1
|
Li J, Zhang B, Li Y, Liu C, Tang X, Zhao J, Pei X, Li Y. Serine Hydroxymethyltransferase 2 Deficiency in the Hematopoietic System Disrupts Erythropoiesis and Induces Anemia in Murine Models. Int J Mol Sci 2024; 25:11072. [PMID: 39456851 PMCID: PMC11508403 DOI: 10.3390/ijms252011072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Serine and folate metabolism play critical roles in erythroid development in both embryonic and adult mice; however, the precise roles of these metabolic pathways in erythropoiesis and the pathophysiology of anemia remain inadequately characterized in the literature. To delineate the contributions of serine and folate metabolism to erythroid differentiation, we focused on serine hydroxymethyltransferase 2 (SHMT2), a key regulatory enzyme within these metabolic pathways. Using gene-editing techniques, we created fetal and adult mouse models with targeted deletion of Shmt2 in the hematopoietic system. Our findings demonstrated that the deletion of Shmt2 within the hematopoietic system led to the distinctive anemia phenotype in both fetal and adult mice. Detailed progression analysis of anemia revealed that Shmt2 deletion exerts stage-specific effects on the development and maturation of erythroid cells. Specifically, Shmt2 deficiency promoted erythroid differentiation in the R2 (CD71+ Ter119-) cell population residing in the bone marrow while concurrently inhibiting the proliferation and erythroid differentiation of the R3 (CD71+ Ter119+) cell population. This disruption resulted in developmental arrest at the R3 stage, significantly contributing to the anemia phenotype observed in the models. This study elucidates the critical role of Shmt2 in erythroid development within the hematopoietic system, highlighting the underlying mechanisms of erythroid developmental arrest associated with Shmt2 loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuetao Pei
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.L.); (B.Z.); (Y.L.); (C.L.); (X.T.); (J.Z.)
| | - Yanhua Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.L.); (B.Z.); (Y.L.); (C.L.); (X.T.); (J.Z.)
| |
Collapse
|
2
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Song L, Pan Q, Zhou G, Liu S, Zhu B, Lin P, Hu X, Zha J, Long Y, Luo B, Chen J, Tang Y, Tang J, Xiang X, Xie X, Deng X, Chen G. SHMT2 Mediates Small-Molecule-Induced Alleviation of Alzheimer Pathology Via the 5'UTR-dependent ADAM10 Translation Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305260. [PMID: 38183387 PMCID: PMC10953581 DOI: 10.1002/advs.202305260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/27/2023] [Indexed: 01/08/2024]
Abstract
It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.
Collapse
Affiliation(s)
- Li Song
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qiu‐Ling Pan
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Gui‐Feng Zhou
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Sheng‐Wei Liu
- Department of PharmacyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Bing‐Lin Zhu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Pei‐Jia Lin
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Tong Hu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Health ManagementDaping HospitalArmy Medical universityChongqing400042China
| | - Jing‐Si Zha
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Internal MedicineThe Southwest University HospitalChongqing400715China
| | - Yan Long
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Geriatric MedicineDaping HospitalArmy Medical universityChongqing400042China
| | - Biao Luo
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jian Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jing Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Jiao Xiang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiao‐Yong Xie
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Juan Deng
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo‐Jun Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
4
|
Chen G, Zhou G, Zhai L, Bao X, Tiwari N, Li J, Mottillo E, Wang J. SHMT2 reduces fatty liver but is necessary for liver inflammation and fibrosis in mice. Commun Biol 2024; 7:173. [PMID: 38347107 PMCID: PMC10861579 DOI: 10.1038/s42003-024-05861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Non-alcoholic fatty liver disease is associated with an irregular serine metabolism. Serine hydroxymethyltransferase 2 (SHMT2) is a liver enzyme that breaks down serine into glycine and one-carbon (1C) units critical for liver methylation reactions and overall health. However, the contribution of SHMT2 to hepatic 1C homeostasis and biological functions has yet to be defined in genetically modified animal models. We created a mouse strain with targeted SHMT2 knockout in hepatocytes to investigate this. The absence of SHMT2 increased serine and glycine levels in circulation, decreased liver methylation potential, and increased susceptibility to fatty liver disease. Interestingly, SHMT2-deficient mice developed simultaneous fatty liver, but when fed a diet high in fat, fructose, and cholesterol, they had significantly less inflammation and fibrosis. This study highlights the critical role of SHMT2 in maintaining hepatic 1C homeostasis and its stage-specific functions in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Lidong Zhai
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Nivedita Tiwari
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Emilio Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
McBride MJ, Hunter CJ, Zhang Z, TeSlaa T, Xu X, Ducker GS, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. Cell Metab 2024; 36:103-115.e4. [PMID: 38171330 DOI: 10.1016/j.cmet.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gregory S Ducker
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Wang Y, Hongu T, Nishimura T, Takeuchi Y, Takano H, Daikoku T, Yao R, Gotoh N. Mitochondrial one-carbon metabolic enzyme MTHFD2 facilitates mammary gland development during pregnancy. Biochem Biophys Res Commun 2023; 674:183-189. [PMID: 37450958 DOI: 10.1016/j.bbrc.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.
Collapse
Affiliation(s)
- Yuming Wang
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Tsunaki Hongu
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan.
| |
Collapse
|
7
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
8
|
Sasaki M, Yamamoto K, Ueda T, Irokawa H, Takeda K, Sekine R, Itoh F, Tanaka Y, Kuge S, Shibata N. One-carbon metabolizing enzyme ALDH1L1 influences mitochondrial metabolism through 5-aminoimidazole-4-carboxamide ribonucleotide accumulation and serine depletion, contributing to tumor suppression. Sci Rep 2023; 13:13486. [PMID: 37596270 PMCID: PMC10439146 DOI: 10.1038/s41598-023-38142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Tumor cells generally require large amounts of nucleotides, and thus activate de novo purine synthesis (dnPS). In the dnPS reactions, 10-formyltetrahydorofolate (10-fTHF) supplied by one-carbon metabolism is utilized as a formyl group donor. We focused on aldehyde dehydrogenase 1 family member L1 (ALDH1L1), which metabolizes 10-fTHF to tetrahydrofolate and whose expression is often attenuated in hepatocellular carcinoma (HCC). We generated ALDH1L1-expressing HuH-7 cells to perform metabolome analysis and found that intracellular levels of serine were reduced and glycine was increased. In addition, 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP), a dnPS intermediate, accumulated due to the consumption of 10-fTHF by ALDH1L1, which inhibited ZMP formylation. Importantly, ALDH1L1-expressing cells showed reduced ZMP sensitivity and higher mitochondrial activity. The suppression of mitochondrial serine catabolism by ALDH1L1 expression was speculated to be closely related to this phenotype. Gene set enrichment analysis utilizing The Cancer Genome Atlas data revealed that genes related to oxidative phosphorylation were enriched in HCC patients with high ALDH1L1 expression. Moreover, drug sensitivity data analysis demonstrated that HCC cell lines with low expression of ALDH1L1 were sensitive to ZMP and cordycepin, a structural analog of ZMP and AMP. Our study revealed that ZMP and AMP analogs might be effective in the pharmacotherapy of HCC patients with low expression of ALDH1L1.
Collapse
Affiliation(s)
- Masato Sasaki
- Division of Infection and Host Defense, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osakasayama, Osaka, 589-8511, Japan
- Faculty of Medicine, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| | - Hayato Irokawa
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouki Takeda
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ryoya Sekine
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Fumie Itoh
- Division of Infection and Host Defense, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Shusuke Kuge
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Nobuyuki Shibata
- Division of Infection and Host Defense, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsusima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
9
|
Fiddler JL, Blum JE, Heyden KE, Castillo LF, Thalacker-Mercer AE, Field MS. Impairments in SHMT2 expression or cellular folate availability reduce oxidative phosphorylation and pyruvate kinase activity. GENES & NUTRITION 2023; 18:5. [PMID: 36959541 PMCID: PMC10037823 DOI: 10.1186/s12263-023-00724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Serine hydroxymethyltransferase 2 (SHMT2) catalyzes the reversible conversion of tetrahydrofolate (THF) and serine-producing THF-conjugated one-carbon units and glycine in the mitochondria. Biallelic SHMT2 variants were identified in humans and suggested to alter the protein's active site, potentially disrupting enzymatic function. SHMT2 expression has also been shown to decrease with aging in human fibroblasts. Immortalized cell models of total SHMT2 loss or folate deficiency exhibit decreased oxidative capacity and impaired mitochondrial complex I assembly and protein levels, suggesting folate-mediated one-carbon metabolism (FOCM) and the oxidative phosphorylation system are functionally coordinated. This study examined the role of SHMT2 and folate availability in regulating mitochondrial function, energy metabolism, and cellular proliferative capacity in both heterozygous and homozygous cell models of reduced SHMT2 expression. In this study, primary mouse embryonic fibroblasts (MEF) were isolated from a C57Bl/6J dam crossed with a heterozygous Shmt2+/- male to generate Shmt2+/+ (wild-type) or Shmt2+/- (HET) MEF cells. In addition, haploid chronic myeloid leukemia cells (HAP1, wild-type) or HAP1 cells lacking SHMT2 expression (ΔSHMT2) were cultured for 4 doublings in either low-folate or folate-sufficient culture media. Cells were examined for proliferation, total folate levels, mtDNA content, protein levels of pyruvate kinase and PGC1α, pyruvate kinase enzyme activity, mitochondrial membrane potential, and mitochondrial function. RESULTS Homozygous loss of SHMT2 in HAP1 cells impaired cellular folate accumulation and altered mitochondrial DNA content, formate production, membrane potential, and basal respiration. Formate rescued proliferation in HAP1, but not ΔSHMT2, cells cultured in low-folate medium. Pyruvate kinase activity and protein levels were impaired in ΔSHMT2 cells and in MEF cells exposed to low-folate medium. Mitochondrial biogenesis protein levels were elevated in Shmt2+/- MEF cells, while mitochondrial mass was increased in both homozygous and heterozygous models of SHMT2 loss. CONCLUSIONS The results from this study indicate disrupted mitochondrial FOCM impairs mitochondrial folate accumulation and respiration, mitochondrial formate production, glycolytic activity, and cellular proliferation. These changes persist even after a potentially compensatory increase in mitochondrial biogenesis as a result of decreased SHMT2 levels.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Luisa F Castillo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Sun X, Liu S, Cai J, Yang M, Li C, Tan M, He B. Mitochondrial Methionyl-tRNA Formyltransferase Deficiency Alleviates Metaflammation by Modulating Mitochondrial Activity in Mice. Int J Mol Sci 2023; 24:ijms24065999. [PMID: 36983072 PMCID: PMC10051599 DOI: 10.3390/ijms24065999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Various studies have revealed the association of metabolic diseases with inflammation. Mitochondria are key organelles involved in metabolic regulation and important drivers of inflammation. However, it is uncertain whether the inhibition of mitochondrial protein translation results in the development of metabolic diseases, such that the metabolic benefits related to the inhibition of mitochondrial activity remain unclear. Mitochondrial methionyl-tRNA formyltransferase (Mtfmt) functions in the early stages of mitochondrial translation. In this study, we reveal that feeding with a high-fat diet led to the upregulation of Mtfmt in the livers of mice and that a negative correlation existed between hepatic Mtfmt gene expression and fasting blood glucose levels. A knockout mouse model of Mtfmt was generated to explore its possible role in metabolic diseases and its underlying molecular mechanisms. Homozygous knockout mice experienced embryonic lethality, but heterozygous knockout mice showed a global reduction in Mtfmt expression and activity. Moreover, heterozygous mice showed increased glucose tolerance and reduced inflammation, which effects were induced by the high-fat diet. The cellular assays showed that Mtfmt deficiency reduced mitochondrial activity and the production of mitochondrial reactive oxygen species and blunted nuclear factor-κB activation, which, in turn, downregulated inflammation in macrophages. The results of this study indicate that targeting Mtfmt-mediated mitochondrial protein translation to regulate inflammation might provide a potential therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Suyuan Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangxue Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaoxin Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
McBride MJ, Hunter CJ, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523668. [PMID: 36711816 PMCID: PMC9882094 DOI: 10.1101/2023.01.11.523668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered but SHMT2- and serine dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis does not respond to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 as a major glycine-consuming enzyme.
Collapse
|
12
|
Usman M, Hameed Y, Ahmad M, Iqbal MJ, Maryam A, Mazhar A, Naz S, Tanveer R, Saeed H, Bint-E-Fatima, Ashraf A, Hadi A, Hameed Z, Tariq E, Aslam AS. SHMT2 is Associated with Tumor Purity, CD8+ T Immune Cells Infiltration, and a Novel Therapeutic Target in Four Different Human Cancers. Curr Mol Med 2023; 23:161-176. [PMID: 35023455 DOI: 10.2174/1566524022666220112142409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study was launched to identify the SHMT2 associated Human Cancer subtypes. BACKGROUND Cancer is the 2nd leading cause of death worldwide. Previous reports revealed the limited involvement of SHMT2 in human cancer. In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. OBJECTIVE We aim to comprehensively analyze the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Earlier, limited knowledge exists in the medical literature regarding the involvement of Serine Hydroxymethyltransferase 2 (SHMT2) in human cancer. METHODS In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Pan-cancer transcriptional expression profiling of SHMT2 was done using UALCAN while further validation was performed using GENT2. For translational profiling of SHMT2, we utilized Human Protein Atlas (HPA) platform. Promoter methylation, genetic alteration, and copy number variations (CNVs) profiles were analyzed through MEXPRESS and cBioPortal. Survival analysis was carried out through Kaplan-Meier (KM) plotter platform. Pathway enrichment analysis of SHMT2 was performed using DAVID, while the gene-drug network was drawn through CTD and Cytoscape. Furthermore, in the tumor microenvironment, a correlation between tumor purity, CD8+ T immune cells infiltration, and SHMT2 expression was accessed using TIMER. RESULTS SHMT2 was found overexpressed in 24 different subtypes of human cancers and its overexpression was significantly associated with the reduced Overall survival (OS) and Relapse-free survival durations of Breast cancer (BRCA), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), and Lung adenocarcinoma (LUAD) patients. This implies that SHMT2 plays a significant role in the development and progression of these cancers. We further noticed that SHMT2 was also up-regulated in BRCA, KIRP, LIHC, and LUAD patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of SHMT2 enriched genes in five diverse pathways. Furthermore, we also explored some interesting correlations between SHMT2 expression and promoter methylation, genetic alterations, CNVs, tumor purity, and CD8+ T immune cell infiltrates. CONCLUSION Our results suggested that overexpressed SHMT2 is correlated with the reduced OS and RFS of the BRCA, KIRP, LIHC, and LUAD patients and can be a potential diagnostic and prognostic biomarker for these cancers.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Aghna Maryam
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Afshan Mazhar
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Saima Naz
- Department of zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Rida Tanveer
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Saeed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bint-E-Fatima
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Aneela Ashraf
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Alishba Hadi
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Hameed
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Eman Tariq
- Department of Chemistry, The University of Swabi, Swabi, Pakistan
| | - Alia Sumyya Aslam
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
13
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
14
|
Pranzini E, Pardella E, Muccillo L, Leo A, Nesi I, Santi A, Parri M, Zhang T, Uribe AH, Lottini T, Sabatino L, Caselli A, Arcangeli A, Raugei G, Colantuoni V, Cirri P, Chiarugi P, Maddocks ODK, Paoli P, Taddei ML. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep 2022; 40:111233. [PMID: 35977477 DOI: 10.1016/j.celrep.2022.111233] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK; Novartis Institutes for BioMedical Research, Shanghai, China
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
15
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Swanson MA, Miller K, Young SP, Tong S, Ghaloul‐Gonzalez L, Neira‐Fresneda J, Schlichting L, Peck C, Gabel L, Friederich MW, Van Hove JLK. Cerebrospinal fluid amino acids glycine, serine, and threonine in nonketotic hyperglycinemia. J Inherit Metab Dis 2022; 45:734-747. [PMID: 35357708 PMCID: PMC9543955 DOI: 10.1002/jimd.12500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/30/2023]
Abstract
Nonketotic hyperglycinemia (NKH) is caused by deficient glycine cleavage enzyme activity and characterized by elevated brain glycine. Metabolism of glycine is connected enzymatically to serine through serine hydroxymethyltransferase and shares transporters with serine and threonine. We aimed to evaluate changes in serine and threonine in NKH patients, and relate this to clinical outcome severity. Age-related reference values were developed for cerebrospinal fluid (CSF) serine and threonine from 274 controls, and in a cross-sectional study compared to 61 genetically proven NKH patients, categorized according to outcome. CSF d-serine and l-serine levels were stereoselectively determined in seven NKH patients and compared to 29 age-matched controls. In addition to elevated CSF glycine, NKH patients had significantly decreased levels of CSF serine and increased levels of CSF threonine, even after age-adjustment. The CSF serine/threonine ratio discriminated between NKH patients and controls. The CSF glycine/serine aided in discrimination between severe and attenuated neonates with NKH. Over all ages, the CSF glycine, serine and threonine had moderate to fair correlation with outcome classes. After age-adjustment, only the CSF glycine level provided good discrimination between outcome classes. In untreated patients, d-serine was more reduced than l-serine, with a decreased d/l-serine ratio, indicating a specific impact on d-serine metabolism. We conclude that in NKH the elevation of glycine is accompanied by changes in l-serine, d-serine and threonine, likely reflecting a perturbation of the serine shuttle and metabolism, and of one-carbon metabolism. This provides additional guidance on diagnosis and prognosis, and opens new therapeutic avenues to be explored.
Collapse
Affiliation(s)
- Michael A. Swanson
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Kristen Miller
- Department of Pediatrics, Child Health Biostatistics CoreUniversity of Colorado and Children's Hospital ColoradoAuroraColoradoUSA
| | - Sarah P. Young
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Suhong Tong
- Department of Pediatrics, Child Health Biostatistics CoreUniversity of Colorado and Children's Hospital ColoradoAuroraColoradoUSA
| | - Lina Ghaloul‐Gonzalez
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Human GeneticsGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | | | - Lisa Schlichting
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Cheryl Peck
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Linda Gabel
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| |
Collapse
|
17
|
Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience 2022; 25:104349. [PMID: 35602963 PMCID: PMC9117551 DOI: 10.1016/j.isci.2022.104349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Glycyrrhetinic acid (GA) is a natural product of licorice with mitochondria targeting properties and shows broad anticancer activities, but its targets and underlying mechanisms remain elusive. Here, we identified the mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2) as a target of GA by using chemical proteomics. Binding to and inhibiting the activity of SHMT2 by GA were validated in vitro and in vivo. Knockout of SHMT2 or inhibiting SHMT2 with GA restricts mitochondrial energy supplies by downregulating mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation, and consequently suppresses cancer cell proliferation and tumor growth. Crystal structures of GA derivatives indicate that GA occupies SHMT2 folate-binding pocket and regulates SHMT2 activity. Modifications at GA carboxylic group with diamines significantly improved its anticancer potency, demonstrating GA as a decent structural template for SHMT2 inhibitor development.
Collapse
Affiliation(s)
- Xiuxiu Jin
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Li Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinlu Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunmei Gan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Gao
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangyan Tan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Qi Y, Ye Y, Wang R, Yu S, Zhang Y, Lv J, Jin W, Xia S, Jiang W, Li Y, Zhang D. Mitochondrial dysfunction by TFAM depletion disrupts self-renewal and lineage differentiation of human PSCs by affecting cell proliferation and YAP response. Redox Biol 2022; 50:102248. [PMID: 35091324 PMCID: PMC8802056 DOI: 10.1016/j.redox.2022.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
Genetic mitochondrial dysfunction is frequently associated with various embryonic developmental defects. However, how mitochondria contribute to early development and cell fate determination is poorly studied, especially in humans. Using human pluripotent stem cells (hPSCs), we established a Dox-induced knockout model with mitochondrial dysfunction and evaluated the effect of mitochondrial dysfunction on human pluripotency maintenance and lineage differentiation. The nucleus-encoded gene TFAM (transcription factor A, mitochondrial), essential for mitochondrial gene transcription and mitochondrial DNA replication, is targeted to construct the mitochondrial dysfunction model. The hPSCs with TFAM depletion exhibit the decrease of mtDNA level and oxidative respiration efficiency, representing a typical mitochondrial dysfunction phenotype. Mitochondrial dysfunction leads to impaired self-renewal in hPSCs due to proliferation arrest. Although the mitochondrial dysfunction does not affect pluripotent gene expression, it results in a severe defect in lineage differentiation. Further study in mesoderm differentiation reveals that mitochondrial dysfunction causes proliferation disability and YAP nuclear translocalization and thus together blocks mesoderm lineage differentiation. These findings provide new insights into understanding the mitochondrial function in human pluripotency maintenance and mesoderm differentiation.
Collapse
|
19
|
Collins KS, Eadon MT, Cheng YH, Barwinska D, Melo Ferreira R, McCarthy TW, Janosevic D, Syed F, Maier B, El-Achkar TM, Kelly KJ, Phillips CL, Hato T, Sutton TA, Dagher PC. Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease. Cells 2022; 11:cells11071166. [PMID: 35406730 PMCID: PMC8997785 DOI: 10.3390/cells11071166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography–mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.
Collapse
Affiliation(s)
- Kimberly S. Collins
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Michael T. Eadon
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Ying-Hua Cheng
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Ricardo Melo Ferreira
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Thomas W. McCarthy
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Danielle Janosevic
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Farooq Syed
- Department of Pediatrics and Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bernhard Maier
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Katherine J. Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Carrie L. Phillips
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Timothy A. Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| | - Pierre C. Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| |
Collapse
|
20
|
Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol 2022; 322:C311-C325. [PMID: 35044857 DOI: 10.1152/ajpcell.00256.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Abderrahman Chafik
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| |
Collapse
|
21
|
Xu Y, Shi T, Cui X, Yan L, Wang Q, Xu X, Zhao Q, Xu X, Tang QQ, Tang H, Pan D. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. EMBO J 2021; 40:e108069. [PMID: 34704268 PMCID: PMC8672174 DOI: 10.15252/embj.2021108069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine‐fed mice showed better cold tolerance. In mice with diet‐induced obesity, the asparagine‐fed group was more responsive to β3‐adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13C‐glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.
Collapse
Affiliation(s)
- Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Li J, Zhang B, Gan M, Li Y, He L, Yue W, Qiao H, Pei X, Li Y. Generation of SHMT2 knockout human embryonic stem cell line (WAe009-A-67) using CRISPR/Cas9 technique. Stem Cell Res 2021; 57:102581. [PMID: 34688993 DOI: 10.1016/j.scr.2021.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022] Open
Abstract
Serine hydroxymethyltransferase 2 (SHMT2), a catalytic enzyme playing an important role in aerobic cellular respiration and mitochondrial metabolism, might be pivotal in self-renewal and differentiation of human pluripotent stem cells. Herein, we used the CRISPR/Cas9 editing system to construct a homozygous SHMT2 knockout (SHMT2-KO) human embryonic stem cell (hESC) line, exhibiting a normal karyotype, colony morphology, and high expression levels of pluripotent proteins. Furthermore, SHMT2 knockout did not impact the self-renewal ability or differentiation potential into three germ layers of hESCs. Accordingly, this cell line provides a valuable model for further assessing SHMT2 functions in human embryonic development.
Collapse
Affiliation(s)
- Jisheng Li
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Bowen Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Min Gan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yunxing Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Haixuan Qiao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| | - Yanhua Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| |
Collapse
|
23
|
Fiddler JL, Xiu Y, Blum JE, Lamarre SG, Phinney WN, Stabler SP, Brosnan ME, Brosnan JT, Thalacker-Mercer AE, Field MS. Reduced Shmt2 Expression Impairs Mitochondrial Folate Accumulation and Respiration, and Leads to Uracil Accumulation in Mouse Mitochondrial DNA. J Nutr 2021; 151:2882-2893. [PMID: 34383924 DOI: 10.1093/jn/nxab211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Adequate cellular thymidylate (dTMP) pools are essential for preservation of nuclear and mitochondrial genome stability. Previous studies have indicated that disruption in nuclear dTMP synthesis leads to increased uracil misincorporation into DNA, affecting genome stability. To date, the effects of impaired mitochondrial dTMP synthesis in nontransformed tissues have been understudied. OBJECTIVES This study aimed to determine the effects of decreased serine hydroxymethyltransferase 2 (Shmt2) expression and dietary folate deficiency on mitochondrial DNA (mtDNA) integrity and mitochondrial function in mouse tissues. METHODS Liver mtDNA content, and uracil content in liver mtDNA, were measured in Shmt2+/- and Shmt2+/+ mice weaned onto either a folate-sufficient control diet (2 mg/kg folic acid; C) or a modified diet lacking folic acid (0 mg/kg folic acid) for 7 wk. Shmt2+/- and Shmt2+/+ mouse embryonic fibroblast (MEF) cells were cultured in defined culture medium containing either 0 or 25 nM folate (6S-5-formyl-tetrahydrofolate, folinate) to assess proliferative capacity and mitochondrial function. Chi-square tests, linear mixed models, and 2-factor ANOVA with Tukey post hoc analyses were used to analyze data. RESULTS Shmt2 +/- mice exhibited a 48%-67% reduction in SHMT2 protein concentrations in tissues. Interestingly, Shmt2+/- mice consuming the folate-sufficient C diet exhibited a 25% reduction in total folate in liver mitochondria. There was also a >20-fold increase in uracil in liver mtDNA in Shmt2+/- mice consuming the C diet, and dietary folate deficiency also increased uracil content in mouse liver mtDNA from both Shmt2+/+ and Shmt2+/- mice. Furthermore, decreased Shmt2 expression in MEF cells reduced cell proliferation, mitochondrial membrane potential, and oxygen consumption rate. CONCLUSIONS This study demonstrates that Shmt2 heterozygosity and dietary folate deficiency impair mitochondrial dTMP synthesis in mice, as evidenced by the increased uracil in mtDNA. In addition, Shmt2 heterozygosity impairs mitochondrial function in MEF cells. These findings suggest that elevated uracil in mtDNA may impair mitochondrial function.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Yuwen Xiu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Simon G Lamarre
- Department of Biology, University of Moncton, Moncton, New Brunswick, Canada
| | | | - Sally P Stabler
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers (Basel) 2021; 13:cancers13164009. [PMID: 34439169 PMCID: PMC8393646 DOI: 10.3390/cancers13164009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The mitochondrial enzyme serine hydroxymethyltransferase (SHMT2), which converts serine into glycine and generates 1C units for cell growth, is one of the most consistently overexpressed metabolic enzymes in cancer. Here, we reveal that the anti-diabetic biguanide metformin operates as a novel class of non-catalytic SHMT2 inhibitor that disrupts the pyridoxal-5′-phosphate (PLP)-dependent SHMT2 oligomerization process and ultimately SHMT2 activity. As SHMT2 inhibitors have not yet reached the clinic, these findings may aid the rational design of PLP-competitive SHMT2 inhibitors based on the biguanide skeleton of metformin. Abstract The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5′-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.
Collapse
|
25
|
Zhang P, Yang Q. Overexpression of SHMT2 Predicts a Poor Prognosis and Promotes Tumor Cell Growth in Bladder Cancer. Front Genet 2021; 12:682856. [PMID: 34149818 PMCID: PMC8212063 DOI: 10.3389/fgene.2021.682856] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
SHMT2 was overexpressed in many tumors, however, the role of SHMT2 in bladder cancer (BLCA) remains unclear. We first analyzed the expression pattern of SHMT2 in BLCA using the TNMplot, Oncomine, the Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases. Next, the association between SHMT2 expression and overall survival (OS)/disease-free survival (DFS) in BLCA patients were analyzed using TCGA and PrognoScan database. The correlation between SHMT2 expression and clinicopathology was determined using TCGA database. Furthermore, the genes co-expressed with SHMT2 and their underlying molecular function in BLCA were explored based on the Oncomine database, Metascape and gene set enrichment analysis (GSEA). Finally, the effects of SHMT2 on cell proliferation, cell cycle, and apoptosis were assessed using in vitro experiments. As a results, SHMT2 was significantly overexpressed in BLCA tissues and cells compared to normal bladder tissues and cells. A high SHMT2 expression predicts a poor OS of BLCA patients. In addition, SHMT2 expression was higher in patients with a high tumor grade and in those who were older than 60 years. However, the expression of SHMT2 was not correlated with gender, tumor stage, lymph node stage, and distant metastasis stage. Finally, overexpression of SHMT2 promoted BLCA cell proliferation and suppressed apoptosis, the silencing of SHMT2 significantly inhibited BLCA cell proliferation by impairing the cell cycle, and promoting apoptosis. SHMT2 mediates BLCA cells growth by regulating STAT3 signaling. In summary, SHMT2 regulates the proliferation, cell cycle and apoptosis of BLCA cells, and may act as a candidate therapeutic target for BLCA.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
26
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
27
|
Maclean KN, Jiang H, Phinney WN, Mclagan BM, Roede JR, Stabler SP. Derangement of hepatic polyamine, folate, and methionine cycle metabolism in cystathionine beta-synthase-deficient homocystinuria in the presence and absence of treatment: Possible implications for pathogenesis. Mol Genet Metab 2021; 132:128-138. [PMID: 33483253 DOI: 10.1016/j.ymgme.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. Our knowledge of the metabolic changes induced in HCU are based almost exclusively on data derived from plasma. In the present study, we present a comprehensive analysis on the effects of HCU upon the hepatic metabolites and enzyme expression levels of the methionine-folate cycles in a mouse model of HCU. HCU induced a 10-fold increase in hepatic total homocysteine and in contrast to plasma, this metabolite was only lowered by approximately 20% by betaine treatment indicating that this toxic metabolite remains unacceptably elevated. Hepatic methionine, S-adenosylmethionine, S-adenosylhomocysteine, N-acetlymethionine, N-formylmethionine, methionine sulfoxide, S-methylcysteine, serine, N-acetylserine, taurocyamine and N-acetyltaurine levels were also significantly increased by HCU while cysteine, N-acetylcysteine and hypotaurine were all significantly decreased. In terms of polyamine metabolism, HCU significantly decreased spermine and spermidine levels while increasing 5'-methylthioadenosine. Betaine treatment restored normal spermine and spermidine levels but further increased 5'-methylthioadenosine. HCU induced a 2-fold induction in expression of both S-adenosylhomocysteine hydrolase and methylenetetrahydrofolate reductase. Induction of this latter enzyme was accompanied by a 10-fold accumulation of its product, 5-methyl-tetrahydrofolate, with the potential to significantly perturb one‑carbon metabolism. Expression of the cytoplasmic isoform of serine hydroxymethyltransferase was unaffected by HCU but the mitochondrial isoform was repressed indicating differential regulation of one‑carbon metabolism in different sub-cellular compartments. All HCU-induced changes in enzyme expression were completely reversed by either betaine or taurine treatment. Collectively, our data show significant alterations of polyamine, folate and methionine cycle metabolism in HCU hepatic tissues that in some cases, differ significantly from those observed in plasma, and have the potential to contribute to multiple aspects of pathogenesis.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Hua Jiang
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Whitney N Phinney
- Medicine and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bailey M Mclagan
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James R Roede
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sally P Stabler
- Medicine and University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2021; 8:603837. [PMID: 33511116 PMCID: PMC7835483 DOI: 10.3389/fcell.2020.603837] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming has been widely recognized as a hallmark of malignancy. The uptake and metabolism of amino acids are aberrantly upregulated in many cancers that display addiction to particular amino acids. Amino acids facilitate the survival and proliferation of cancer cells under genotoxic, oxidative, and nutritional stress. Thus, targeting amino acid metabolism is becoming a potential therapeutic strategy for cancer patients. In this review, we will systematically summarize the recent progress of amino acid metabolism in malignancy and discuss their interconnection with mammalian target of rapamycin complex 1 (mTORC1) signaling, epigenetic modification, tumor growth and immunity, and ferroptosis. Finally, we will highlight the potential therapeutic applications.
Collapse
Affiliation(s)
- Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Lee WD, Pirona AC, Sarvin B, Stern A, Nevo-Dinur K, Besser E, Sarvin N, Lagziel S, Mukha D, Raz S, Aizenshtein E, Shlomi T. Tumor Reliance on Cytosolic versus Mitochondrial One-Carbon Flux Depends on Folate Availability. Cell Metab 2021; 33:190-198.e6. [PMID: 33326752 DOI: 10.1016/j.cmet.2020.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Folate metabolism supplies one-carbon (1C) units for biosynthesis and methylation and has long been a target for cancer chemotherapy. Mitochondrial serine catabolism is considered the sole contributor of folate-mediated 1C units in proliferating cancer cells. Here, we show that under physiological folate levels in the cell environment, cytosolic serine-hydroxymethyltransferase (SHMT1) is the predominant source of 1C units in a variety of cancers, while mitochondrial 1C flux is overly repressed. Tumor-specific reliance on cytosolic 1C flux is associated with poor capacity to retain intracellular folates, which is determined by the expression of SLC19A1, which encodes the reduced folate carrier (RFC). We show that silencing SHMT1 in cells with low RFC expression impairs pyrimidine biosynthesis and tumor growth in vivo. Overall, our findings reveal major diversity in cancer cell utilization of the cytosolic versus mitochondrial folate cycle across tumors and SLC19A1 expression as a marker for increased reliance on SHMT1.
Collapse
Affiliation(s)
- Won Dong Lee
- Faculty of Biology, Technion, 32000 Haifa, Israel; Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anna Chiara Pirona
- Faculty of Biology, Technion, 32000 Haifa, Israel; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Bioscience, University of Heidelberg, Heidelberg 69120, Germany
| | - Boris Sarvin
- Faculty of Biology, Technion, 32000 Haifa, Israel
| | - Alon Stern
- Faculty of Computer Science, Technion, 32000 Haifa, Israel
| | | | | | | | - Shoval Lagziel
- Faculty of Computer Science, Technion, 32000 Haifa, Israel
| | | | - Shachar Raz
- Faculty of Biology, Technion, 32000 Haifa, Israel
| | - Elina Aizenshtein
- Lokey Center for Life Science and Engineering, Technion, 32000 Haifa, Israel
| | - Tomer Shlomi
- Faculty of Biology, Technion, 32000 Haifa, Israel; Faculty of Computer Science, Technion, 32000 Haifa, Israel; Lokey Center for Life Science and Engineering, Technion, 32000 Haifa, Israel.
| |
Collapse
|
30
|
Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome. Acta Neuropathol 2020; 140:971-975. [PMID: 33015733 PMCID: PMC7665968 DOI: 10.1007/s00401-020-02223-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
31
|
Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation. Mol Cell 2020; 80:525-540.e9. [PMID: 33068521 DOI: 10.1016/j.molcel.2020.09.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Well-balanced and timed metabolism is essential for making a high-quality egg. However, the metabolic framework that supports oocyte development remains poorly understood. Here, we obtained the temporal metabolome profiles of mouse oocytes during in vivo maturation by isolating large number of cells at key stages. In parallel, quantitative proteomic analyses were conducted to bolster the metabolomic data, synergistically depicting the global metabolic patterns in oocytes. In particular, we discovered the metabolic features during meiotic maturation, such as the fall in polyunsaturated fatty acids (PUFAs) level and the active serine-glycine-one-carbon (SGOC) pathway. Using functional approaches, we further identified the key targets mediating the action of PUFA arachidonic acid (ARA) on meiotic maturation and demonstrated the control of epigenetic marks in maturing oocytes by SGOC network. Our data serve as a broad resource on the dynamics occurring in metabolome and proteome during oocyte maturation.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Zeng
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Haichao Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiaohui Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunling Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Min Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China; Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China; Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
32
|
Wang H, Chong T, Li BY, Chen XS, Zhen WB. Evaluating the clinical significance of SHMT2 and its co-expressed gene in human kidney cancer. Biol Res 2020; 53:46. [PMID: 33066813 PMCID: PMC7566128 DOI: 10.1186/s40659-020-00314-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background Kidney cancer is one of the most common cancers in the world. It is necessary to clarify its underlying mechanism and find its prognostic biomarkers. Current studies showed that SHMT2 may be participated in several kinds of cancer. Methods Our studies investigated the expression of SHMT2 in kidney cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its co-expression gene by cBioPortal online tool and validated their relationship in A498 and ACHN cells by cell transfection, western blot and qRT-PCR. Besides these, we also explored their prognostic values via the Kaplan–Meier plotter database in different types of kidney cancer patients. Results SHMT2 was found to be increased in 7 kidney cancer datasets, compared to normal renal tissues. For the cancer stages, ages and races, there existed significant difference in the expression of SHMT2 among different groups by mining of the UALCAN database. High SHMT2 expression is associated with poor overall survival in patients with kidney cancer. Among all co-expressed genes, NDUFA4L2 and SHMT2 had a high co-expression efficient. SHMT2 overexpression led to the increased expression of NDUFA4L2 at both mRNA and protein levels. Like SHMT2, overexpressed NDUFA4L2 also was associated with worse overall survival in patients with kidney cancer. Conclusion Based on above results, overexpressed SHMT2 and its co-expressed gene NDUFA4L2 were all correlated with the prognosis in kidney cancer. The present study might be benefit for better understanding the clinical significance of SHMT2 and provided a potential therapeutic target for kidney cancer in future.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.,Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bo-Yong Li
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Xiao-San Chen
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Wen-Bo Zhen
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| |
Collapse
|
33
|
Xiu Y, Field MS. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr Dev Nutr 2020; 4:nzaa153. [PMID: 33134792 PMCID: PMC7584446 DOI: 10.1093/cdn/nzaa153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is compartmentalized within human cells to the cytosol, nucleus, and mitochondria. The recent identifications of mitochondria-specific, folate-dependent thymidylate [deoxythymidine monophosphate (dTMP)] synthesis together with discoveries indicating the critical role of mitochondrial FOCM in cancer progression have renewed interest in understanding this metabolic pathway. The goal of this narrative review is to summarize recent advances in the field of one-carbon metabolism, with an emphasis on the biological importance of mitochondrial FOCM in maintaining mitochondrial DNA integrity and mitochondrial function, as well as the reprogramming of mitochondrial FOCM in cancer. Elucidation of the roles and regulation of mitochondrial FOCM will contribute to a better understanding of the mechanisms underlying folate-associated pathologies.
Collapse
Affiliation(s)
- Yuwen Xiu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Tait-Mulder J, Hodge K, Sumpton D, Zanivan S, Vazquez A. The conversion of formate into purines stimulates mTORC1 leading to CAD-dependent activation of pyrimidine synthesis. Cancer Metab 2020; 8:20. [PMID: 32974014 PMCID: PMC7507243 DOI: 10.1186/s40170-020-00228-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mitochondrial serine catabolism to formate induces a metabolic switch to a hypermetabolic state with high rates of glycolysis, purine synthesis and pyrimidine synthesis. While formate is a purine precursor, it is not clear how formate induces pyrimidine synthesis. METHODS Here we combine phospho-proteome and metabolic profiling to determine how formate induces pyrimidine synthesis. RESULTS We discover that formate induces phosphorylation of carbamoyl phosphate synthetase (CAD), which is known to increase CAD enzymatic activity. Mechanistically, formate induces mechanistic target of rapamycin complex 1 (mTORC1) activity as quantified by phosphorylation of its targets S6, 4E-BP1, S6K1 and CAD. Treatment with the allosteric mTORC1 inhibitor rapamycin abrogates CAD phosphorylation and pyrimidine synthesis induced by formate. Furthermore, we show that the formate-dependent induction of mTOR signalling and CAD phosphorylation is dependent on an increase in purine synthesis. CONCLUSIONS We conclude that formate activates mTORC1 and induces pyrimidine synthesis via the mTORC1-dependent phosphorylation of CAD.
Collapse
Affiliation(s)
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
36
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
37
|
Abstract
BACKGROUND The development of liver transplantation (LT) is increasingly being limited by the unavailability of liver grafts. Unique regenerative capacity of liver in response to injuries makes living-donor liver transplantation (LDLT) a feasible strategy to meet clinical demands. Serine hydroxymethyl-transferase 2 (SHMT2) serves as the key enzyme in the biosynthesis of glycine. Glycine affects the activity of mammalian target of rapamycin (mTOR), which is important for cellular growth and proliferation. In this study, the effects of SHMT2 on mouse liver regeneration were investigated using a classical partial hepatectomy (PH) model. METHODS In vivo, PH was performed on mice with or without knockdown of SHMT2. In vitro, SHMT2 was overexpressed in primary hepatocytes, which were cultured in customized Dulbecco's modified eagle media and LY294002 (an Akt inhibitor). Relevant indexes of liver regeneration, cell proliferation, and Akt/mTOR signal pathways were analyzed. RESULTS After PH, the expression levels of SHMT2 fluctuated with time and knockdown of SHMT2 in vivo lowered the regenerative ability of liver, with reduced glycine levels compared to the scramble group. In addition, overexpression of SHMT2 in hepatocytes boosted glycine production while enhancing Akt/mTOR pathway activity. These results were validated by the application of LY294002 in vitro. CONCLUSIONS SHMT2 can contribute to liver regeneration after PH, and this is likely related to the activation of Akt/mTOR signaling pathway by its metabolic product, glycine, in hepatocytes. These results might have therapeutic implications for the prognosis of patients undergoing hepatic resection or transplantation.
Collapse
|
38
|
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Metabolic pathways leading to the synthesis, uptake, and usage of the nonessential amino acid serine are frequently amplified in cancer. Serine encounters diverse fates in cancer cells, including being charged onto tRNAs for protein synthesis, providing head groups for sphingolipid and phospholipid synthesis, and serving as a precursor for cellular glycine and one-carbon units, which are necessary for nucleotide synthesis and methionine cycle reloading. This review will focus on the participation of serine and glycine in the mitochondrial one-carbon (SGOC) pathway during cancer progression, with an emphasis on the genetic and epigenetic determinants that drive SGOC gene expression. We will discuss recently elucidated roles for SGOC metabolism in nucleotide synthesis, redox balance, mitochondrial function, and epigenetic modifications. Finally, therapeutic considerations for targeting SGOC metabolism in the clinic will be discussed.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Escande-Beillard N, Loh A, Saleem SN, Kanata K, Hashimoto Y, Altunoglu U, Metoska A, Grandjean J, Ng FM, Pomp O, Baburajendran N, Wong J, Hill J, Beillard E, Cozzone P, Zaki M, Kayserili H, Hamada H, Shiratori H, Reversade B. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron 2020; 107:82-94.e6. [PMID: 32330411 DOI: 10.1016/j.neuron.2020.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
Collapse
Affiliation(s)
- Nathalie Escande-Beillard
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey.
| | - Abigail Loh
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sahar N Saleem
- Radiology Department, Kasr Al Ainy Faculty of Medicine - Cairo University, El Manial, Cairo 11956, Egypt
| | - Kohei Kanata
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Hashimoto
- Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Artina Metoska
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Oz Pomp
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | | | - Joyner Wong
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | | | - Patrick Cozzone
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Maha Zaki
- Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey; Department of Paediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
40
|
Eudy BJ, McDermott CE, Fernandez G, Mathews CE, Lai J, da Silva RP. Disruption of hepatic one-carbon metabolism impairs mitochondrial function and enhances macrophage activity in methionine-choline-deficient mice. J Nutr Biochem 2020; 81:108381. [PMID: 32422424 DOI: 10.1016/j.jnutbio.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/24/2020] [Accepted: 03/13/2020] [Indexed: 02/05/2023]
Abstract
One-carbon metabolism is a collection of metabolic cycles that supports methylation and provides one-carbon bound folates for the de novo synthesis of purine and thymidine nucleotides. The methylation of phosphatidylethanolamine to form choline has been extensively studied in the context of fatty liver disease. However, the role of one-carbon metabolism in supporting nucleotide synthesis during liver damage has not been addressed. The objective of this study is to determine how the disruption of one-carbon metabolism influences nucleotide metabolism in the liver after dietary methionine and choline restriction. Mice (n=8) were fed a methionine-choline-deficient or control diet for 3 weeks. We treated mice with the compound alloxazine (0.5 mg/kg), a known adenosine receptor antagonist, every second day during the final week of feeding to probe the function of adenosine signaling during liver damage. We found that concentrations of several hepatic nucleotides were significantly lower in methionine- and choline-deficient mice vs. controls (adenine: 13.9±0.7 vs. 10.1±0.6, guanine: 1.8±0.1 vs. 1.4±0.1, thymidine: 0.0122±0.0027 vs. 0.0059±0.0027 nmol/mg dry tissue). Treatment of alloxazine caused a specific decrease in thymidine nucleotides, decrease in mitochondrial content in the liver and exacerbation of steatohepatitis as shown by the increased hepatic lipid content and altered macrophage morphology. This study demonstrates a role for one-carbon metabolism in supporting de novo nucleotide synthesis and mitochondrial function during liver damage.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Caitlin E McDermott
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Gabriel Fernandez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Jinping Lai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL; Department of Pathology and Laboratory Medicine, Kaiser Permanente, Sacramento, CA.
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| |
Collapse
|
41
|
Disruption of the mouse Shmt2 gene confers embryonic anaemia via foetal liver-specific metabolomic disorders. Sci Rep 2019; 9:16054. [PMID: 31690790 PMCID: PMC6831688 DOI: 10.1038/s41598-019-52372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
In a previous study, we proposed that age-related mitochondrial respiration defects observed in elderly subjects are partially due to age-associated downregulation of nuclear-encoded genes, including serine hydroxymethyltransferase 2 (SHMT2), which is involved in mitochondrial one-carbon (1C) metabolism. This assertion is supported by evidence that the disruption of mouse Shmt2 induces mitochondrial respiration defects in mouse embryonic fibroblasts generated from Shmt2-knockout E13.5 embryos experiencing anaemia and lethality. Here, we elucidated the potential mechanisms by which the disruption of this gene induces mitochondrial respiration defects and embryonic anaemia using Shmt2-knockout E13.5 embryos. The livers but not the brains of Shmt2-knockout E13.5 embryos presented mitochondrial respiration defects and growth retardation. Metabolomic profiling revealed that Shmt2 deficiency induced foetal liver-specific downregulation of 1C-metabolic pathways that create taurine and nucleotides required for mitochondrial respiratory function and cell division, respectively, resulting in the manifestation of mitochondrial respiration defects and growth retardation. Given that foetal livers function to produce erythroblasts in mouse embryos, growth retardation in foetal livers directly induced depletion of erythroblasts. By contrast, mitochondrial respiration defects in foetal livers also induced depletion of erythroblasts as a consequence of the inhibition of erythroblast differentiation, resulting in the manifestation of anaemia in Shmt2-knockout E13.5 embryos.
Collapse
|
42
|
Krupenko SA, Horita DA. The Role of Single-Nucleotide Polymorphisms in the Function of Candidate Tumor Suppressor ALDH1L1. Front Genet 2019; 10:1013. [PMID: 31737034 PMCID: PMC6831610 DOI: 10.3389/fgene.2019.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Folate (vitamin B9) is a common name for a group of coenzymes that function as carriers of chemical moieties called one-carbon groups in numerous biochemical reactions. The combination of these folate-dependent reactions constitutes one-carbon metabolism, the name synonymous to folate metabolism. Folate coenzymes and associated metabolic pathways are vital for cellular homeostasis due to their key roles in nucleic acid biosynthesis, DNA repair, methylation processes, amino acid biogenesis, and energy balance. Folate is an essential nutrient because humans are unable to synthesize this coenzyme and must obtain it from the diet. Insufficient folate intake can ultimately increase risk of certain diseases, most notably neural tube defects. More than 20 enzymes are known to participate in folate metabolism. Single-nucleotide polymorphisms (SNPs) in genes encoding for folate enzymes are associated with altered metabolism, changes in DNA methylation and modified risk for the development of human pathologies including cardiovascular diseases, birth defects, and cancer. ALDH1L1, one of the folate-metabolizing enzymes, serves a regulatory function in folate metabolism restricting the flux of one-carbon groups through biosynthetic processes. Numerous studies have established that ALDH1L1 is often silenced or strongly down-regulated in cancers. The loss of ALDH1L1 protein positively correlates with the occurrence of malignant tumors and tumor aggressiveness, hence the enzyme is viewed as a candidate tumor suppressor. ALDH1L1 has much higher frequency of non-synonymous exonic SNPs than most other genes for folate enzymes. Common SNPs at the polymorphic loci rs3796191, rs2886059, rs9282691, rs2276724, rs1127717, and rs4646750 in ALDH1L1 exons characterize more than 97% of Europeans while additional common variants are found in other ethnic populations. The effects of these SNPs on the enzyme is not clear but studies indicate that some coding and non-coding ALDH1L1 SNPs are associated with altered risk of certain cancer types and it is also likely that specific haplotypes define the metabolic response to dietary folate. This review discusses the role of ALDH1L1 in folate metabolism and etiology of diseases with the focus on non-synonymous coding ALDH1L1 SNPs and their effects on the enzyme structure/function, metabolic role and association with cancer.
Collapse
Affiliation(s)
- Sergey A. Krupenko
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David A. Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
43
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|
44
|
Sarret C, Ashkavand Z, Paules E, Dorboz I, Pediaditakis P, Sumner S, Eymard-Pierre E, Francannet C, Krupenko NI, Boespflug-Tanguy O, Krupenko SA. Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome. NPJ Genom Med 2019; 4:17. [PMID: 31341639 PMCID: PMC6650503 DOI: 10.1038/s41525-019-0092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.
Collapse
Affiliation(s)
- Catherine Sarret
- IGCNC, Institut Pascal, UMR CNRS-UCA-SIGMA, Aubière, France.,2Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Zahra Ashkavand
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Evan Paules
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA.,4Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Imen Dorboz
- 5INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
| | - Peter Pediaditakis
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Susan Sumner
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA.,4Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Eléonore Eymard-Pierre
- 2Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Christine Francannet
- 2Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Natalia I Krupenko
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA.,4Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Odile Boespflug-Tanguy
- 5INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France.,6Department of Child Neurology and Metabolic Disorders, LEUKOFRANCE, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sergey A Krupenko
- 3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA.,4Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
45
|
Lucas S, Chen G, Aras S, Wang J. Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells. Life Sci Alliance 2018; 1:e201800036. [PMID: 30456347 PMCID: PMC6238390 DOI: 10.26508/lsa.201800036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial respiratory complex assembly requires the one-carbon unit generated from serine catabolism. Breakdown of serine by the enzyme serine hydroxymethyltransferase (SHMT) produces glycine and one-carbon (1C) units. These serine catabolites provide important metabolic intermediates for the synthesis of nucleotides, as well as methyl groups for biosynthetic and regulatory methylation reactions. Recently, it has been shown that serine catabolism is required for efficient cellular respiration. Using CRISPR-Cas9 gene editing, we demonstrate that the mitochondrial SHMT enzyme, SHMT2, is essential to maintain cellular respiration, the main process through which mammalian cells acquire energy. We show that SHMT2 is required for the assembly of Complex I of the respiratory chain. Furthermore, supplementation of formate, a bona fide 1C donor, restores Complex I assembly in the absence of SHMT2. Thus, provision of 1C units by mitochondrial serine catabolism is critical for cellular respiration, at least in part by influencing the assembly of the respiratory apparatus.
Collapse
Affiliation(s)
- Stephanie Lucas
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Guohua Chen
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Jian Wang
- Department of Pathology, Wayne State University, Detroit, MI, USA.,Cardiovascular Research Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
46
|
Ravichandran M, Priebe S, Grigolon G, Rozanov L, Groth M, Laube B, Guthke R, Platzer M, Zarse K, Ristow M. Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. Cell Metab 2018; 27:914-925.e5. [PMID: 29551589 DOI: 10.1016/j.cmet.2018.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Whether and how regulation of genes and pathways contributes to physiological aging is topic of intense scientific debate. By performing an RNA expression-based screen for genes downregulated during aging of three different species, we identified glycine-C-acetyltransferase (GCAT, EC 2.3.1.29). Impairing gcat expression promotes the lifespan of C. elegans by interfering with threonine catabolism to promote methylglyoxal (MGO; CAS 78-98-8) formation in an amine oxidase-dependent manner. MGO is a reactive dicarbonyl inducing diabetic complications in mammals by causing oxidative stress and damaging cellular components, including proteins. While high concentrations of MGO consistently exert toxicity in nematodes, we unexpectedly find that low-dose MGO promotes lifespan, resembling key mediators of gcat impairment. These were executed by the ubiquitin-proteasome system, namely PBS-3 and RPN-6.1 subunits, regulated by the stress-responsive transcriptional regulators SKN-1/NRF2 and HSF-1. Taken together, GCAT acts as an evolutionary conserved aging-related gene by orchestrating an unexpected nonlinear impact of proteotoxic MGO on longevity.
Collapse
Affiliation(s)
- Meenakshi Ravichandran
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Steffen Priebe
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Leonid Rozanov
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Marco Groth
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Beate Laube
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|