentage loadings: 0.05 wt%, 0.5 wt%, and 1 wt%. We perform quasi-static nanoindentation analysis employing a Berkovich tip to probe the localized mechanical behavior of PDMS-SWCNT films at an indentation depth of 1 μm. Plastic deformation within the samples, denoted as plastic work (Wp), as well as the elastic modulus (E), hardness (H), and contact stiffness (Sc) of the composites are examined from the force-displacement curves to elucidate the enhancement in the surface mechanical attributes of the composite films.
Collapse
Affiliation(s)
- Pavithra Ananthasubramanian
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| | - Rahul Sahay
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| | - Nagarajan Raghavan
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| |
Collapse
|
4
|
Nan J, Chen J, Li M, Li Y, Ma Y, Fan X. A Temperature Prediction Model for Flexible Electronic Devices Based on GA-BP Neural Network and Experimental Verification. MICROMACHINES 2024; 15:430. [PMID: 38675242 PMCID: PMC11051848 DOI: 10.3390/mi15040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The problem that the thermal safety of flexible electronic devices is difficult to evaluate in real time is addressed in this study by establishing a BP neural network (GA-BPNN) temperature prediction model based on genetic algorithm optimisation. The model uses a BP neural network to fit the functional relationship between the input condition and the steady-state temperature of the equipment and uses a genetic algorithm to optimise the parameter initialisation problem of the BP neural network. To overcome the challenge of the high cost of obtaining experimental data, finite element analysis software is used to simulate the temperature results of the equipment under different working conditions. The prediction variance of the GA-BPNN model does not exceed 0.57 °C and has good robustness, as the model is trained according to the simulation data. The study conducted thermal validation experiments on the temperature prediction model for this flexible electronic device. The device reached steady state after 1200 s of operation at rated power. The error between the predicted and experimental results was less than 0.9 °C, verifying the validity of the model's predictions. Compared with traditional thermal simulation and experimental methods, this model can quickly predict the temperature with a certain accuracy and has outstanding advantages in computational efficiency and integrated application of hardware and software.
Collapse
Affiliation(s)
- Jin Nan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China; (J.N.); (Y.L.)
| | - Jiayun Chen
- International Innovation Institute, Beihang University (BUAA), Hangzhou 310023, China;
| | - Min Li
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China; (J.N.); (Y.L.)
| | - Yinji Ma
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China;
- Applied Mechanics Laboratory Ministry of Education People’s Republic of China (AML), Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xuanqing Fan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China; (J.N.); (Y.L.)
| |
Collapse
|
5
|
Ananthasubramanian P, Sahay R, Raghavan N. Enhancement of the mechanical properties in ultra-low weight SWCNT sandwiched PDMS composites using a novel stacked architecture. Sci Rep 2024; 14:4487. [PMID: 38396000 PMCID: PMC10891152 DOI: 10.1038/s41598-024-54631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This study focuses on enhancing the mechanical properties of thin, soft, free-standing films via a layer-by-layer (LBL) fabrication process called LBL-FP. Soft polymer nanocomposite (PNC) thin films, combining polydimethylsiloxane (PDMS) and single-walled carbon nanotubes (SWCNT) at ultra-low loadings using a unique bottom-up LBL-FP, are examined. Two different structures of layered composites, (i) LBL PNCs- Layered composites with alternating layers of PDMS and SWCNT, (ii) Bulk PNCs- Layered composites with SWCNT dispersed in the bulk of PDMS, are comparatively investigated for their structural and mechanical properties. Silane-functionalized SWCNT strengthens the chemical bonding with PDMS, improving adhesion and dispersion. Mechanical analysis using nanoindentation, delamination, and dynamic analysis highlights the advantages of LBL PNCs with alternating layers of PDMS and SWCNT. Notably, LBL PNC (0.5 wt%) exhibits significant improvements, such as 2.6X increased nanoindentation resistance, 3X improved viscoelasticity, and (2-5)X enhanced tensile properties in comparison with neat PDMS. Due to this, LBL PNCs offer potential for soft, lightweight applications like wearables, electromagnetic interference shielding materials, and strain sensors while advancing composite thin film mechanics. The study emphasizes using a stacked architecture to produce PDMS-SWCNT multilayered PNCs with improved mechanics utilizing ultra-low concentrations of SWCNT. This first-of-its-kind stack design facilitates possibilities for lightweight composites utilizing less fillers. The LBL assembly involves the stacking of alternating layers of different materials, each contributing specific properties to enhance the overall strength and toughness of the structure.
Collapse
Affiliation(s)
- Pavithra Ananthasubramanian
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Rahul Sahay
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Nagarajan Raghavan
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
6
|
Chen Z, Qu C, Yao J, Zhang Y, Xu Y. Two-Stage Micropyramids Enhanced Flexible Piezoresistive Sensor for Health Monitoring and Human-Computer Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7640-7649. [PMID: 38303602 DOI: 10.1021/acsami.3c18788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
High-performance flexible piezoresistive sensors are becoming increasingly essential in various novel applications such as health monitoring, soft robotics, and human-computer interaction. The evolution of the interfacial contact morphology determines the sensing properties of piezoresistive devices. The introduction of microstructures enriches the interfacial contact morphology and effectively boosts the sensitivity; however, the limited compressibility of conventional microstructures leads to rapid saturation of the sensitivity in the low-pressure range, which hinders their application. Herein, we present a flexible piezoresistive sensor featuring a two-stage micropyramid array structure, which effectively enhances the sensitivity while widening the sensing range. Owing to the synergistic enhancement effect resulting from the sequential contact of micropyramids of various heights, the devices demonstrate remarkable performance, including boosting sensitivity (30.8 kPa-1) over a wide sensing range (up to 200 kPa), a fast response/recovery time (75/50 ms), and an ultralong durability of 15,000 loading-unloading cycles. As a proof of concept, the sensor is applied to detect human physiological and motion signals, further demonstrating a real-time spatial pressure distribution sensing system and a game control system, showing great potential for applications in health monitoring and human-computer interaction.
Collapse
Affiliation(s)
- Zhihao Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Changming Qu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Jingjing Yao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yuanlong Zhang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yun Xu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| |
Collapse
|
7
|
Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite Hydrogels-A Promising Approach towards Enhanced Bioavailability and Controlled Drug Delivery. Curr Pharm Des 2024; 30:48-62. [PMID: 38155469 DOI: 10.2174/0113816128283466231219071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Nanotechnology has emerged as the eminent focus of today's research to overcome challenges related to conventional drug delivery systems. A wide spectrum of novel delivery systems has been investigated to improve the therapeutic outcomes of drugs. The polymer-based nanocomposite hydrogels (NCHs) that have evolved as efficient carriers for controlled drug delivery are of particular interest in this regard. Nanocomposites amalgamate the properties of both nanoparticles (NPs) as well as hydrogels, exhibiting superior functionalities over conventional hydrogels. This multiple functionality is based upon advanced mechanical, electrical, optical as well as magnetic properties. Here is a brief overview of the various types of nanocomposites, such as NCHs based on Carbon-bearing nanomaterials, polymeric nanoparticles, inorganic nanoparticles, and metal and metal-oxide NPs. Accordingly, this article will review numerous ways of preparing these NCHs with particular emphasis on the vast biomedical applications displayed by them in numerous fields such as tissue engineering, drug delivery, wound healing, bioprinting, biosensing, imaging and gene silencing, cancer therapy, antibacterial therapy, etc. Moreover, various features can be tuned, based on the final application, by controlling the chemical composition of hydrogel network, which may also influence the released conduct. Subsequently, the recent work and future prospects of this newly emerging class of drug delivery system have been enlisted.
Collapse
Affiliation(s)
- Nariman Shahid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Muhammad Ali Syed
- Department of Pharmaceutical Sciences, Faculty of Chemistry & Life Sciences, GC University Lahore, Lahore, Pakistan
| |
Collapse
|
8
|
Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9498. [PMID: 38067871 PMCID: PMC10708748 DOI: 10.3390/s23239498] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
- Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA
| | - Kirankumar Kuruvinashetti
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amin Komeili
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
| |
Collapse
|
9
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
10
|
Kim J, Yang C, Yun T, Woo S, Kim H, Lee M, Jeong M, Ryu H, Kim N, Park S, Lee J. Surface-Embedding of Mo Microparticles for Robust and Conductive Biodegradable Fiber Electrodes: Toward 1D Flexible Transient Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206186. [PMID: 36995044 PMCID: PMC10214255 DOI: 10.1002/advs.202206186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Fiber-based implantable electronics are one of promising candidates for in vivo biomedical applications thanks to their unique structural advantages. However, development of fiber-based implantable electronic devices with biodegradable capability remains a challenge due to the lack of biodegradable fiber electrodes with high electrical and mechanical properties. Here, a biocompatible and biodegradable fiber electrode which simultaneously exhibits high electrical conductivity and mechanical robustness is presented. The fiber electrode is fabricated through a facile approach that incorporates a large amount of Mo microparticles into outermost volume of a biodegradable polycaprolactone (PCL) fiber scaffold in a concentrated manner. The biodegradable fiber electrode simultaneously exhibits a remarkable electrical performance (≈43.5 Ω cm-1 ), mechanical robustness, bending stability, and durability for more than 4000 bending cycles based on the Mo/PCL conductive layer and intact PCL core in the fiber electrode. The electrical behavior of the biodegradable fiber electrode under the bending deformation is analyzed by an analytical prediction and a numerical simulation. In addition, the biocompatible properties and degradation behavior of the fiber electrode are systematically investigated. The potential of biodegradable fiber electrode is demonstrated in various applications such as an interconnect, a suturable temperature sensor, and an in vivo electrical stimulator.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Taehyun Yun
- Department of Mechanical EngineeringGachon University1342, Seongnam‐daero, Sujeong‐gu, Seongnam‐siGyeonggi‐do13120Republic of Korea
| | - Seohyun Woo
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Hwajoong Kim
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Mugeun Lee
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Minji Jeong
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Hyeji Ryu
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| | - Namjung Kim
- Department of Mechanical EngineeringGachon University1342, Seongnam‐daero, Sujeong‐gu, Seongnam‐siGyeonggi‐do13120Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jaehong Lee
- Department of Robotics and Mechatronics EngineeringDGIST333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gunDaegu42988Republic of Korea
| |
Collapse
|
11
|
Sunwoo SH, Han SI, Jung D, Kim M, Nam S, Lee H, Choi S, Kang H, Cho YS, Yeom DH, Cha MJ, Lee S, Lee SP, Hyeon T, Kim DH. Stretchable Low-Impedance Conductor with Ag-Au-Pt Core-Shell-Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device. ACS NANO 2023; 17:7550-7561. [PMID: 37039606 DOI: 10.1021/acsnano.2c12659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, high stretchability, low cytotoxicity, and low impedance. Here, we present a material strategy for the stretchable conductive nanocomposite, particularly emphasizing low impedance, by combining silver-gold-platinum core-shell-shell nanowires and homogeneously dispersed in situ synthesized platinum nanoparticles (Pt NPs). The highly embossed structure of the outermost Pt shell, together with the intrinsic electrical property of Pt, contributes to minimizing the impedance. The gold-platinum double-layer sheath prevents leaching of cytotoxic Ag ions, thus improving biocompatibility. Homogeneously dispersed Pt NPs, synthesized in situ during fabrication of the nanocomposite, simultaneously enhance conductivity, reduce impedance, and improve stretchability by supporting the percolation network formation. This intrinsically stretchable nanocomposite conductor can be applied to wearable and implantable bioelectronics for recording biosignals and delivering electrical stimulations in vivo.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minseong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Myung-Jin Cha
- Department of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Wireless EEG: A survey of systems and studies. Neuroimage 2023; 269:119774. [PMID: 36566924 DOI: 10.1016/j.neuroimage.2022.119774] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
The popular brain monitoring method of electroencephalography (EEG) has seen a surge in commercial attention in recent years, focusing mostly on hardware miniaturization. This has led to a varied landscape of portable EEG devices with wireless capability, allowing them to be used by relatively unconstrained users in real-life conditions outside of the laboratory. The wide availability and relative affordability of these devices provide a low entry threshold for newcomers to the field of EEG research. The large device variety and the at times opaque communication from their manufacturers, however, can make it difficult to obtain an overview of this hardware landscape. Similarly, given the breadth of existing (wireless) EEG knowledge and research, it can be challenging to get started with novel ideas. Therefore, this paper first provides a list of 48 wireless EEG devices along with a number of important-sometimes difficult-to-obtain-features and characteristics to enable their side-by-side comparison, along with a brief introduction to each of these aspects and how they may influence one's decision. Secondly, we have surveyed previous literature and focused on 110 high-impact journal publications making use of wireless EEG, which we categorized by application and analyzed for device used, number of channels, sample size, and participant mobility. Together, these provide a basis for informed decision making with respect to hardware and experimental precedents when considering new, wireless EEG devices and research. At the same time, this paper provides background material and commentary about pitfalls and caveats regarding this increasingly accessible line of research.
Collapse
|
13
|
Song X, Zhang Q, Wu H, Guo S, Qiu J. Highly Efficient Dispersion of Individual Multiwalled Carbon Nanotubes by Polylactide in High Elastic State. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jianhui Qiu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| |
Collapse
|
14
|
Tringides CM, Boulingre M, Mooney DJ. Metal-based porous hydrogels for highly conductive biomaterial scaffolds. OXFORD OPEN MATERIALS SCIENCE 2023; 3:itad002. [PMID: 38249777 PMCID: PMC10798674 DOI: 10.1093/oxfmat/itad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Multielectrode arrays are fabricated from thin films of highly conductive and ductile metals which cannot mimic the natural environment of biological tissues. These properties limit the conformability of the electrode to the underlying target tissue, and present challenges in developing seamless interfaces. By introducing porous, hydrogel materials that are embedded with metal additives, highly conductive hydrogels can be formed. Tuning the hydrogel composition, % volume and aspect ratio of different additive(s), and the processing conditions of these composite materials can alter the mechanical and electrical properties. The resulting materials have a high surface area, and can be used as biomaterial scaffolds to support the growth of macrophages for 5 days. Further optimization can enable the use of the materials for the electrodes in implantable arrays, or as living electrode platforms to study and modulate various cellular cultures. These advancements would benefit both in vivo and in vitro applications of tissue engineering.
Collapse
Affiliation(s)
- Christina M Tringides
- Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard–MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marjolaine Boulingre
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Bioengineering, Imperial College London, London SW7 2BP, United Kingdom
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Zhao N, Zhao B, Shen G, Jiang C, Wang Z, Lin Z, Zhou L, Liu J. A robust HD-sEMG sensor suitable for convenient acquisition of muscle activity in clinical post-stroke dysphagia. J Neural Eng 2023; 20. [PMID: 36595251 DOI: 10.1088/1741-2552/acab2f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.A flexible high-density surface electromyography (HD-sEMG) sensor combined with an adaptive algorithm was used to collect and analyze the swallowing activities of patients with Post-stroke dysphagia.Approach.The electrode frame, modified electrode, and bonded substrate of the sensor were fabricated using a flexible printed circuit process, controlled drop coating, and molding, respectively. The adaptation algorithm was achieved by using Laplace and Teager-Kaiser energy operators to extract active segments, a cross-correlation coefficient matrix (CCCM) to evaluate synergy, and multi-frame real-time dynamic root mean square (RMS) to visualize spatiotemporal information to screen lesions and level of dysphagia. Finally, support vector machines (SVM) were adopted to explore the classification accuracy of sex, age, and lesion location with small sample sizes.Main results.The sensor not only has a basic low contact impedance (0.262 kΩ) and high signal-to-noise ratio (37.284 ± 1.088 dB) but also achieves other characteristics suitable for clinical applications, such as flexibility (747.67 kPa) and durability (1000 times) balance, simple operation (including initial, repeated, and replacement use), and low cost ($ 15.2). The three conclusions are as follows. CCCM can be used as a criterion for judging the unbalanced muscle region of the patient's neck and can accurately locate unbalanced muscles. The RMS cloud map provides the time consumption, swallowing times, and unbalanced areas. When the lesion location involves the left and right hemispheres simultaneously, it can be used as an evidence of relatively severely unbalanced areas. The classification accuracy of SVM in terms of sex, age, and lesion location was as high as 100%.Significance.The HD-sEMG sensor in this study and the adaptation algorithm will contribute to the establishment of a larger-scale database in the future to establish more detailed and accurate quantitative standards, which will be the basis for developing more optimized screening mechanisms and rehabilitation assessment methods.
Collapse
Affiliation(s)
- Nan Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bolun Zhao
- The School of Nursing, Second Military Medical University, Shanghai 200433, People's Republic of China.,The School of Nursing, Dalian University, Dalian 116000, People's Republic of China
| | - Gencai Shen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhuangzhuang Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zude Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lanshu Zhou
- The School of Nursing, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Gkaravela A, Vareli I, Bekas DG, Barkoula NM, Paipetis AS. The Use of Electrochemical Impedance Spectroscopy as a Tool for the In-Situ Monitoring and Characterization of Carbon Nanotube Aqueous Dispersions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4427. [PMID: 36558280 PMCID: PMC9786001 DOI: 10.3390/nano12244427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
So far, there is no validated technology for characterizing the dispersion and morphology state of carbon nanotubes (CNTs) aqueous dispersions during sonication. Taking advantage of the conductive nature of CNTs, the main hypothesis of the current study is that Electrochemical Impedance Spectroscopy (EIS) is an appropriate technique for the in-situ monitoring and qualification of the dispersion state of CNTs in aqueous media. To confirm our hypothesis, we monitored the Impedance |Z| during the sonication process as a function of type CNTs/admixtures used for the preparation of the aqueous solutions and of crucial process parameters, such as the applied sonication power and duration (i.e., sonication energy). For dispersions above the percolation threshold, a drop of |Z| by approximately seven orders of magnitude was observed, followed by a linear reduction. The dramatic change in |Z| is regarded as an indication of the formation of a conductive path or destruction of an existing one during sonication and can be used to characterize the dispersion and morphology state of CNTs. The results of the EIS provide, straightforwardly and reliably, the required information to create an optimum dispersion protocol for conductive CNT suspensions. The produced dispersions are part of research focusing on the manufacturing of cement-based composite materials with advanced thermoelectric functionalities for energy harvesting. Such dispersions are not only limited to energy harvesting applications but also to applications where functionalities are introduced through the use of conductive-based suspensions.
Collapse
|
17
|
Kim J, Kim M, Jung H, Park J, Jun BO, Kang B, Jang JE, Lee Y. High-Quality Microprintable and Stretchable Conductors for High-Performance 5G Wireless Communication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53250-53260. [PMID: 36382782 DOI: 10.1021/acsami.2c18424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 μm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 μΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4-8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byoung Ok Jun
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
18
|
Zhang X, Son R, Lin YJ, Gill A, Chen S, Qi T, Choi D, Wen J, Lu Y, Lin NYC, Chiou PY. Rapid prototyping of functional acoustic devices using laser manufacturing. LAB ON A CHIP 2022; 22:4327-4334. [PMID: 36285690 PMCID: PMC10122935 DOI: 10.1039/d2lc00725h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acoustic patterning of micro-particles has many important biomedical applications. However, fabrication of such microdevices is costly and labor-intensive. Among conventional fabrication methods, photo-lithography provides high resolution but is expensive and time consuming, and not ideal for rapid prototyping and testing for academic applications. In this work, we demonstrate a highly efficient method for rapid prototyping of acoustic patterning devices using laser manufacturing. With this method we can fabricate a newly designed functional acoustic device in 4 hours. The acoustic devices fabricated using this method can achieve sub-wavelength, complex and non-periodic patterning of microparticles and biological objects with a spatial resolution of 60 μm across a large active manipulation area of 10 × 10 mm2.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Rosa Son
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, USA
| | - Alexi Gill
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - David Choi
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
- Department of Bioengineering, University of California at Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| |
Collapse
|
19
|
Suo J, Liu Y, Wu C, Chen M, Huang Q, Liu Y, Yao K, Chen Y, Pan Q, Chang X, Leung AYL, Chan H, Zhang G, Yang Z, Daoud W, Li X, Roy VAL, Shen J, Yu X, Wang J, Li WJ. Wide-Bandwidth Nanocomposite-Sensor Integrated Smart Mask for Tracking Multiphase Respiratory Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203565. [PMID: 35999427 PMCID: PMC9631096 DOI: 10.1002/advs.202203565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a "smart mask" to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 µm), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.e., capable of detecting various respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects test the smart mask in recording their respiratory activities. Machine/deep learning methods, i.e., support vector machine and convolutional neural networks, are used to recognize these activities, which show average macro-recalls of ≈95% in both individual and generalized models. With rich high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs can be mapped while speaking words can be identified, demonstrating that the smart mask can be applicable as a daily wearable Internet of Things (IoT) device for respiratory disease identification, voice interaction tool, etc. in the future. This work bridges the technological gap between ultra-lightweight but high-frequency response sensor material fabrication, signal transduction and processing, and machining/deep learning to demonstrate a wearable device for potential applications in continual health monitoring in daily life.
Collapse
Affiliation(s)
- Jiao Suo
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Yifan Liu
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Cong Wu
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong KongChina
| | - Meng Chen
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Qingyun Huang
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Yiming Liu
- Dept. of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Kuanming Yao
- Dept. of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Yangbin Chen
- Dept. of Computer ScienceCity University of Hong KongHong KongChina
| | - Qiqi Pan
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Xiaoyu Chang
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | | | - Ho‐yin Chan
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Guanglie Zhang
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Zhengbao Yang
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Walid Daoud
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Xinyue Li
- School of Data ScienceCity University of Hong KongHong KongChina
| | | | - Jiangang Shen
- School of Chinese MedicineThe University of Hong KongHong KongChina
| | - Xinge Yu
- Dept. of Biomedical EngineeringCity University of Hong KongHong KongChina
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong KongChina
| | - Jianping Wang
- Dept. of Computer ScienceCity University of Hong KongHong KongChina
| | - Wen Jung Li
- Dept. of Mechanical EngineeringCity University of Hong KongHong KongChina
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong KongChina
| |
Collapse
|
20
|
Kim DY, Lee G, Lee GY, Kim J, Jeon K, Kim KS. Hybrid 1D/2D nanocarbon-based conducting polymer nanocomposites for high-performance wearable electrodes. NANOSCALE ADVANCES 2022; 4:4570-4578. [PMID: 36341283 PMCID: PMC9595188 DOI: 10.1039/d2na00220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
A low interfacial contact resistance is a challenge in polymer nanocomposites based on conductive nanomaterials for high-performance wearable electrode applications. Herein, a polydimethylsiloxane (PDMS)-based flexible nanocomposite incorporating high-conductivity 1D single-walled carbon nanotubes (SWCNTs) and 2D reduced graphene oxide (r-GO) was developed for high-performance electrocardiogram (ECG) wearable electrodes. A PDMS-SWCNT (P-SW; type I) nanocomposite containing only SWCNTs (2 wt%), exhibited rough and non-uniform surface morphology owing to the strong bundling effect of as-grown SWCNTs and randomly entangled aggregate structures and because of inefficient vacuum degassing (i.e., R P-SW = 1871 Ω). In contrast, owing to the hybrid structure of the SWCNTs (1 wt%) and r-GO (1 wt%), the PDMS-SWCNTs/r-GO (P-SW/r-GO; type II) nanocomposite exhibited uniform surface characteristics and low contact resistance (i.e., R P-SW/r-GO = 63 Ω) through the formation of hybrid and long conducting pathways. The optimized nanocomposite (P-SW/r-GO/f; type III) possessed a fabric-assisted structure that enabled tunable and efficient vacuum degassing and curing conditions. Additionally, a long and wide conducting pathway was formed through more uniform and dense interconnected structures, and the contact resistance was drastically reduced (i.e., R P-SW/r-GO/f = 15 Ω). The performance of the electrodes fabricated using the optimized nanocomposites was the same or higher than that of commercial Ag/AgCl gel electrodes during real-time measurement for ECG Bluetooth monitoring. The developed high-performance hybrid conducting polymer electrodes are expected to contribute significantly to the expansion of the application scope of wearable electronic devices and wireless personal health monitoring systems.
Collapse
Affiliation(s)
- Dong Young Kim
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON) 110-11 Banryong-ro, Deokjin-gu Jeonju 54852 Republic of Korea
| | - Geonhee Lee
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| | - Gil Yong Lee
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| | - Jungpil Kim
- Carbon & Light Materials Application Research Group, Korea Institute of Industrial Technology (KITECH) 222 Palbok-ro Deokjin-gu Jeonju 54853 Republic of Korea
| | - Kwangu Jeon
- E-Cube Materials 67, Yusang-ro, Deokjin-gu Jeonju 54852 Republic of Korea
| | - Keun Soo Kim
- Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
| |
Collapse
|
21
|
Deng HT, Wen DL, Feng T, Wang YL, Zhang XR, Huang P, Zhang XS. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39681-39700. [PMID: 36006298 DOI: 10.1021/acsami.2c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics. Herein, we focus on the approach of composite engineering and the polymer matrix of silicone rubber (SR), and we summarize the state-of-the-art details of silicone rubber-based conductive composites (SRCCs), including a summary of their conductivity mechanisms and synthesis methods and SRCC applications for stretchable electronics. For conductivity mechanisms, two conductivity mechanisms of SRCC are emphasized: percolation theory and the quantum tunneling mechanism. For synthesis methods of SRCCs, four typical approaches to synthesize different kinds of SRCCs are investigated: mixing/blending, infiltration, ion implantation, and in situ formation. For SRCC applications, different functions of stretchable electronics based on SRCCs for interconnecting, sensing, powering, actuating, and transmitting are summarized, including stretchable interconnects, sensors, nanogenerators, antennas, and transistors. These functions reveal the feasibility of constructing a stretchable all-in-one self-powered microsystem based on SRCC-based stretchable electronics. As a prospect, this microsystem is expected to integrate the functional sensing modulus, the energy harvesting modulus, and the process and response modulus together to sense and respond to environmental stimulations and human physiological signals.
Collapse
Affiliation(s)
- Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Feng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi-Lin Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin-Ran Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
22
|
Gandhi B, Raghava NS. Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications. Biomed Microdevices 2022; 24:29. [PMID: 35997847 DOI: 10.1007/s10544-022-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
In this paper, three categories of ECG electrodes were fabricated. Graphene/PDMS(Polydimethylsiloxane)(G-I), Graphene/MWCNT-COOH(Carboxylic-acid functionalized Multi-walled Carbon Nanotubes)/PDMS(G-II),and Graphene/SWCNT-COOH(Carboxylic-acid functionalized Single-walled Carbon Nanotubes)/PDMS(G-III). Each group had thirteen electrodes with varying concentrations ranging from 0.1-5wt%. Since CNTs get tangled easily, it becomes necessary to disperse them properly. To achieve optimal dispersion, CNTs were first sonicated with Isopropyl Alcohol (IPA), and then with PDMS. Mold casting was the technique used for fabricating the electrodes. The results were compared with the conventional ECG electrodes. Best results were achieved from G-III at 3wt% as the value of capacitance is high (0.172nF) as compared to G-I and G-III values at 3wt% which are 0.036nF (0.036nF) and 0.015nF respectively. As capacitance has an inverse relationship with the resistance and impedance, thus at 3wt% the resistance (0.361MΩ) and impedance (0.36MΩ) values are low, which satisfies the relationship. The values of resistance and impedance of G-II are low when compared with the values of G-I and G-II. Great results and ECG waveform are achieved with 3wt% for G-II, which also uses less nanomaterials to produce such great ECG results. It was observed that even after using the electrodes for 5 days, the ECG signal did not degrade over time and no skin allergies were detected for any of the three groups. The ECG tracking system was developed on the concept of the Internet-of-Things (IoT) using various electronic hardware components and software solutions. The results from the fabricated electrodes were promising and were suitable for long-term, and continuous ECG monitoring.
Collapse
Affiliation(s)
- Bani Gandhi
- Department of Electronics and Communication Engineering, Delhi Technological University (DTU), Delhi, 110042, India
| | | |
Collapse
|
23
|
Ilatovskii DA, Gilshtein EP, Glukhova OE, Nasibulin AG. Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201673. [PMID: 35712777 PMCID: PMC9405519 DOI: 10.1002/advs.202201673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/22/2022] [Indexed: 05/19/2023]
Abstract
Electrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply. Single-walled carbon nanotubes (SWCNTs) are a promising alternative for transparent conducting films (TCFs) because of their unique and excellent chemical and physical properties. Here, the latest achievements in the optoelectronic performance of TCFs based on SWCNTs are analyzed. Various approaches to evaluate the performance of transparent electrodes are briefly reviewed. A roadmap for further research and development of the transparent conductors using "rational design," which breaks the deadlock for obtaining the TCFs with a performance close to the theoretical limit, is also described.
Collapse
Affiliation(s)
- Daniil A. Ilatovskii
- Skolkovo Institute of Science and TechnologyNobel Str. 3Moscow143026Russian Federation
| | - Evgeniia P. Gilshtein
- Empa‐Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129Dübendorf8600Switzerland
| | - Olga E. Glukhova
- Saratov State UniversityAstrakhanskaya Str. 83Saratov410012Russian Federation
- I.M. Sechenov First Moscow State Medical UniversityBolshaya Pirogovskaya Str. 2–4Moscow119991Russian Federation
| | - Albert G. Nasibulin
- Skolkovo Institute of Science and TechnologyNobel Str. 3Moscow143026Russian Federation
- Aalto UniversityEspooFI‐00076Finland
| |
Collapse
|
24
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Feng Q, Zhang C, Yin R, Yin A, Chen Y, Wang H, Yang Z, Li K, Zhao W. Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21406-21417. [PMID: 35476393 DOI: 10.1021/acsami.1c25077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible and multifunctional electronic skin (e-skin) has received remarkable attention for its potential applications in health monitoring, human-machine interface, and artificial sensory nerves. However, conventional multifunctional e-skins require complex material systems, sophisticated fabrication, and external power supplies, leading to increased preparation cost and duration, thus hindering their large-scale utilization. Herein, a self-powered multifunctional e-skin system with properties of pressure, temperature, underwater sensing, and photothermal heating is designed based on carbon nanotubes/poly(dimethylsiloxane) (CNT/PDMS) acting as both the multifunctional sensing layer and the cathode of the power supply. Our micropyramidal structured e-skin exhibits outstanding pressure sensitivity (1.51 × 103 kPa-1) over a wide sensing range (2.5-255.7 kPa) and maintains ultralong-term durability (>20 000 cycles). It can also provide personalized photothermal therapy at an adjustable temperature (40-110 °C) and heating area under near-infrared irradiation due to the photothermal effect of CNTs, with the temperature being detected synchronously by current signals. Additionally, the hydrophobicity of the CNT/PDMS film endows our device with underwater sensing capability. Furthermore, practical healthcare applications have been demonstrated with reliable signal quality and stability, such as daily activities and underwater movements/temperature monitoring, SOS Morse code communication, and human-machine interface. This work could provide insight on developing simple, stable, and wearable healthcare devices with self-power supply and multifunction.
Collapse
Affiliation(s)
- Qiang Feng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Chen Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Youyou Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Haoran Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Zhenzhong Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Kang Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Weiwei Zhao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
26
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
27
|
Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J. Materials for Dry Electrodes for the Electroencephalography: Advances, Challenges, Perspectives. ADVANCED MATERIALS TECHNOLOGIES 2022; 7. [DOI: 10.1002/admt.202100612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/28/2024]
Abstract
AbstractElectroencephalography (EEG) is extensively applied in brain cognition, clinical diagnosis, and artificial intelligence through detecting and analyzing the human brain biopotential. The Ag/AgCl combined with a conductive gel is the most widely used electrode in EEG. However, pre‐preparation before testing is time‐consuming and complicated. The dried gel has to be cleaned from hair after testing, otherwise discomforting the subjects. Therefore, it is strongly desired to develop a dry electrode to ease the test process and comfort the subjects. However, the high electrode–skin contact impedance weakens the intensity of biopotential signals. The materials with the features of high conductivity, good biocompatibility, and ease to obtain are more favorable for the dry EEG electrodes. This review provides state‐of‐the‐art materials for the dry electrode for the EEG with respect to the material preparation, and their electrical and electroencephalographical properties. Challenges and perspectives related to the material preparation, cost, and applications are also discussed.
Collapse
Affiliation(s)
- Liangtao Yang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Qing Liu
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Lu Gan
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| |
Collapse
|
28
|
Bhuyan P, Cho D, Choe M, Lee S, Park S. Liquid Metal Patterned Stretchable and Soft Capacitive Sensor with Enhanced Dielectric Property Enabled by Graphite Nanofiber Fillers. Polymers (Basel) 2022; 14:710. [PMID: 35215624 PMCID: PMC8879769 DOI: 10.3390/polym14040710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
In this work, we introduce liquid metal patterned stretchable and soft capacitive sensor with enhanced dielectric properties enabled by graphite nanofiber (GNF) fillers dispersed in polydimethylsiloxane (PDMS) substrate. We oxidized gallium-based liquid metal that exhibited excellent wetting behavior on the surface of the composites to enable patterning of the electrodes by a facile stencil printing. The fluidic behavior of the liquid metal electrode and modulated dielectric properties of the composite (k = 6.41 ± 0.092@6 wt % at 1 kHz) was utilized to fabricate stretchable and soft capacitive sensor with ability to distinguish various hand motions.
Collapse
Affiliation(s)
- Priyanuj Bhuyan
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Dongkyun Cho
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Minjae Choe
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sangmin Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sungjune Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
29
|
Park SY, Kang JH, Kim HS, Hwang JY, Shin US. Electrical and thermal stimulus-responsive nanocarbon-based 3D hydrogel sponge for switchable drug delivery. NANOSCALE 2022; 14:2367-2382. [PMID: 35088797 DOI: 10.1039/d1nr06074k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels that are responsive to various external (e.g. electrical and/or thermal) stimulation have become increasingly popular in recent years for simple, rapid, and precise drug delivery that can be controlled and turned on or off with external stimuli. For such a switchable drug delivery material, highly homogeneous dispersion and distribution of the hydrophobic, electrically conductive nanomaterials throughout a hydrophilic three-dimensional (3D) hydrogel network remains a challenge and is essential for achieving well-connected electrical and thermal conducting paths. Herein we developed electrical and thermal stimulus-responsive 3D hydrogels based on (i) carbon nanotubes (CNTs) as the core unit and an electrical/thermal conductor, (ii) chitosan (Chit) as the shell unit and a hydrophilic dispersant, and (iii) poly(NIPAAm-co-BBVIm) (pNIBBIm) as the drug carrier and a temperature-responsive copolymer. By formulating the CNT-core and Chit-shell units and constructing a CNT sponge framework, uniform distribution and 3D connectivity of the CNTs were improved. The 3D hydrogel based on the CNT sponge, namely the 3D frame CNT-Chit/pNIBBIm hydrogel, delivered approximately 37% of a drug, ketoprofen used for the treatment of musculoskeletal pain, during about 30% shrinkage after electrical and thermal switches on/off and exhibited the best potential for future use in a smart transdermal drug delivery system. The physicochemical, mechanical, electrical, thermal, and biocompatible characteristics of this nanocarbon-based 3D frame hydrogel led to remarkable electrical and thermal stimulus-responsive properties capable of developing an excellent controllable and switchable drug delivery platform for biomedical engineering and medicine applications.
Collapse
Affiliation(s)
- Sang-Yu Park
- Innovative Carbon-Bio-Convergence Lab., Korea Carbon Industry Promotion Agency (kcarbon), 110-11 Ballyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea.
| | - Ji-Hye Kang
- Department of Nanobiomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Ji-Young Hwang
- Innovative Carbon-Bio-Convergence Lab., Korea Carbon Industry Promotion Agency (kcarbon), 110-11 Ballyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea.
| | - Ueon Sang Shin
- Department of Nanobiomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| |
Collapse
|
30
|
Self J, Reynolds VG, Blankenship J, Mee E, Guo J, Albanese K, Xie R, Hawker CJ, de Alaniz JR, Chabinyc ML, Bates CM. Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS POLYMERS AU 2022; 2:27-34. [PMID: 36855747 PMCID: PMC9954388 DOI: 10.1021/acspolymersau.1c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wearable electronics and biointerfacing technology require materials that are both compliant and conductive. The typical design strategy exploits polymer composites containing conductive particles, but the addition of a hard filler generally leads to a substantial increase in modulus that is not well-matched to biological tissue. Here, we report a new class of supersoft, conductive composites comprising carbon nanotubes (CNT) embedded in bottlebrush polymer networks. By virtue of the bottlebrush polymer architecture, these materials are several orders of magnitude softer than comparable composites in the literature involving linear polymer networks. For example, a CNT content of 0.25 wt % yields a shear modulus of 66 kPa while maintaining a typical conductivity for a CNT composite (ca. 10-2 S/m). An added benefit of this bottlebrush matrix chemistry is the presence of dynamic polyester bonds that facilitate thermal (re)processing. This unique strategy of designing soft composites provides new opportunities to tailor the structure and properties of sustainable advanced materials.
Collapse
Affiliation(s)
- Jeffrey
L. Self
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jacob Blankenship
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Erin Mee
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jiaqi Guo
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin Albanese
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renxuan Xie
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
31
|
Kang D, Sarkar S, Kim KS, Kim S. Highly Damage-Resistant Thin Film Saturable Absorber Based on Mechanically Functionalized SWCNTs. NANOSCALE RESEARCH LETTERS 2022; 17:11. [PMID: 35032236 PMCID: PMC8761199 DOI: 10.1186/s11671-021-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Thin-film saturable absorbers (SAs) are extensively used in mode-locked fiber laser due to the robust and simple application methods that arise because SAs are alignment-free and self-standing. Single-walled carbon nanotubes (SWCNTs) are the most suitable low dimensional material uesd for SAs because of their high nonlinearity and the wavelength control of absorption based on tube diameters. The most challenging problem with the use of CNT-based thin film SAs is thermal damage caused during high power laser operation, which mainly occurs due to aggregation of CNTs. We have demonstrated improved thermal damage resistance and enhanced durability of a film-type SA based on functionalization of SWCNTs, which were subjected to a mechanical functionalization procedure to induce covalent structural modifications on the SWCNT surface. Increased intertube distance was shown by X-ray diffraction, and partial functionalization was shown by Raman spectroscopy. This physical change had a profound effect on integration with the host polymer and resolved aggregation problems. A free-standing SA was fabricated by the drop casting method, and improved uniformity was shown by scanning electron microscopy. The SA was analyzed using various structural and thermal evaluation techniques (Raman spectroscopy, thermogravimetric analysis, etc.). Damage tests at different optical powers were also performed. To the best of our knowledge, a comprehensive analysis of a film-type SA is reported here for the first time. The partially functionalized SWCNT (fSWCNT) SA shows significant structural integrity after intense damage tests and a modulation depth of 25.3%. In passively mode-locked laser operation, a pulse width of 152 fs is obtained with a repetition rate of 77.8 MHz and a signal-to-noise ratio of 75 dB. Stable operation of the femtosecond fiber laser over 200 h verifies the enhanced durability of the fSWCNT SA.
Collapse
Affiliation(s)
- Daewon Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| | | | - Kyung-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| | - Soohyun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| |
Collapse
|
32
|
Kumar GS, Patro TU. Tuning the piezoresistive strain‐sensing behavior of poly(vinylidene fluoride)–
CNT
composites: The role of polymer–
CNT
interface and composite processing technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.51516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- G. Sudheer Kumar
- Department of Metallurgical and Materials Engineering Defence Institute of Advanced Technology Pune India
| | - T. Umasankar Patro
- Department of Metallurgical and Materials Engineering Defence Institute of Advanced Technology Pune India
| |
Collapse
|
33
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Ha KH, Zhang W, Jang H, Kang S, Wang L, Tan P, Hwang H, Lu N. Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103320. [PMID: 34569100 DOI: 10.1002/adma.202103320] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Past research aimed at increasing the sensitivity of capacitive pressure sensors has mostly focused on developing dielectric layers with surface/porous structures or higher dielectric constants. However, such strategies have only been effective in improving sensitivities at low pressure ranges (e.g., up to 3 kPa). To overcome this well-known obstacle, herein, a flexible hybrid-response pressure sensor (HRPS) composed of an electrically conductive porous nanocomposite (PNC) laminated with an ultrathin dielectric layer is devised. Using a nickel foam template, the PNC is fabricated with carbon nanotubes (CNTs)-doped Ecoflex to be 86% porous and electrically conductive. The PNC exhibits hybrid piezoresistive and piezocapacitive responses, resulting in significantly enhanced sensitivities (i.e., more than 400%) over wide pressure ranges, from 3.13 kPa-1 within 0-1 kPa to 0.43 kPa-1 within 30-50 kPa. The effect of the hybrid responses is differentiated from the effect of porosity or high dielectric constants by comparing the HRPS with its purely piezocapacitive counterparts. Fundamental understanding of the HRPS and the prediction of optimal CNT doping are achieved through simplified analytical models. The HRPS is able to measure pressures from as subtle as the temporal arterial pulse to as large as footsteps.
Collapse
Affiliation(s)
- Kyoung-Ho Ha
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weiyi Zhang
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongwoo Jang
- Texas Material Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Seungmin Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Liu Wang
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, 78712, USA
| | - Philip Tan
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hochul Hwang
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, 78712, USA
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
35
|
Kim TG, Eom HS, Kim JH, Jung JK, Jang KS, Lee SJ. Electrically Conductive Silicone-Based Nanocomposites Incorporated with Carbon Nanotubes and Silver Nanowires for Stretchable Electrodes. ACS OMEGA 2021; 6:31876-31890. [PMID: 34870010 PMCID: PMC8638027 DOI: 10.1021/acsomega.1c04628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Stretchable electrode materials have attracted great attention as next-generation electronic materials because of their ability to maintain intrinsic properties with rare damage when undergoing repetitive deformations, such as folding, twisting, and stretching. In this study, an electrically conductive PDMS nanocomposite was manufactured by combining the hybrid nanofillers of carbon nanotubes (CNTs) and silver nanowires (AgNWs). The amphiphilic isopropyl alcohol molecules temporarily adhered simultaneously to the hydrophobic CNT and hydrophilic AgNW surfaces, thereby improving the dispersity. As the CNT/AgNW ratio (wt %/wt %) decreased under the constant nanofiller content, the tensile modulus decreased and the elongation at break increased owing to the poor interaction between the AgNWs and matrix. The shear storage moduli of all nanocomposites were higher than the loss moduli, indicating the elastic behavior with a cross-linked network. The electrical conductivities of the nanocomposite containing the hybrid nanofillers were superior to those of the nanocomposite containing either CNT or AgNW at the same filler content (4 wt %). The hybrid nanofillers were rearranged and deformed by 5000 cyclic strain tests, relaxing the PDMS matrix chain and weakening the interfacial bonding. However, the elastic behavior was maintained. The dynamic electrical conductivities gradually increased under the cyclic strain tests due to the rearrangement and tunneling effect of the nanofillers. The highest dynamic electrical conductivity (10 S/m) was obtained for the nanocomposite consisting of 2 wt % of CNTs and 2 wt % of AgNWs.
Collapse
Affiliation(s)
- Tae Gon Kim
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Hyeon Sik Eom
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Jong Hwi Kim
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
- NanoChemTech Inc., 112 Yangseong-ro, Yangseong-myeon, Anseong, Gyeonggi 17502, Republic of Korea
| | - Jik Kyo Jung
- NanoChemTech Inc., 112 Yangseong-ro, Yangseong-myeon, Anseong, Gyeonggi 17502, Republic of Korea
| | - Keon-Soo Jang
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| |
Collapse
|
36
|
Samimi Gharaie S, Seyfoori A, Khun Jush B, Zhou X, Pagan E, Godau B, Akbari M. Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering. Gels 2021; 7:240. [PMID: 34940299 PMCID: PMC8702023 DOI: 10.3390/gels7040240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogel-based bio-inks have been extensively used for developing three-dimensional (3D) printed biomaterials for biomedical applications. However, poor mechanical performance and the inability to conduct electricity limit their application as wearable sensors. In this work, we formulate a novel, 3D printable electro-conductive hydrogel consisting of silicate nanosheets (Laponite), graphene oxide, and alginate. The result generated a stretchable, soft, but durable electro-conductive material suitable for utilization as a novel electro-conductive bio-ink for the extrusion printing of different biomedical platforms, including flexible electronics, tissue engineering, and drug delivery. A series of tensile tests were performed on the material, indicating excellent stability under significant stretching and bending without any conductive or mechanical failures. Rheological characterization revealed that the addition of Laponite enhanced the hydrogel's mechanical properties, including stiffness, shear-thinning, and stretchability. We also illustrate the reproducibility and flexibility of our fabrication process by extrusion printing various patterns with different fiber diameters. Developing an electro-conductive bio-ink with favorable mechanical and electrical properties offers a new platform for advanced tissue engineering.
Collapse
Affiliation(s)
- Sadaf Samimi Gharaie
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Xiong Zhou
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, 2A, 44-100 Gliwice, Poland
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Kucherenko IS, Chen B, Johnson Z, Wilkins A, Sanborn D, Figueroa-Felix N, Mendivelso-Perez D, Smith EA, Gomes C, Claussen JC. Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Anal Bioanal Chem 2021; 413:6201-6212. [PMID: 34468795 DOI: 10.1007/s00216-021-03519-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/μM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Ivan S Kucherenko
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.,Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine
| | - Bolin Chen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Zachary Johnson
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | - Delaney Sanborn
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Emily A Smith
- Chemistry Department, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
38
|
Kanu NJ, Bapat S, Deodhar H, Gupta E, Singh GK, Vates UK, Verma GC, Pandey V. An Insight into Processing and Properties of Smart Carbon Nanotubes Reinforced Nanocomposites. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1972913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nand Jee Kanu
- Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Saurabh Bapat
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Harshad Deodhar
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Eva Gupta
- Electrical Engineering, ASET, Amity University, Noida, India
- Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, India
| | - Gyanendra Kumar Singh
- Mechanical Design and Manufacturing Engineering, Adama Science and Technology University, Adama, Ethiopia
| | | | - Girish C. Verma
- Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Vivek Pandey
- Thermal and Aerospace Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
39
|
Rdest M, Janas D. Carbon Nanotube Wearable Sensors for Health Diagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:5847. [PMID: 34502734 PMCID: PMC8433779 DOI: 10.3390/s21175847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
This perspective article highlights a recent surge of interest in the application of textiles containing carbon nanotube (CNT) sensors for human health monitoring. Modern life puts more and more pressure on humans, which translates into an increased number of various health disorders. Unfortunately, this effect either decreases the quality of life or shortens it prematurely. A possible solution to this problem is to employ sensors to monitor various body functions and indicate an upcoming disease likelihood at its early stage. A broad spectrum of materials is currently under investigation for this purpose, some of which already entered the market. One of the most promising materials in this field are CNTs. They are flexible and of high electrical conductivity, which can be modulated upon several forms of stimulation. The article begins with an illustration of techniques for how wearable sensors can be built from them. Then, their application potential for tracking various health parameters is presented. Finally, the article ends with a summary of this field's progress and a vision of the key directions to domesticate this concept.
Collapse
Affiliation(s)
- Monika Rdest
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd., Cambridge CB3 0FS, UK;
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
40
|
Li Z, Guo Y, Zong Y, Li K, Wang S, Cao H, Teng C. Ga Based Particles, Alloys and Composites: Fabrication and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2246. [PMID: 34578561 PMCID: PMC8471900 DOI: 10.3390/nano11092246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites. In this review, we intend to present an overview of the state-of-art protocols for the synthesis of Ga-based materials, to introduce their potential applications in the fields ranging from wearable electronics, energy storage batteries and energy harvesting devices to bio-applications, and to discuss challenges and opportunities in future studies.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yiming Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
| |
Collapse
|
41
|
Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting. Essays Biochem 2021; 65:441-466. [PMID: 34296738 DOI: 10.1042/ebc20210003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Existing methods of engineering alternatives to restore or replace damaged or lost tissues are not satisfactory due to the lack of suitable constructs that can fit precisely, function properly and integrate into host tissues. Recently, three-dimensional (3D) bioprinting approaches have been developed to enable the fabrication of pre-programmed synthetic tissue constructs that have precise geometries and controlled cellular composition and spatial distribution. New bioinks with electroconductive properties have the potential to influence cellular fates and function for directed healing of different tissue types including bone, heart and nervous tissue with the possibility of improved outcomes. In the present paper, we review the use of electroconductive biomaterials for the engineering of tissues via 3D printing and 3D bioprinting. Despite significant advances, there remain challenges to effective tissue replacement and we address these challenges and describe new approaches to advanced tissue engineering.
Collapse
|
42
|
Yetisgin AA, Sakar H, Bermek H, Trabzon L. Production of elastomer-based highly conductive hybrid nanocomposites and treatment with sulfuric acid. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As an elastomer, poly(dimethylsiloxane) (PDMS) is used in various applications such as wearable technology and sealants, and is especially preferred in microelectromechanical device production due to its advantage in fabrication of microstructures. However, some of its applications such as sensor-based or electrode-based are limited due to its insulator aspect. Various conductive nanomaterials such as carbon nanotubes (CNTs), graphene, graphite, carbon black, and silver nanoparticles were incorporated into the PDMS matrix for the production of conductive nanocomposites. In this study, we produced highly conductive PDMS nanocomposites by addition of multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in a three-dimensional network. Due to the synergistic effect between CNTs and GNPs inside a polymeric matrix, we expected to obtain PDMS nanocomposites more conductive than nanocomposites with only CNTs. Additionally, we investigated the effect of sulfuric acid treatment on the electrical conductivity and surface composition of prepared PDMS/MWCNT/GNP nanocomposites. Results indicated that the electrical conductivity in sulfuric acid-treated samples was significantly higher than in untreated samples. Levels of conductivity in the range of 270.7–1074.8 S/m were achieved; the higher ones were the samples treated with sulfuric acid solution.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences , Sabanci University , 34956 Istanbul , Turkey
| | - Hazal Sakar
- Nanotechnology Research and Application Center – ITUnano , Istanbul Technical University , 34469 Istanbul , Turkey
- Department of Nanoscience and Nanoengineering , Istanbul Technical University , 34469 Istanbul , Turkey
- MEMS Research Center , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Hakan Bermek
- Department of Molecular Biology and Genetics , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Levent Trabzon
- Nanotechnology Research and Application Center – ITUnano , Istanbul Technical University , 34469 Istanbul , Turkey
- Department of Nanoscience and Nanoengineering , Istanbul Technical University , 34469 Istanbul , Turkey
- MEMS Research Center , Istanbul Technical University , 34469 Istanbul , Turkey
- Faculty of Mechanical Engineering , Istanbul Technical University , 34437 Istanbul , Turkey
| |
Collapse
|
43
|
Low-Cost and Highly Sensitive Pressure Sensor with Mold-Printed Multi-Walled Carbon Nanotubes Dispersed in Polydimethylsiloxane. SENSORS 2021; 21:s21155069. [PMID: 34372305 PMCID: PMC8347260 DOI: 10.3390/s21155069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Flexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.13% kPa−1, 0–200 kPa) and sensitive up to 500 kPa. A new 3D-printed mold is developed to directly deposit the conductive polymer on the electrode structures, enabling sensor thicknesses as small as 100 μm.
Collapse
|
44
|
Thiyagarajan K, Rajini GK, Maji D. Flexible, Highly Sensitive Paper-Based Screen Printed MWCNT/PDMS Composite Breath Sensor for Human Respiration Monitoring. IEEE SENSORS JOURNAL 2021; 21:13985-13995. [PMID: 35789076 PMCID: PMC8768993 DOI: 10.1109/jsen.2020.3040995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/14/2023]
Abstract
Accurate measurement and monitoring of respiration is vital in patients affected by severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2). Patients with severe chronic diseases and pneumonia need continuous respiration monitoring and oxygenation support. Existing respiratory sensing techniques require direct contact with the human body along with expensive and heavy Holter monitors for continuous real-time monitoring. In this work, we propose a low-cost, non-invasive and reliable paper-based wearable screen printed sensor for human respiration monitoring as an effective alternative of existing sensing systems. The proposed sensor was fabricated using traditional screen printing of multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite based interdigitated electrodes on paper substrate. The paper substrate was used as humidity sensing material of the sensor. The hygroscopic nature of paper during inhalation and exhalation causes a change in dielectric constant, which in turn changes the capacitance of the sensor. The composite interdigitated electrode configuration exhibited better response times with a rise time of 1.178s being recorded during exhalation and fall time of 0.88s during inhalation periods. The respiration rate of sensor was successfully examined under various breathing conditions such as normal breathing, deep breathing, workout, oral breathing, nasal breathing, fast breathing and slow breathing by employing it in a wearable mask, a mandatory wearable product during the current COVID-19 pandemic situation.Thus, the above proposed sensor may hold tremendous potential in wearable/flexible healthcare technology with good sensitivity, stability, biodegradability and flexibility at this time of need.
Collapse
Affiliation(s)
- K. Thiyagarajan
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - G. K. Rajini
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - Debashis Maji
- Department of Sensor and Biomedical TechnologySchool of Electronics EngineeringVellore Institute of TechnologyVellore632 014India
| |
Collapse
|
45
|
Wang S, Chen G, Yao B, Chee AJY, Wang Z, Du P, Qu S, Yu ACH. In Situ and Intraoperative Detection of the Ureter Injury Using a Highly Sensitive Piezoresistive Sensor with a Tunable Porous Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21669-21679. [PMID: 33929181 DOI: 10.1021/acsami.0c22791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iatrogenic ureteral injury, as a commonly encountered problem in gynecologic, colorectal, and pelvic surgeries, is known to be difficult to detect in situ and in real-time. Consequently, this injury may be left untreated, thereby leading to serious complications such as infections, renal failure, or even death. Here, high-performance tubular porous pressure sensors were proposed to identify the ureter in situ intraoperatively. The electrical conductivity, mechanical compressibility, and sensor sensitivity can be tuned by changing the pore structure of porous conductive composites. A low percolation threshold of 0.33 vol % was achieved due to the segregated conductive network by pores. Pores also lead to a low effective Young's modulus and high compressibility of the composites and thus result in a high sensitivity of 448.2 kPa-1 of sensors, which is consistent with the results of COMSOL simulation. Self-mounted on the tip of forceps, the sensors can monitor tube pressures with different frequencies and amplitudes, as demonstrated using an artificial pump system. The sensors can also differentiate ureter pulses from aorta pulses of a Bama minipig in situ and in real-time. This work provides a facile, cost-effective, and nondestructive method to identify the ureter intraoperatively, which cannot be effectively achieved by traditional methods.
Collapse
Affiliation(s)
- Shan Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guorui Chen
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing Yao
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Zongrong Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piyi Du
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shaoxing Qu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
46
|
Wang S, Cheng H, Yao B, He H, Zhang L, Yue S, Wang Z, Ouyang J. Self-Adhesive, Stretchable, Biocompatible, and Conductive Nonvolatile Eutectogels as Wearable Conformal Strain and Pressure Sensors and Biopotential Electrodes for Precise Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20735-20745. [PMID: 33900075 DOI: 10.1021/acsami.1c04671] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conductive stretchable hydrogels and ionogels consisting of ionic liquids can have interesting application as wearable strain and pressure sensors and bioelectrodes due to their soft nature and high conductivity. However, hydrogels have a severe stability problem because of water evaporation, whereas ionogels are not biocompatible or even toxic. Here, we demonstrate self-adhesive, stretchable, nonvolatile, and biocompatible eutectogels that can always form conformal contact to skin even during body movement along with their application as wearable strain and pressure sensors and biopotential electrodes for precise health monitoring. The eutectogels consist of a deep eutectic solvent that has high conductivity, waterborne polyurethane that is an elastomer, and tannic acid that is an adhesive. They can have an elongation at a break of 178%, ionic conductivity of 0.22 mS/cm, and adhesion force of 12.5 N/m to skin. They can be used as conformal strain sensors to accurately monitor joint movement and breath. They can be even used as pressure sensors with a piezoresistive sensitivity of 284.4 kPa-1 to precisely detect subtle physical movements like arterial pulses, which can provide vital cardiovascular information. Moreover, the eutectogels can be used as nonvolatile conformal electrodes to monitor epidermal physiological signals, such as electrocardiogram (ECG) and electromyogram (EMG).
Collapse
Affiliation(s)
- Shan Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Bing Yao
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Lei Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Shizhong Yue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Zongrong Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| |
Collapse
|
47
|
Diekmann A, Omelan MCV, Giese U. Influence of Carbon Nanotube-Pretreatment on the Properties of Polydimethylsiloxane/Carbon Nanotube-Nanocomposites. Polymers (Basel) 2021; 13:polym13091355. [PMID: 33919258 PMCID: PMC8122666 DOI: 10.3390/polym13091355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Incorporating nanofillers into elastomers leads to composites with an enormous potential regarding their properties. Unfortunately, nanofillers tend to form agglomerates inhibiting adequate filler dispersion. Therefore, different carbon nanotube (CNT) pretreatment methods were analyzed in this study to enhance the filler dispersion in polydimethylsiloxane (PDMS)/CNT-composites. By pre-dispersing CNTs in solvents an increase in electrical conductivity could be observed within the sequence of tetrahydrofuran (THF) > acetone > chloroform. Optimization of the pre-dispersion step results in an AC conductivity of 3.2 × 10−4 S/cm at 1 Hz and 0.5 wt.% of CNTs and the electrical percolation threshold is decreased to 0.1 wt.% of CNTs. Optimum parameters imply the use of an ultrasonic finger for 60 min in THF. However, solvent residues cause a softening effect deteriorating the mechanical performance of these composites. Concerning the pretreatment of CNTs by physical functionalization, the use of surfactants (sodium dodecylbenzenesulfonate (SDBS) and polyoxyethylene lauryl ether (“Brij35”)) leads to no improvement, neither in electrical conductivity nor in mechanical properties. Chemical functionalization enhances the compatibility of PDMS and CNT but damages the carbon nanotubes due to the oxidation process so that the improvement in conductivity and reinforcement is superimposed by the CNT damage even for mild oxidation conditions.
Collapse
|
48
|
Garcia J, O’Suilleabhain D, Kaur H, Coleman JN. A Simple Model Relating Gauge Factor to Filler Loading in Nanocomposite Strain Sensors. ACS APPLIED NANO MATERIALS 2021; 4:2876-2886. [PMID: 35224456 PMCID: PMC8862007 DOI: 10.1021/acsanm.1c00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
Conductive nanocomposites are often piezoresistive, displaying significant changes in resistance upon deformation, making them ideal for use as strain and pressure sensors. Such composites typically consist of ductile polymers filled with conductive nanomaterials, such as graphene nanosheets or carbon nanotubes, and can display sensitivities, or gauge factors, which are much higher than those of traditional metal strain gauges. However, their development has been hampered by the absence of physical models that could be used to fit data or to optimize sensor performance. Here we develop a simple model which results in equations for nanocomposite gauge factors as a function of both filler volume fraction and composite conductivity. These equations can be used to fit experimental data, outputting figures of merit, or predict experimental data once certain physical parameters are known. We have found these equations to match experimental data, both measured here and extracted from the literature, extremely well. Importantly, the model shows the response of composite strain sensors to be more complex than previously thought and shows factors other than the effect of strain on the interparticle resistance to be performance limiting.
Collapse
Affiliation(s)
- James
R. Garcia
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2, Ireland
| | - Domhnall O’Suilleabhain
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2, Ireland
| | - Harneet Kaur
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2, Ireland
| | - Jonathan N. Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2, Ireland
- . Tel.: +353 (0) 1 8963859
| |
Collapse
|
49
|
Baek DH, Jung H, Kim JH, Park YW, Kim DW, Kim HS, Ahn S, Kim YJ. Effect of Viscosity on the Formation of Porous Polydimethylsiloxane for Wearable Device Applications. Molecules 2021; 26:molecules26051471. [PMID: 33800473 PMCID: PMC7962963 DOI: 10.3390/molecules26051471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022] Open
Abstract
Medical devices, which enhance the quality of life, have experienced a gradual increase in demand. Various research groups have attempted to incorporate soft materials such as skin into wearable devices. We developed a stretchable substrate with high elasticity by forming a porous structure on polydimethylsiloxane (PDMS). To optimize the porous structure, we propose a manufacturing process that utilizes a high-pressure steam with different viscosities (400, 800, 2100, and 3000 cP) of an uncured PDMS solution. The proposed method simplifies the manufacturing of porous structures and is cost-effective compared to other technologies. Porous structures of various viscosities were formed, and their electrical and mechanical properties evaluated. Porous PDMS (3000 cP) was formed in a sponge-like three-dimensional porous structure, compared to PDMS formed by other viscosities. The elongation of porous PDMS (3000 cP) was increased by up to 30%, and the relative resistance changed to less than 1000 times with the maximum strain test. The relative resistance increased the initial resistance (R0) by approximately 10 times during the 1500-times repeated cycling tests with 30% strain. As a result, patch-type wearable devices based on soft materials can provide an innovative platform that can connect with the human skin for robotics applications and for continuous health monitoring.
Collapse
Affiliation(s)
- Dong-Hyun Baek
- Department of Display/Semiconductor Engineering, College of Engineering, Sunmoon University, Asan-si 31406, Korea; (D.-H.B.); (Y.W.P.); (D.W.K.); (H.S.K.); (S.A.)
- Center for Next-Generation Semiconductor Technology, Sunmoon University, Asan-si 31406, Korea
| | - Hachul Jung
- Integrated Medical Technology Team, Department of Research & Development, Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea; (H.J.); (J.H.K.)
| | - Jeong Hun Kim
- Integrated Medical Technology Team, Department of Research & Development, Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea; (H.J.); (J.H.K.)
| | - Young Wook Park
- Department of Display/Semiconductor Engineering, College of Engineering, Sunmoon University, Asan-si 31406, Korea; (D.-H.B.); (Y.W.P.); (D.W.K.); (H.S.K.); (S.A.)
| | - Dae Wook Kim
- Department of Display/Semiconductor Engineering, College of Engineering, Sunmoon University, Asan-si 31406, Korea; (D.-H.B.); (Y.W.P.); (D.W.K.); (H.S.K.); (S.A.)
| | - Ho Seob Kim
- Department of Display/Semiconductor Engineering, College of Engineering, Sunmoon University, Asan-si 31406, Korea; (D.-H.B.); (Y.W.P.); (D.W.K.); (H.S.K.); (S.A.)
- Center for Next-Generation Semiconductor Technology, Sunmoon University, Asan-si 31406, Korea
| | - Seungjoon Ahn
- Department of Display/Semiconductor Engineering, College of Engineering, Sunmoon University, Asan-si 31406, Korea; (D.-H.B.); (Y.W.P.); (D.W.K.); (H.S.K.); (S.A.)
| | - Young-Jin Kim
- Integrated Medical Technology Team, Department of Research & Development, Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea; (H.J.); (J.H.K.)
- Correspondence: ; Tel.: +82-43-200-9699
| |
Collapse
|
50
|
Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8871-8879. [PMID: 33588524 DOI: 10.1021/acsami.1c00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ever-growing bridge between stretchable electronic devices and wearable healthcare applications constitutes a significant challenge for discovery of novel materials for ultrasensitive wide-range healthcare monitoring. Herein, we propose a simplistic, amenable, cost-effective method for synthesis of a vertically aligned carbon nanotube (VACNT)/poly(dimethylsiloxane) (PDMS) thin-film composite structure for robust stretchable sensors with a full range of human motion and multimode mechanical stimuli detection functionalities. Notably, the sensor features the best reported response of carbon nanotube (CNT)-based sensors with extensive multiscale healthcare monitoring of subtle and vigorous ambulations ranging from 0.004 up to 30% strain deformations, coupled with an exceptionally high gauge factor of 6436.8 (at 30% strain), super-fast response time of 12 ms, recovery time of 19 ms, ultrasensitive loading sensing, and an excellent reproducibility over 10 000 cycles. The sensor evinces distinctive electromechanical performances and reliability in real time for motions like wrist pulsing, frowning, gulping, balloon inflation, finger bending, wrist bending, bending, twisting, gentle tapping, and rolling. Therefore, the VACNT/PDMS thin-film sensor reveals the ability to be a propitious candidate for e-skin and advanced wearable electronics.
Collapse
Affiliation(s)
- Sharon J Paul
- Department of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
- Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Indu Elizabeth
- Force and Hardness Metrology Sub Division, Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Bipin Kumar Gupta
- Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012, India
| |
Collapse
|