1
|
Li M, Gou D, Gong P, Di W, Wang L, Ding J, Chang Y, Zuo R. An Investigation on the Effects of Dietary Vitamin E on Juvenile Sea Urchin ( Strongylocentrotus intermedius): Growth, Intestinal Microbiota, Immune Response, and Related Gene Expression. BIOLOGY 2023; 12:1523. [PMID: 38132349 PMCID: PMC10740812 DOI: 10.3390/biology12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
A 90 d feeding experiment was conducted to investigate the effects of vitamin E (VE) on growth, intestinal microbiota, immune response, and related gene expression of juvenile sea urchin (Strongylocentrotus intermedius). Six dry feeds were made to contain graded levels of VE (78, 105, 152, 235, 302, and 390 mg/kg); these were named E78, E105, E152, E235, E302, and E390, respectively. Dry feed E50 and fresh kelp (HD) were used as the control diets. There were six replicates of cages in each dietary group, and each cage held 20 sea urchins with an initial body weight of approximately 1.50 g. Results exhibited that weight gain rate and gonadosomatic index (GSI) of the sea urchins were not significantly affected by dietary VE ranging from 78 to 390 mg/kg. Sea urchins in the dry feed groups showed poorer growth performance, but significantly higher GSI than those in the fresh kelp groups. The pepsin and lipase activities were not significantly promoted by low or moderate VE, but were inhibited by a high level of VE (302-390 mg/kg), while amylase and cellulase activities were significantly increased by low or moderate VE, with the highest values observed in the E105 and E235 groups, respectively. VE addition at a low dosage (105-152 mg/kg) showed inhibitory effects on immune and antioxidant enzyme activities and expression of inflammation-related genes, but showed no beneficial effects at moderate or high dosage (235-390 mg/kg), while a moderate or relatively higher level of VE (235-302 mg/kg) significantly increased the expression of several immune-related genes. The relative abundance of Proteobacteria, Actinobacteria, Ruegeria, and Maliponia in the intestine of the sea urchins increased with the increase in VE in the dry feeds. On the contrary, the relative abundance of the Firmicutes, Bacteroidetes, Escherichia-Shigella, Bacteroides, and Clostridium sensu stricto 1 gradually decreased as VE content increased. These results indicated that a moderate level of VE (172.5-262.4) can achieve ideal digestive enzyme activities and growth performance, but a relatively higher level of VE (235-302 mg/kg) was beneficial for maintaining the immune and antioxidant capacity of juvenile S. intermedius by regulating the expression of inflammation- and immune-related genes and abundance of some bacteria to a healthy state.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
- Department of Marine Biology, Weihai Ocean Vocational College, Weihai 264300, China
| | - Dan Gou
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Panke Gong
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Weixiao Di
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Lina Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Rantao Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| |
Collapse
|
2
|
Di W, Heqiu Y, Gou D, Gong P, Ding J, Chang Y, Zuo R. Effects of Supplementary Kelp Feeding on the Growth, Gonad Yield, and Nutritional and Organoleptic Quality of Subadult Sea Urchin ( Strongylocentrotus intermedius) with Soya Lecithin Intake History. AQUACULTURE NUTRITION 2023; 2023:8894923. [PMID: 38023983 PMCID: PMC10667049 DOI: 10.1155/2023/8894923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
A 23-week feeding experiment was conducted to investigate the effects of supplementary kelp feeding on the growth, gonad development, and nutritional and sensory properties of sea urchin (Strongylocentrotus intermedius) with soya lecithin (SL) intake history. The feeding experiment was divided into experimental phase I and phase II. During phase I, 48 subadult sea urchins (initial weight: 6.28 ± 0.07 g) were fed one of the feeds with different levels of SL (0%, 1.6%, 3.2%) or kelp (Saccharina japonica) for 12 weeks. Then, all sea urchins were fed kelp for the next 11 weeks during the phase II. Each diet was randomly allocated to six cages of sea urchins. The results of phase I showed that weight gain rate (WGR), gonadosomatic index (GSI), gonad sensory properties (color and texture), and essential amino acid (EAA) contents were not significantly affected by SL level in the feed groups. High level (3.2%) of SL suppressed gonad development of S. intermedius with retarded gametogenesis in the 3.2% SL group (stage Ⅱ) compared to those fed 0% and 1.6% SL groups (stage Ⅲ). Sea urchins fed dry feeds exhibited significantly lower WGR and values of color (redness and yellowness) and texture (hardness and gumminess) but higher contents of EAA in the gonads than those fed kelp. The n-3/n-6 polyunsaturated fatty acid (PUFA) and eicosapentaenoic acid (EPA) of gonads in the groups fed with dry feeds showed no significant differences, but were significantly lower than that of kelp group. At the end of phase II, the gonad yellowness and EPA content of gonads in all dry feed groups were significantly increased by supplementary kelp feeding, with a higher increase observed in S. intermedius with SL intake history, while arachidonic acid (ARA) content was significantly improved by supplementary kelp feeding in S. intermedius with SL intake history. Gonad texture was improved to some extent by supplementary kelp feeding. These results indicated that S. intermedius fed dry feeds showed significantly higher GSI and EAA but poorer organoleptic quality and lower n-3/n-6 PUFA and EPA than those fed kelp. Kelp supplementary feeding improved the fatty acid value and organoleptic quality of gonads, especially for the sea urchins with SL intake history.
Collapse
Affiliation(s)
- Weixiao Di
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Yuqing Heqiu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Dan Gou
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Panke Gong
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| | - Rantao Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Cui Y, Fan B, Xu X, Sheng S, Xu Y, Wang X. A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia. Front Genet 2022; 12:802738. [PMID: 35132310 PMCID: PMC8817757 DOI: 10.3389/fgene.2021.802738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Baolian Fan
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Xu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
He P, Wei P, Ma Y, Hu S, Yao J, Jiang X, Xu Y, Zhu P, Wei M, Jiang W, Peng J. Candidate sex-associated gene identification in Trachinotus ovatus (Carangidae) using an integrated SLAF-seq and bulked segregant analysis approach. Gene 2022; 809:146026. [PMID: 34687789 DOI: 10.1016/j.gene.2021.146026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
It is difficult to distinguish the sexes of Trachinotus ovatus based on appearance, and little data about sex-determining genes are available for this species. Here, we generated 200 F2 individuals using the parents R404 and R403. DNA samples were collected from 50 individuals of each sex and aggregated into sex-specific DNA pools. Specific-locus amplified fragment sequencing was integrated with bulked segregant analysis to detect candidate sex-associated genes. Approximately 3,153,153 high-quality single-nucleotide polymorphism (SNP) markers and 135,363 high-quality insertion-deletion (Indel) markers were generated. Six candidate regions within chromosome 14, encompassing 132 candidate genes, were identified as closely related to sex. Based on annotations, six genes (EVM0019817, EVM0004192, EVM0001445, EVM0005260, EVM0014734, and EVM0009626) were predicted to be closely associated with sex. These results present an efficient genetic mapping approach that lays a foundation for molecular sex discrimination in T. ovatus.
Collapse
Affiliation(s)
- Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Yuan Ma
- Beibu Gulf University, Qinzhou 535000, China
| | - Shenhua Hu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Jiuxiang Yao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Xiaozhen Jiang
- Guangxi Agricultural Vocational College, Nanning 530007, China
| | - Youhou Xu
- Beibu Gulf University, Qinzhou 535000, China
| | - Peng Zhu
- Beibu Gulf University, Qinzhou 535000, China
| | - Mingli Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Weiming Jiang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| |
Collapse
|
5
|
Wang D, Yang L, Shi C, Li S, Tang H, He C, Cai N, Duan A, Gong H. QTL mapping for growth-related traits by constructing the first genetic linkage map in Simao pine. BMC PLANT BIOLOGY 2022; 22:48. [PMID: 35065611 PMCID: PMC8783431 DOI: 10.1186/s12870-022-03425-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/04/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Simao pine is one of the primary economic tree species for resin and timber production in southwest China. The exploitation and utilization of Simao pine are constrained by the relatively lacking of genetic information. Construction a fine genetic linkage map and detecting quantitative trait locis (QTLs) for growth-related traits is a prerequisite section of Simao Pine's molecular breeding program. RESULTS In our study, a high-resolution Simao pine genetic map employed specific locus amplified fragment sequencing (SLAF-seq) technology and based on an F1 pseudo-testcross population has been constructed. There were 11,544 SNPs assigned to 12 linkage groups (LGs), and the total length of the map was 2,062.85 cM with a mean distance of 0.37 cM between markers. According to the phenotypic variation analysis for three consecutive years, a total of seventeen QTLs for four traits were detected. Among 17 QTLs, there were six for plant height (Dh.16.1, Dh16.2, Dh17.1, Dh18.1-3), five for basal diameter (Dbd.17.1-5), four for needle length (Dnl17.1-3, Dnl18.1) and two for needle diameter (Dnd17.1 and Dnd18.1) respectively. These QTLs individually explained phenotypic variance from 11.0-16.3%, and the logarithm of odds (LOD) value ranged from 2.52 to 3.87. CONCLUSIONS In our study, a fine genetic map of Simao pine applied the technology of SLAF-seq has been constructed for the first time. Based on the map, a total of 17 QTLs for four growth-related traits were identified. It provides helpful information for genomic studies and marker-assisted selection (MAS) in Simao pine.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Chen Shi
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Siguang Li
- Yunnan Academy of Forestry, Kunming, China
| | - Hongyan Tang
- Puer City Institute of Forestry Sciences, Puer, China
| | - Chengzhong He
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Anan Duan
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Hede Gong
- School of Geography, Southwest Forestry University, Kunming, China.
| |
Collapse
|
6
|
Fang H, Liu H, Ma R, Liu Y, Li J, Yu X, Zhang H, Yang Y, Zhang G. Genome-wide assessment of population structure and genetic diversity of Chinese Lou onion using specific length amplified fragment (SLAF) sequencing. PLoS One 2020; 15:e0231753. [PMID: 32369481 PMCID: PMC7199963 DOI: 10.1371/journal.pone.0231753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
Lou onion (Allium fistulosum L. var. viviparum) is an abundant source of flavonols which provides additional health benefits to diseases. Genome-wide specific length amplified fragment (SLAF) sequencing method is a rapidly developed deep sequencing technologies used for selection and identification of genetic loci or markers. This study aimed to elucidate the genetic diversity of 122 onion accessions in China using the SLAF-seq method. A set of 122 onion accessions including 107 A.fistulosum L. var. viviparum Makino, 3 A.fistulosum L. var. gigantum Makino, 3 A.mongolicum Regel and 9 A.cepa L. accessions (3 whites, 3 reds and 3 yellows) from different regions in China were enrolled. Genomic DNA was isolated from young leaves and prepared for the SLAF-seq, which generated a total of 1,387.55 M reads and 162,321 high quality SNPs (integrity >0.5 and MAF >0.05). These SNPs were used for the construction of neighbor-joining phylogenetic tree, in which 10 A.fistulosum L. var. viviparum Makino accessions from Yinchuan (Ningxia province) and Datong (Qinghai province) had close genetic relationship. The 3 A.cepa L. clusters (red, white and yellow) had close genetic relationship especially with the 97 A.fistulosum L. var. viviparum Makino accessions. Population structure analysis suggested entire population could be clustered into 3 groups, while principal component analysis (PCA) showed there were 4 genetic groups. We confirmed the SLAF-seq approach was effective in genetic diversity analysis in red onion accessions. The key findings would provide a reference to the Lou onion germplasm in China.
Collapse
Affiliation(s)
- Haitian Fang
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
- * E-mail: (HF); (GZ)
| | - Huiyan Liu
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Ruoshuang Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Yuxuan Liu
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Jinna Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Xiaoyan Yu
- Technological Innovation Center of Protected Horticulture (Ningxia University) in Ningxia, Yinchuan, China
- Technological Innovation center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, China
| | - Haoyu Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Yali Yang
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Guangdi Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
- Technological Innovation Center of Protected Horticulture (Ningxia University) in Ningxia, Yinchuan, China
- Technological Innovation center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, China
- * E-mail: (HF); (GZ)
| |
Collapse
|
7
|
Wen Y, Fang Y, Hu P, Tan Y, Wang Y, Hou L, Deng X, Wu H, Zhu L, Zhu L, Chen G, Zeng D, Guo L, Zhang G, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Xue D, Qian Q, Hu J. Construction of a High-Density Genetic Map Based on SLAF Markers and QTL Analysis of Leaf Size in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1143. [PMID: 32849702 PMCID: PMC7411225 DOI: 10.3389/fpls.2020.01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 05/02/2023]
Abstract
Leaf shape is an important agronomic trait for constructing an ideal plant type in rice, and high-density genetic map is facilitative in improving accuracy and efficiency for quantitative trait loci (QTL) analysis of leaf trait. In this study, a high-density genetic map contained 10,760 specific length amplified fragment sequencing (SLAF) markers was established based on 149 recombinant inbred lines (RILs) derived from the cross between Rekuangeng (RKG) and Taizhong1 (TN1), which exhibited 1,613.59 cM map distance with an average interval of 0.17 cM. A total of 24 QTLs were detected and explained the phenotypic variance ranged from 9% to 33.8% related to the leaf morphology across two areas. Among them, one uncloned major QTL qTLLW1 (qTLL1 and qTLLW1) involved in regulating leaf length and leaf width with max 33.8% and 22.5% phenotypic variance respectively was located on chromosome 1, and another major locus qTLW4 affecting leaf width accounted for max 25.3% phenotypic variance was mapped on chromosome 4. Fine mapping and qRT-PCR expression analysis indicated that qTLW4 may be allelic to NAL1 (Narrow leaf 1) gene.
Collapse
Affiliation(s)
- Yi Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Linlin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xuemei Deng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| |
Collapse
|
8
|
Wei J, Chen Y, Wang W. A High-Density Genetic Linkage Map and QTL Mapping for Sex and Growth-Related Traits of Large-Scale Loach ( Paramisgurnus dabryanus). Front Genet 2019; 10:1023. [PMID: 31708968 PMCID: PMC6823184 DOI: 10.3389/fgene.2019.01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Large-scale loach (Paramisgurnus dabryanus) is a commercially important species in East Asia; however, the cultured population that exhibited degradation of germplasm resource cannot meet the market needs, and the genome resources for P. dabryanus are still lacking. In this study, the first high-density genetic map of P. dabryanus was constructed using 15,830 SNP markers based on high-throughput sequencing with an improved SLAF-seq strategy. The quantitative trait locus (QTL) mapping for sex, growth, and morphology traits was performed for the first time. The genetic map spanned 4,657.64 cM in length with an average inter-marker distance of 0.30 cM. QTL mapping and association analysis identified eight QTLs of growth traits, nine QTLs of morphology traits, and five QTLs of sex-related traits, respectively. Interestingly, the most significant QTLs for almost all the traits were concentrated on the same linkage group LG11. Seven candidate markers and 12 potentially key genes, which were associated with sex determination and growth, were identified within the overlapped QTL regions on LG11. Further, the first genome survey analysis of P. dabryanus was performed which represents the first step toward fully decoding the P. dabryanus genome. The genome scaffolds were anchored to the high-density linkage map, spanning 960.27 Mb of P. dabryanus reference genome. The collinearity analysis revealed a high level of collinearity between the genetic map and the reference genome of P. dabryanus. Moreover, a certain degree of homology was observed between large-scale loach and zebrafish using comparative genomic analysis. The constructed high-density genetic map was an important basis for QTL fine mapping, genome assembly, and genome comparison. The present study will provide a valuable resource for future marker-assisted breeding, and further genetic and genomic researches in P. dabryanus.
Collapse
Affiliation(s)
- Jin Wei
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Chen
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Zhao J, Xu Y, Li H, Yin Y, An W, Li Y, Wang Y, Fan Y, Wan R, Guo X, Cao Y. A SNP-Based High-Density Genetic Map of Leaf and Fruit Related Quantitative Trait Loci in Wolfberry ( Lycium Linn.). FRONTIERS IN PLANT SCIENCE 2019; 10:977. [PMID: 31440266 PMCID: PMC6693522 DOI: 10.3389/fpls.2019.00977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
Wolfberry (Lycium Linn. 2n = 24) fruit, Gouqizi, is a perennial shrub, traditional food and medicinal plant resource in China. Leaf and fruit related characteristics are economically important traits that are the focus for genetic improvement, but few studies into the molecular genetics of this crop have been reported to date. Here, an F1 population (302 individuals) derived from a cross between "NO.1 Ningqi" (Lycium barbarum L.) and "Chinese gouqi" (Lycium chinese Mill.) was constructed. We recorded fruit weight, longitude, diameter and index along with leaf length, width and index for three consecutive years from 2015 to 2017. Based on this population and these phenotypic data, we constructed the first high-density genetic map of Lycium using specific length amplified fragment sequencing (SLAF-seq) and analyzed quantitative trait loci (QTLs). The map contains 6733 single nucleotide polymorphisms and 12 linkage groups (LG) with a total map distance of 1702.45 cM and an average map distance of 0.253 cM. A total of 55 QTLs were mapped for more than 2 years, of which 18 stable QTLs for fruit index on LG 11, spanning an interval of 73.492-90.945 cM, were detected. qFI11-15 for fruit index was an impressive QTL with logarithm of odds (LOD) and proportion of variance explained (PEV) values reaching 11.07 and 19.7%, respectively. The QTLs on LG 11 were gathered tightly, having an average interval of less than 1 cM per QTL, suggesting that there might be a cluster region controlling fruit index. Remarkably, qLI10-2 and qLI11-2 for leaf index were detectable for 3 years. These results give novel insight into the genetic control of leaf and fruit related traits in Lycium and provide robust support for undertaking further positional cloning studies and implementing marker-assisted selection in seedlings.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yuhui Xu
- Biomarker Technology Corporation, Beijing, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yanlong Li
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yunfang Fan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Ru Wan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xin Guo
- Biomarker Technology Corporation, Beijing, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
10
|
Zhang W, Lv Z, Li C, Sun Y, Jiang H, Zhao M, Zhao X, Shao Y, Chang Y. Transcriptome profiling reveals key roles of phagosome and NOD-like receptor pathway in spotting diseased Strongylocentrotus intermedius. FISH & SHELLFISH IMMUNOLOGY 2019; 84:521-531. [PMID: 30342081 DOI: 10.1016/j.fsi.2018.10.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Spotting disease is a common disease in the process of aquaculture and restocking of the sea urchin Strongylocentrotus intermedius and leads to mass mortality. To characterize the molecular processes and candidate genes related to spotting disease in S. intermedius, we conducted next-generation sequencing to assess the key genes/pathways in spotting diseased sea urchin (DUG) compared to healthy ones (HUG). A total of 321.1 million clean reads were obtained and assembled into 93,877 Unigenes with an N50 of 1185 bp, in which 86.48% of them matched to the genome sequence of the sea urchin S. purpuratus and 27,456 Unigenes mapped to Nr database. Salmon expression analysis revealed 1557 significantly differently expressed genes (DEGs) between DUG and HUG. These DEGs were enriched into 151 KEGG pathways including a core set of immune correlated pathways notably in phagosome and NOD-like receptor signaling. DUG displayed an obvious downregulation in these immune pathways. The expression patterns of six DEGs were confirmed by RT-qPCR, and the expressions were consistent with the results of RNA-seq. Furthermore, 15,990 SSRs were identified and a total of 235,249 and 295,567 candidate SNPs were identified from DUG and HUG, respectively. All these results provided basic information for our understanding of spotting disease outbreak in sea urchin.
Collapse
Affiliation(s)
- Weijie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, PR China
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China.
| | - Yahui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, PR China
| | - Huijie Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, PR China
| | - Manxi Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, PR China.
| |
Collapse
|