1
|
Kumar A. Genome Annotation. Methods Mol Biol 2025; 2859:21-37. [PMID: 39436594 DOI: 10.1007/978-1-0716-4152-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The hallmark of genome sequencing projects is to provide genetic information on a species with functional annotations of genes and proteins. This process heavily relies on genome annotation based on homology detections from previously known genomic data. The rapid advancement of genome sequencing technologies has made genome sequencing affordable and effective in terms of the time frame for the generation of genomic data. Hence, genome sequencing has become a common practice. The annotation and characterization of newly sequenced genomes are crucial factors for the success of any biological experiment based on genomic data. The proteogenomic sector requires annotated genome further characterization of proteomic-based studies, and these are coupled with genomic and RNA-seq data. This chapter describes the genome annotation process from scratch genome sequencing to general genome annotation and specialized genome annotation using BLAST, BLAT2GO (now OMICSBOX), PANNZER, gene ontology (GO), and KEGG. It also covers different processes like repeat identification and masking, gene prediction, genome-wide annotation process, and RNA-seq protocol. It also focuses on genes of interest such as genes associated with BGCs (biosynthetic gene clusters), carbohydrate-active enzymes (CAZymes), serpins (serine protease inhibitors), membrane transporters, and toxins. Manual annotation is also a critical step for at least some groups of genes, which are often critical for the species in consideration. This chapter also briefly describes the phylogenetic and phylogenomic processes required during genome annotation.
Collapse
Affiliation(s)
- Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal & Institute of Bioinformatics, Bangalore, India.
| |
Collapse
|
2
|
Bracewell R, Tran A, Chatla K, Bachtrog D. Sex and neo-sex chromosome evolution in beetles. PLoS Genet 2024; 20:e1011477. [PMID: 39585913 DOI: 10.1371/journal.pgen.1011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Beetles are the most species-rich group of animals and harbor diverse karyotypes. Most species have XY sex chromosomes, but X0 sex determination mechanisms are also common in some groups. We generated a whole-chromosome assembly of Tribolium confusum, which has a neo-sex chromosome, and utilize eleven additional beetle genomes to reconstruct karyotype evolution across Coleoptera. We identify ancestral linkage groups, termed Stevens elements, that share a conserved set of genes across beetles. While the ancestral X chromosome is maintained across beetles, we find independent additions of autosomes to the ancestral sex chromosomes. These neo-sex chromosomes evolve the stereotypical properties of sex chromosomes, including the evolution of dosage compensation and a non-random distribution of genes with sex-biased expression. Beetles thus provide a novel model to gain a better understanding of the diverse forces driving sex chromosome evolution.
Collapse
Affiliation(s)
- Ryan Bracewell
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Anita Tran
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
3
|
Kim J, Rahman MM, Han C, Shin J, Ahn SJ. Chromosome-level genome assembly and comparative genomics shed light on Helicoverpa assulta ecology and pest management. PEST MANAGEMENT SCIENCE 2024; 80:5440-5451. [PMID: 38942610 DOI: 10.1002/ps.8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The Oriental tobacco budworm, Helicoverpa assulta, a specialist herbivorous insect that exclusively feeds on plants of the Solanaceae family, causes considerable damage to crops, such as tobacco and hot pepper. The absence of a genome sequence for this species hinders further research on its pest management and ecological adaptation. RESULTS Here, we present a high-quality chromosome-level genome of a Korean strain of H. assulta (Pyeongchang strain, K18). The total assembly spans 424.4 Mb with an N50 length of 14.54 Mb and 37% GC content. The assembled genome (ASM2961881v1) comprises 31 chromosomes, similar to other congeneric generalist species including H. armigera and H. zea. In terms of genomic assembly quality, the complete BUSCOs and repeat content accounted for 98.3% and 33.01% of the genome, respectively. Based on this assembly, 19 485 protein-coding genes were predicted in the genome annotation. A comparative analysis was conducted using the identified number of protein-coding genes in H. armigera (24154) and H. zea (23696). Out of the 19 485 predicted genes, 137 genes in 15 orthogroups were found to have expanded significantly in H. assulta, while 149 genes in 95 orthogroups contracted rapidly. CONCLUSION This study revealed specific gene expansions and contractions in H. assulta compared to those in its close relatives, indicating potential adaptations related to its specialized feeding habits. Also, the comparative genome analysis provides valuable insights for the integrated pest management of H. assulta and other globally significant pests in the Heliothinae subfamily. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Jiyeong Shin
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
4
|
Pogačar K, Grundner M, Žigon P, Coll A, Panevska A, Lukan T, Petek M, Razinger J, Gruden K, Sepčić K. Protein complexes from edible mushrooms as a sustainable potato protection against coleopteran pests. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2518-2529. [PMID: 38733093 PMCID: PMC11331795 DOI: 10.1111/pbi.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024]
Abstract
Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.
Collapse
Affiliation(s)
- Karmen Pogačar
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Maja Grundner
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Primož Žigon
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Anna Coll
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Anastasija Panevska
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Jaka Razinger
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
5
|
Shi JF, Cheng MH, Zhou W, Zeng MZ, Chen Y, Yang JX, Wu H, Ye QH, Tang H, Zhang Q, Fu KY, Guo WC. Crucial roles of specialized chitinases in elytral and hindwing cuticles construction in Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2024; 80:4437-4449. [PMID: 38656531 DOI: 10.1002/ps.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major potato (Solanum tuberosum) pest, infesting over 16 million km2 and causing substantial economic losses. The insect cuticle forms an apical extracellular matrix (ECM) envelope covering exposed organs to direct morphogenesis and confer structural protection. While select chitinase (Cht) genes have proven essential for larval development, their potential activities directing ECM remodeling underlying adult wing maturation remain undefined. RESULTS We investigated the expression patterns and performed an oral RNA interference (RNAi) screen targeting 19 LdChts in late-instar L. decemlineata larvae. Subsequently, we assessed their effects on adult eclosion and wing characteristics. Knockdown of LdCht5, LdCht7, LdCht10, LdIDGF2, and LdIDGF4, as well as others from Group IV (LdCht15, LdCht12, LdCht17, and LdCht13) and Groups VII-X (LdCht2, LdCht11, LdCht1, and LdCht3), resulting in shrunken, misshapen elytra with reduced areal density, as well as transverse wrinkling and impaired wing-tip folding in hindwings. Scanning electron micrographs revealed eroded elytral ridges alongside thinned, ruptured hindwing veins, indicative of mechanical fragility post-LdCht suppression. Spectroscopic analysis uncovered biomolecular alterations underlying the elytral anomalies, including decreases in peaks representing chitin, proteins, and lipids. This loss of essential ECM components provides evidence for the fragility, wrinkling, and shrinkage observed in the RNAi groups. CONCLUSION Our findings elucidate the crucial role of chitinases in the turnover of chitinous cuticles on beetle wings, offering insights into RNAi-based control strategies against this invasive pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji-Feng Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Man-Hong Cheng
- Chongqing College of Humanities, Science and Technology, Chongqing, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Mu-Zi Zeng
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Chen
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Jia-Xin Yang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hao Wu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qiu-Hong Ye
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Tang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Kai-Yun Fu
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| | - Wen-Chao Guo
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| |
Collapse
|
6
|
Biswas T, Vogel H, Biedermann PHW, Lehenberger M, Yuvaraj JK, Andersson MN. Few chemoreceptor genes in the ambrosia beetle Trypodendron lineatum may reflect its specialized ecology. BMC Genomics 2024; 25:764. [PMID: 39107741 PMCID: PMC11302349 DOI: 10.1186/s12864-024-10678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species. RESULTS We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum ('Tlin'). Across gene families, T. lineatum has fewer chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabripennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage radiations, especially among the bitter taste GRs and the 'divergent' IRs, and the absence of alternatively spliced GR genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we found no orthologue in the 'GR215 clade', which is widely conserved across Coleoptera. Two TlinORs are orthologous to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf volatiles (GLVs), respectively. CONCLUSIONS Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obligate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy correlates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors is a general trait in this specialized group of beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Stegen-Wittental, Germany
| | | | | | - Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| |
Collapse
|
7
|
Cedden D, Güney G, Toprak U. The integral role of de novo lipogenesis in the preparation for seasonal dormancy. Proc Natl Acad Sci U S A 2024; 121:e2406194121. [PMID: 38990942 PMCID: PMC11260141 DOI: 10.1073/pnas.2406194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.
Collapse
Affiliation(s)
- Doga Cedden
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen37077, Germany
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen37077, Germany
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
| |
Collapse
|
8
|
Kaplanoglu E, Scott IM, Vickruck J, Donly C. Role of CYP9E2 and a long non-coding RNA gene in resistance to a spinosad insecticide in the Colorado potato beetle, Leptinotarsa decemlineata. PLoS One 2024; 19:e0304037. [PMID: 38787856 PMCID: PMC11125468 DOI: 10.1371/journal.pone.0304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Spinosads are insecticides used to control insect pests, especially in organic farming where limited tools for pest management exist. However, resistance has developed to spinosads in economically important pests, including Colorado potato beetle (CPB), Leptinotarsa decemlineata. In this study, we used bioassays to determine spinosad sensitivity of two field populations of CPB, one from an organic farm exposed exclusively to spinosad and one from a conventional farm exposed to a variety of insecticides, and a reference insecticide naïve population. We found the field populations exhibited significant levels of resistance compared with the sensitive population. Then, we compared transcriptome profiles between the two field populations to identify genes associated primarily with spinosad resistance and found a cytochrome P450, CYP9E2, and a long non-coding RNA gene, lncRNA-2, were upregulated in the exclusively spinosad-exposed population. Knock-down of these two genes simultaneously in beetles of the spinosad-exposed population using RNA interference (RNAi) resulted in a significant increase in mortality when gene knock-down was followed by spinosad exposure, whereas single knock-downs of each gene produced smaller effects. In addition, knock-down of the lncRNA-2 gene individually resulted in significant reduction in CYP9E2 transcripts. Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 transcript. Our results imply that CYP9E2 and lncRNA-2 jointly contribute to spinosad resistance in CPB, and lncRNA-2 is involved in regulation of CYP9E2 expression. These results provide evidence that metabolic resistance, driven by overexpression of CYP and lncRNA genes, contributes to spinosad resistance in CPB.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ian M. Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jessica Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Balart-García P, Bradford TM, Beasley-Hall PG, Polak S, Cooper SJB, Fernández R. Highly dynamic evolution of the chemosensory system driven by gene gain and loss across subterranean beetles. Mol Phylogenet Evol 2024; 194:108027. [PMID: 38365165 DOI: 10.1016/j.ympev.2024.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Chemical cues in subterranean habitats differ highly from those on the surface due to the contrasting environmental conditions, such as absolute darkness, high humidity or food scarcity. Subterranean animals underwent changes to their sensory systems to facilitate the perception of essential stimuli for underground lifestyles. Despite representing unique systems to understand biological adaptation, the genomic basis of chemosensation across cave-dwelling species remains unexplored from a macroevolutionary perspective. Here, we explore the evolution of chemoreception in three beetle tribes that underwent at least six independent transitions to the underground, through a phylogenomics spyglass. Our findings suggest that the chemosensory gene repertoire varies dramatically between species. Overall, no parallel changes in the net rate of evolution of chemosensory gene families were detected prior, during, or after the habitat shift among subterranean lineages. Contrarily, we found evidence of lineage-specific changes within surface and subterranean lineages. However, our results reveal key duplications and losses shared between some of the lineages transitioning to the underground, including the loss of sugar receptors and gene duplications of the highly conserved ionotropic receptors IR25a and IR8a, involved in thermal and humidity sensing among other olfactory roles in insects. These duplications were detected both in independent subterranean lineages and their surface relatives, suggesting parallel evolution of these genes across lineages giving rise to cave-dwelling species. Overall, our results shed light on the genomic basis of chemoreception in subterranean beetles and contribute to our understanding of the genomic underpinnings of adaptation to the subterranean lifestyle at a macroevolutionary scale.
Collapse
Affiliation(s)
- Pau Balart-García
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Tessa M Bradford
- Environment Institute, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, Adelaide, South Australia 5000, Australia
| | - Perry G Beasley-Hall
- Environment Institute, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, Adelaide, South Australia 5000, Australia
| | - Slavko Polak
- Notranjska Museum Postojna, Kolodvorska c. 3, 6230 Postojna, Slovenia
| | - Steven J B Cooper
- Environment Institute, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, Adelaide, South Australia 5000, Australia
| | - Rosa Fernández
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
10
|
Xing L, Liu B, Yu D, Tang X, Sun J, Zhang B. A near-complete genome assembly of Monochamus alternatus a major vector beetle of pinewood nematode. Sci Data 2024; 11:312. [PMID: 38531927 DOI: 10.1038/s41597-024-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dunyang Yu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xuan Tang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Cucini C, Boschi S, Funari R, Cardaioli E, Iannotti N, Marturano G, Paoli F, Bruttini M, Carapelli A, Frati F, Nardi F. De novo assembly and annotation of Popillia japonica's genome with initial clues to its potential as an invasive pest. BMC Genomics 2024; 25:275. [PMID: 38475721 PMCID: PMC10936072 DOI: 10.1186/s12864-024-10180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.
Collapse
Affiliation(s)
- Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Sara Boschi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Elena Cardaioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Nicola Iannotti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Francesco Paoli
- Council for Agricultural Research and Agricultural Economy Analysis (CREA), Florence, Italy
| | - Mirella Bruttini
- Department of Medical Biotechnologies, Medical Biotech Hub and Competence Centre, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
12
|
Davidson PL, Moczek AP. Genome evolution and divergence in cis-regulatory architecture is associated with condition-responsive development in horned dung beetles. PLoS Genet 2024; 20:e1011165. [PMID: 38442113 PMCID: PMC10942260 DOI: 10.1371/journal.pgen.1011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/15/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Phenotypic plasticity is thought to be an important driver of diversification and adaptation to environmental variation, yet the genomic mechanisms mediating plastic trait development and evolution remain poorly understood. The Scarabaeinae, or true dung beetles, are a species-rich clade of insects recognized for their highly diversified nutrition-responsive development including that of cephalic horns-evolutionarily novel, secondary sexual weapons that exhibit remarkable intra- and interspecific variation. Here, we investigate the evolutionary basis for horns as well as other key dung beetle traits via comparative genomic and developmental assays. We begin by presenting chromosome-level genome assemblies of three dung beetle species in the tribe Onthophagini (> 2500 extant species) including Onthophagus taurus, O. sagittarius, and Digitonthophagus gazella. Comparing these assemblies to those of seven other species across the order Coleoptera identifies evolutionary changes in coding sequence associated with metabolic regulation of plasticity and metamorphosis. We then contrast chromatin accessibility in developing head horn tissues of high- and low-nutrition O. taurus males and females and identify distinct cis-regulatory architectures underlying nutrition- compared to sex-responsive development, including a large proportion of recently evolved regulatory elements sensitive to horn morph determination. Binding motifs of known and new candidate transcription factors are enriched in these nutrition-responsive open chromatin regions. Our work highlights the importance of chromatin state regulation in mediating the development and evolution of plastic traits, demonstrates gene networks are highly evolvable transducers of environmental and genetic signals, and provides new reference-quality genomes for three species that will bolster future developmental, ecological, and evolutionary studies of this insect group.
Collapse
Affiliation(s)
- Phillip L. Davidson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Chen Y, Tang H, Zhou W, Li C, Chen YN, Zhang Q, Fu KY, Guo WC, Shi JF. Identification of chitinase genes and roles in the larval-pupal transition of Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2024; 80:282-295. [PMID: 37671631 DOI: 10.1002/ps.7754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Insect chitinases play crucial roles in degrading chitin in the extracellular matrix, affecting insect development and molting. However, our understanding of the specific functions of various chitinases in Leptinotarsa decemlineata is limited, hindering the deployment of novel gene-targeting technologies as pest management strategies. RESULTS We identified and characterized 19 full-length complementary DNA (cDNA) sequences of chitinase genes (LdChts) in Leptinotarsa decemlineata. Despite having varying domain architectures, all these chitinases contained at least one chitinase catalytic domain. Phylogenetic analysis classified the chitinase proteins into ten distinct clusters (groups I-X). Expression profiles showed the highest expression in chitin-rich tissues or during specific developmental stages from the larva-to-pupa transition. Gene-specific RNA interference (RNAi) experiments provided valuable insight into chitinase gene function. Silencing of group II LdCht10 prevented larval-larval molting, larval-prepupal, and prepupal-pupal processes. Moreover, our study revealed that LdCht5, LdCht2, LdCht11, LdCht1, and LdCht3 from groups I and VII-X were specifically essential for the transition from prepupal to pupal stage, whereas LdIDGF2 from group V was necessary for the larval-prepupal metamorphic process. The chitinase gene LdCht7 from group III and LdIDGF4 from group V were involved in both the larva-to-prepupa and the prepupa-to-pupa shift. Additionally, our findings also shed light on the exclusive expression of nine chitinase genes within group IV in the digestive system, suggesting their potential role in regulating larval body weight and larva-to-pupa transition. CONCLUSION Our results provide a comprehensive understanding of the functional specialization of chitinase genes during the molting process of various stages and identify potential targets for RNAi-based management of Leptinotarsa decemlineata. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Tang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Chang Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Yi-Nan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Kai-Yun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ji-Feng Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Sedlák P, Sedláková V, Vašek J, Melounová M, Čílová D, Vejl P, Habuštová OS, Doležal P, Hausvater E. Investigation of genetic diversity and polyandry of Leptinotarsa decemlineata using X-linked microsatellite markers. Sci Rep 2023; 13:21887. [PMID: 38081876 PMCID: PMC10713635 DOI: 10.1038/s41598-023-49002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
A panel of X-linked microsatellite markers was newly designed using the data from a previous sequencing project available in NCBI and used for a study of the Colorado potato beetle (CPB, Leptinotarsa decemlineata) X-haplotype variability. The analysis of scaffolds 49 and 61 (newly identified as fragments of CPB chromosome X) found ten high-quality markers, which were arranged in two PCR multiplexes and evaluated in both 420 CPB adults, collected from 14 localities of Czechia and Slovakia, and 866 larvae from five single-female families from two more Czech localities. Length polymorphisms found in 6 loci have predicted 192 potential X-haplotypes, however, only 36 combinations were detected in the adult males (N = 189), and seven additional ones in the larvae. The X-haplotypes were also generally unevenly distributed; five of the most frequent haplotypes were detected in 55% of males, 19 repeating up to ten-times in 38.7% of males and the remained 12 occurred uniquely in 6.3% of males. Bulk analysis of X-haplotypes dissimilarity indicated seven haplotype groups diversified by mutations and recombinations. Two haplotypes showed a distinctive regional distribution, which indicates an east-west disruption of CPB migration probably caused by different environments of localities in the South Bohemia region and Vysocina region. On the contrary, the results indicate a south-north migration corridor alongside the Vltava River. In the single-female families, from 6 to 13 distinct paternal haplotypes were detected, which proved and quantified a frequented polyandry in CPB.
Collapse
Affiliation(s)
- P Sedlák
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic.
| | - V Sedláková
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic
| | - J Vašek
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic
| | - M Melounová
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic
| | - D Čílová
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic
| | - P Vejl
- Department of Genetics and Breeding, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Suchdol, Czech Republic
| | - O Skoková Habuštová
- Biology Centre, Institute of Entomology, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - P Doležal
- Department of Potato Protection, Potato Research Institute Havlíčkův Brod. Ltd., Dobrovského 2366, 58001, Havlíčkův Brod, Czech Republic
| | - E Hausvater
- Department of Potato Protection, Potato Research Institute Havlíčkův Brod. Ltd., Dobrovského 2366, 58001, Havlíčkův Brod, Czech Republic
| |
Collapse
|
15
|
Abendroth JA, Moural TW, Wei H, Zhu F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. FRONTIERS IN INSECT SCIENCE 2023; 3:1274197. [PMID: 38469469 PMCID: PMC10926425 DOI: 10.3389/finsc.2023.1274197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 03/13/2024]
Abstract
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Collapse
Affiliation(s)
- James A. Abendroth
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
16
|
Pinto MMD, Ferreira Dos Santos R, De Bortoli SA, Moar W, Jurat-Fuentes JL. Lack of fitness costs in dsRNA-resistant Leptinotarsa decemlineata ([Coleoptera]: [Chrysomelidae]). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1352-1359. [PMID: 37262318 DOI: 10.1093/jee/toad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say) ([Coleoptera]: [Chrysomelidae]), is the most important defoliator of solanaceous plants worldwide. This insect displays a notorious ability in adapting to biological and synthetic insecticides, although in some cases this adaptation carries relevant fitness costs. Insecticidal gene silencing by RNA interference is a novel mode of action pesticide against L. decemlineata that is activated by ingestion of a double stranded RNA (dsRNA) targeting a vital L. decemlineata gene. We previously reported laboratory selection of a > 11,000-fold resistant strain of L. decemlineata to a dsRNA delivered topically to potato leaves. In this work, we tested the existence of fitness costs in this dsRNA-resistant colony by comparing biological parameters to the parental strain and an additional susceptible reference strain. Biological parameters included length of egg incubation period, number of eggs per clutch, egg viability, larval viability, length of larval and pupal periods, adult emergence, number of eggs laid per day, sex ratio, and adult longevity. Comparisons between the 3 beetle strains detected no fitness costs associated with resistance to dsRNA. This information is important to guide effective insect resistance management plans for dsRNA insecticides against L. decemlineata applied topically to potato leaves.
Collapse
Affiliation(s)
- M M D Pinto
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
- Department of Agricultural Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, SP, Brazil
| | - R Ferreira Dos Santos
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - S A De Bortoli
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
- Department of Agricultural Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, SP, Brazil
| | - W Moar
- Bayer Crop Science, Chesterfield, MO, USA
| | - J L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
17
|
Peláez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Nelson Dittrich AC, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JLM, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. G3 (BETHESDA, MD.) 2023; 13:jkad133. [PMID: 37317982 PMCID: PMC10411586 DOI: 10.1093/g3journal/jkad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/19/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.
Collapse
Affiliation(s)
- Julianne N Peláez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M Aguilar
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anna C Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C Groen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - David H Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J Ochoa
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K O’Connor
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman A, Li B. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 2023; 21:141. [PMID: 37337183 DOI: 10.1186/s12915-023-01638-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. RESULTS Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. CONCLUSIONS Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yansong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bryce Summerhays
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Xiaohan Shu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yumary Vasquez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Hannah Vansant
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Christy Grenier
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Nicolette Gonzalez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Khyati Kansagra
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Ryan Cartmill
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | | | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Zoology & Ecology, Hungarian University of Agriculture & Life Sciences, Godollo, Hungary
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arun Sethuraman
- Department of Biological Sciences, California State University, San Marcos, CA, USA.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
19
|
Sun Z, Chen Y, Chen Y, Lu Z, Gui F. Tracking Adaptive Pathways of Invasive Insects: Novel Insight from Genomics. Int J Mol Sci 2023; 24:8004. [PMID: 37175710 PMCID: PMC10179030 DOI: 10.3390/ijms24098004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the huge human and economic costs of invasive insects, which are the main group of invasive species, their environmental impacts through various mechanisms remain inadequately explained in databases and much of the invasion biology literature. High-throughput sequencing technology, especially whole-genome sequencing, has been used as a powerful method to study the mechanisms through which insects achieve invasion. In this study, we reviewed whole-genome sequencing-based advances in revealing several important invasion mechanisms of invasive insects, including (1) the rapid genetic variation and evolution of invasive populations, (2) invasion history and dispersal paths, (3) rapid adaptation to different host plant ranges, (4) strong environmental adaptation, (5) the development of insecticide resistance, and (6) the synergistic damage caused by invasive insects and endosymbiotic bacteria. We also discussed prevention and control technologies based on whole-genome sequencing and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
20
|
Ye Z, Lu R, Li C, Yang D, Zeng Z, Lin W, Cheng J, Yang Z, Wang L, Gao Y, Huang S, Zhang X, Li S. Haplotype-resolved and chromosome-level genome assembly of Colorado potato beetle. J Genet Genomics 2023:S1673-8527(23)00092-9. [PMID: 37080287 DOI: 10.1016/j.jgg.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Ziqi Ye
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Ruirui Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Chao Li
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis, Ministry of Agriculture and Rural Affairs, College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Doudou Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Zhuozhen Zeng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, Guangdong 518000, China
| | - Weichao Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Jie Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Zhongmin Yang
- College of Horticulture, Xinjiang Agricultural University, Urumuqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China; Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China.
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
21
|
Zhang Z, Pei P, Zhang M, Li F, Tang G. Chromosome-level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure. PEST MANAGEMENT SCIENCE 2023; 79:1467-1482. [PMID: 36502364 DOI: 10.1002/ps.7319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dastarcus helophoroides is an important natural enemy of cerambycids, and is wildly used in biological control of pests. Nevertheless, the absence of complete genomic information limits the investigation of the underlying molecular mechanisms. Here, a chromosome-level of Dastarcus helophoroides genome is assembled using a combination strategy of Illumina, PacBio, 10x™ Genomics, and Hi-C. RESULTS The final assembly is 609.09 Mb with contig N50, scaffold N50 and GC content of 5.46 Mb, 42.56 Mb and 31.50%, respectively, and 95.25% of the contigs anchor into 13 chromosomes. In total 14 890 protein-coding genes and 65.37% repeat sequences are predicted in the assembly genome. The phylogenetic analysis of single-copy gene families shared among 20 insect species indicates that Dastarcus helophoroides is placed as the sister species to clade (Nitidulidae+Curculionoidea+Chrysomeloidea) + Tenebrionoidea, and diverges from the related species ~242.9 Mya. In total 36 expanded gene families are identified in Dastarcus helophoroides genome, and are functionally related to drug metabolism and metabolism of xenobiotics by cytochrome P450. Some members of CYP4 Clade and CYP6 Clade are up-regulated in Dastarcus helophoroides adults upon insecticide exposure, of which expressions of DhCYP4Q, DhCYP6A14X1 and DhCYP4C1 are significantly up-regulated. The silencing of the three genes leads to adults more sensitive to insecticide and increased knocked-down rate, which may indicate their critical roles in stress resistance and detoxication. CONCLUSION Our study systematically integrated the chromosome-level genome, transcriptome and gene expression of Dastarcus helophoroides, which will provide valuable resources for understanding mechanisms of pesticide metabolism, growth and development, and utilization of the natural enemy in integrated control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Pei Pei
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Feifei Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
22
|
Rainio MJ, Margus A, Tikka S, Helander M, Lindström L. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104503. [PMID: 36935035 DOI: 10.1016/j.jinsphys.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
23
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
Pelaez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Dittrich ACN, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JL, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532987. [PMID: 36993186 PMCID: PMC10055167 DOI: 10.1101/2023.03.16.532987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .
Collapse
Affiliation(s)
- Julianne N. Pelaez
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T. Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, Bethesda, MD 20894, USA
| | | | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Anna C. Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Ithaca NY 14853 USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, OR, CA 97403, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | - Joseph L.M. Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C. Groen
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California-Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - David H. Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J. Ochoa
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K. O’Connor
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Koutsogeorgiou EI, Kouloussis NA, Sarrou E, Andreadis SS. Headspace determination of the volatile organic compounds (VOCs) emitted by host plants of the brown marmorated stink bug Halyomorpha halys. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2188219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Eleni I. Koutsogeorgiou
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| | - Nikos A. Kouloussis
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| | - Stefanos S. Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| |
Collapse
|
26
|
Bastarache P, Bouafoura R, Omakele E, Moffat CE, Vickruck JL, Morin PJ. Spinosad-associated modulation of select cytochrome P450s and glutathione S-transferases in the Colorado potato beetle, Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21993. [PMID: 36546461 DOI: 10.1002/arch.21993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.
Collapse
Affiliation(s)
- Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Raed Bouafoura
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Enock Omakele
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
27
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
28
|
Thia JA, Korhonen PK, Young ND, Gasser RB, Umina PA, Yang Q, Edwards O, Walsh T, Hoffmann AA. The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range. J Evol Biol 2023; 36:381-398. [PMID: 36573922 PMCID: PMC10107102 DOI: 10.1111/jeb.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 12/28/2022]
Abstract
Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.
Collapse
Affiliation(s)
- Joshua A Thia
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Qiong Yang
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Owain Edwards
- Land and Water, CSIRO, Floreat, Western Australia, Australia
| | - Tom Walsh
- CSIRO, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia.,Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Starchevskaya M, Kamanova E, Vyatkin Y, Tregubchak T, Bauer T, Bodnev S, Rotskaya U, Polenogova O, Kryukov V, Antonets D. The Metagenomic Analysis of Viral Diversity in Colorado Potato Beetle Public NGS Data. Viruses 2023; 15:v15020395. [PMID: 36851611 PMCID: PMC9963324 DOI: 10.3390/v15020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.
Collapse
Affiliation(s)
- Maria Starchevskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
- Novel Software Systems LLC, Akademika Lavrentiev ave. 6, 630090 Novosibirsk, Russia
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia
- Correspondence:
| | - Ekaterina Kamanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
- Novel Software Systems LLC, Akademika Lavrentiev ave. 6, 630090 Novosibirsk, Russia
| | - Yuri Vyatkin
- Novel Software Systems LLC, Akademika Lavrentiev ave. 6, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
| | - Tatyana Tregubchak
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Tatyana Bauer
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Sergei Bodnev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia
| | - Vadim Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia
| | - Denis Antonets
- Novel Software Systems LLC, Akademika Lavrentiev ave. 6, 630090 Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov ave. 27, 119192 Moscow, Russia
| |
Collapse
|
30
|
Yan J, Zhang C, Zhang M, Zhou H, Zuo Z, Ding X, Zhang R, Li F, Gao Y. Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata. Sci Data 2023; 10:36. [PMID: 36653371 PMCID: PMC9849343 DOI: 10.1038/s41597-023-01950-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is one of the most notorious insect pests of potatoes globally. Here, we generated a high-quality chromosome-level genome assembly of L. decemlineata using a combination of the PacBio HiFi sequencing and Hi-C scaffolding technologies. The genome assembly (-1,008 Mb) is anchored to 18 chromosomes (17 + XO), with a scaffold N50 of 58.32 Mb. It contains 676 Mb repeat sequences and 29,606 protein-coding genes. The chromosome-level genome assembly of L. decemlineata provides in-depth knowledge and will be a helpful resource for the beetle and invasive biology research communities.
Collapse
Affiliation(s)
- Junjie Yan
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chaowei Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Mengdi Zhang
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hang Zhou
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Zhangqi Zuo
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xinhua Ding
- grid.433811.c0000 0004 1798 1482Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Runzhi Zhang
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fei Li
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yulin Gao
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
31
|
Coates BS, Walden KKO, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N, Wang YH, Han J, Xuan JL, Willadsen P, Wang H, French BW, Bansal R, Sedky S, Souza D, Bunn D, Meinke LJ, Miller NJ, Siegfried BD, Sappington TW, Robertson HM. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 2023; 24:19. [PMID: 36639634 PMCID: PMC9840275 DOI: 10.1186/s12864-022-08990-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
Collapse
Affiliation(s)
- Brad S. Coates
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Kimberly K. O. Walden
- grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Champaign-Urbana, Urbana, IL USA
| | - Dimpal Lata
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | | | - Robert F. Mitchell
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Martin N. Andersson
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Rachel McKay
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Marcé D. Lorenzen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Nathaniel Grubbs
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Yu-Hui Wang
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jinlong Han
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jing Li Xuan
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Peter Willadsen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Huichun Wang
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - B. Wade French
- grid.508981.dIntegrated Crop Systems Research Unit, USDA-ARS, Brookings, SD USA
| | - Raman Bansal
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Sammy Sedky
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Dariane Souza
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Dakota Bunn
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Lance J. Meinke
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - Nicholas J. Miller
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Blair D. Siegfried
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Thomas W. Sappington
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Hugh M. Robertson
- grid.35403.310000 0004 1936 9991Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL USA
| |
Collapse
|
32
|
Liu D, De Schutter K, Far J, Staes A, Dewettinck K, Quinton L, Gevaert K, Smagghe G. RNAi of Mannosidase-Ia in the Colorado potato beetle and changes in the midgut and peritrophic membrane. PEST MANAGEMENT SCIENCE 2022; 78:5071-5079. [PMID: 36053804 DOI: 10.1002/ps.7145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In addition to its role in the digestive system, the peritrophic membrane (PM) provides a physical barrier protecting the intestine from abrasion and against pathogens. Because of its sensitivity to RNA interference (RNAi), the notorious pest insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata), has become a model insect for functional studies. Previously, RNAi-mediated silencing of Mannosidase-Ia (ManIa), a key enzyme in the transition from high-mannose glycan moieties to paucimannose N-glycans, was shown to disrupt the transition from larva to pupa and the metamorphosis into adult beetles. While these effects at the organismal level were interesting in a pest control context, the effects at the organ or tissue level and also immune effects have not been investigated yet. To fill this knowledge gap, we performed an analysis of the midgut and PM in ManIa-silenced insects. RESULTS As marked phenotype, the ManIaRNAi insects, the PM pore size was found to be decreased when compared to the control GFPRNAi insects. These smaller pores are related to the observation of thinner microvilli (Mv) on the epithelial cells of the midgut of ManIaRNAi insects. A midgut and PM proteome study and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis with a selection of marker genes was performed to characterize the midgut cells and understand their response to the silencing of ManIa. In agreement with the loss of ManIa activity, an accumulation of high-mannose N-glycans was observed in the ManIa-silenced insects. As a pathogen-associated molecular pattern (PAMP), the presence of these glycan structures could trigger the activation of the immune pathways. CONCLUSION The observed decrease in PM pore size could be a response to prevent potential pathogens to access the midgut epithelium. This hypothesis is supported by the strong increase in transcription levels of the anti-fungal peptide drosomycin-like in ManIaRNAi insects, although further research is required to elucidate this possibility. The potential immune response in the midgut and the smaller pore size in the PM shed a light on the function of the PM as a physical barrier and provide evidence for the relation between the Mv and PM. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Loic Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Bee-safe peptidomimetic acaricides achieved by comparative genomics. Sci Rep 2022; 12:17263. [PMID: 36241660 PMCID: PMC9568543 DOI: 10.1038/s41598-022-20110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023] Open
Abstract
The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey bee-safe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa mite-selective acaricides, hence, expedited translational processes.
Collapse
|
34
|
Yang AJ, Yin NN, Chen DL, Guo YR, Zhao YJ, Liu NY. Identification and characterization of candidate detoxification genes in Pharsalia antennata Gahan (Coleoptera: Cerambycidae). Front Physiol 2022; 13:1015793. [PMID: 36187767 PMCID: PMC9523569 DOI: 10.3389/fphys.2022.1015793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The wood-boring beetles, including the majority of Cerambycidae, have developed the ability to metabolize a variety of toxic compounds derived from host plants and the surrounding environment. However, detoxification mechanisms underlying the evolutionary adaptation of a cerambycid beetle Pharsalia antennata to hosts and habitats are largely unexplored. Here, we characterized three key gene families in relation to detoxification (cytochrome P450 monooxygenases: P450s, carboxylesterases: COEs and glutathione-S-transferases: GSTs), by combinations of transcriptomics, gene identification, phylogenetics and expression profiles. Illumina sequencing generated 668,701,566 filtered reads in 12 tissues of P. antennata, summing to 100.28 gigabases data. From the transcriptome, 215 genes encoding 106 P450s, 77 COEs and 32 GSTs were identified, of which 107 relatives were differentially expressed genes. Of the identified 215 genes, a number of relatives showed the orthology to those in Anoplophora glabripennis, revealing 1:1 relationships in 94 phylogenetic clades. In the trees, P. antennata detoxification genes mainly clustered into one or two subfamilies, including 64 P450s in the CYP3 clan, 33 COEs in clade A, and 20 GSTs in Delta and Epsilon subclasses. Combining transcriptomic data and PCR approaches, the numbers of detoxification genes expressed in abdomens, antennae and legs were 188, 148 and 141, respectively. Notably, some genes exhibited significantly sex-biased levels in antennae or legs of both sexes. The findings provide valuable reference resources for further exploring xenobiotics metabolism and odorant detection in P. antennata.
Collapse
Affiliation(s)
- An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Dan-Lu Chen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- *Correspondence: Nai-Yong Liu,
| |
Collapse
|
35
|
Liu D, De Schutter K, Chen P, Smagghe G. The N-glycosylation-related genes as potential targets for RNAi-mediated pest control of the Colorado potato beetle (Leptinotarsa decemlineata). PEST MANAGEMENT SCIENCE 2022; 78:3815-3822. [PMID: 34821017 DOI: 10.1002/ps.6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND N-glycosylation is one of the most common and important post-translational modifications in the eukaryotic cell. The study of protein N-glycosylation in several model insects confirmed the importance of this process in insect development, immunity, survival and fertility. The Colorado potato beetle (Leptinotarsa decemlineata) (CPB) is a common pest of Solanaceae crops. With the infamous title of champion of insecticide resistance, novel pest control strategies for this insect are needed. Luckily this pest insect is reported as very sensitive for the post-genomic technology of RNA interference (RNAi). RESULTS In this project, we investigated the importance of N-glycosylation in the survival and development of CPB using RNAi-mediated gene silencing of N-glycosylation-related genes (NGRGs) during the different transition steps from the larva, through the pupa to the adult stage. High mortality was observed in the larval stage with the silencing of early NGRGs, as STT3a, DAD1 and GCS1. With dsRNA against middle NGRGs, abnormal phenotypes at the ecdysis process and adult formation were observed, while the silencing of late NGRGs did not cause mortality. CONCLUSION The lethal phenotypes observed on silencing of the genes involved in the early processing steps of the N-glycosylation pathway suggest these genes are good candidates for RNAi-mediated control of CPB. Next to the gene-specific mechanism of RNAi for biosafety and possible implementation in integrated pest management, we believe these early NGRGs provide a possible alternative to the well-known target genes Snf7 and vacuolar ATPases that are now used in the first commercial RNAi-based products and thus they may be useful in the context of proactive resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pengyu Chen
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Özkan Koca A, Berkcan SB, Laçın Alas B, Kandemir İ. Population structure and pattern of geographic differentiation of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) in Turkey. PEST MANAGEMENT SCIENCE 2022; 78:3804-3814. [PMID: 34596319 DOI: 10.1002/ps.6663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Colorado potato beetle (CPB) is the most harmful pest of potato in potato cultivation regions globally. Although it is an economically important agricultural pest, the population structure and colonization route of this species in Turkey are uncertain. We used microsatellite and mitochondrial DNA (mtDNA) markers to obtain information about the population source, structure and bio-invasion route of CPB populations in Turkey. RESULTS The common single mtDNA haplotype in European CPB populations was obtained in all Turkish CPB populations based on mtDNA data analysis. However, microsatellites revealed a low level of genetic variation in CPB populations. The results of microsatellite analysis [factorial correspondence analysis (FCA), Bayesian analysis of genetic population structure (BAPS), unweighted pair group method with arithmetic mean (UPGMA) dendrogram, F-statistics and Nei's distances] indicated three groups for invasive CPB: Thrace-Marmara and Aegean; Black Sea, Central Anatolia and Mediterranean; Northeastern Anatolia. Region-specific alleles have been identified in regions, where commercial potato cultivation and insecticide use are intensive. CONCLUSION The detection of a single fixed European haplotype in all Turkish populations has proved that CPB in Turkey originated from Europe as a result of a founder event occurred in European populations. Low genetic variation was due to the short time period since the spread of CPB from America to Europe. The highest number of private alleles were found in the top commercial potato cultivation region-Central Anatolia from where the CPB populations spread to other parts of Turkey. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayça Özkan Koca
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Maltepe University, Maltepe-Istanbul, Turkey
| | - Salih B Berkcan
- Department of Biology, Faculty of Science, Ankara University, Beşevler-Ankara, Turkey
| | - Burcu Laçın Alas
- Department of Biology, Faculty of Science, Ankara University, Beşevler-Ankara, Turkey
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - İrfan Kandemir
- Department of Biology, Faculty of Science, Ankara University, Beşevler-Ankara, Turkey
| |
Collapse
|
37
|
Robles-Fort A, Pescador-Dionisio S, García-Robles I, Sentandreu V, Martínez-Ramírez AC, Real MD, Rausell C. Unveiling gene expression regulation of the Bacillus thuringiensis Cry3Aa toxin receptor ADAM10 by the potato dietary miR171c in Colorado potato beetle. PEST MANAGEMENT SCIENCE 2022; 78:3760-3768. [PMID: 34846789 DOI: 10.1002/ps.6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Colorado potato beetle (CPB) is a worldwide devastating pest of potato plants and other Solanaceae characterized by its remarkable ability to evolve resistance to insecticides. Bacillus thuringiensis (Bt) Cry3Aa toxin represents an environmentally safe alternative for CPB control but larvae susceptibility to this toxin has been reported to vary depending on the host plant on which larvae feed. To gain more insight into how nutrition mediates Bt tolerance through effects on gene expression, here we explored the post-transcriptional regulation by microRNAs (miRNAs) of the CPB-ADAM10 gene encoding the Cry3Aa toxin functional receptor ADAM10. RESULTS The lower CPB-ADAM10 gene expression in CPB larvae fed on potato plants cv. Vivaldi than those fed on potato cv. Monalisa or tomato plants was inversely related to Cry3Aa toxicity. By high-throughput sequencing we identified seven CPB miRNAs and one potato miRNA predicted to base pair with the CPB-ADAM10 messenger RNA. No differential expression of the endogenous lde-miR1175-5p was found in larvae feeding on any of the two potato plant varieties. However, statistically significant increased amounts of potato stu-miR171c-5p were detected in CPB larvae fed on potato cv. Vivaldi compared to larvae fed on potato cv. Monalisa. CONCLUSION Our results support a role for dietary miRNAs in Bt toxicity by regulating the CPB-ADAM10 gene encoding the Cry3Aa toxin receptor ADAM10 in CPB larvae and opening up the possibility of exploiting plant natural variation in miRNAs to provide more sustainable potato crop protection against CPB. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, Spain
| | | | | | - Vicente Sentandreu
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Spain
| | - Amparo C Martínez-Ramírez
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Spain
| | - M Dolores Real
- Department of Genetics, University of Valencia, Burjassot, Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, Spain
| |
Collapse
|
38
|
Shen CH, Jin L, Fu KY, Guo WC, Li GQ. RNA interference targeting Ras GTPase gene Ran causes larval and adult lethality in Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2022; 78:3849-3858. [PMID: 35104039 DOI: 10.1002/ps.6822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a breakthrough technology in pest control. It is highly efficient to Coleopteran pests such as the Colorado potato beetle Leptinotarsa decemlineata, a serious pest defoliator mainly attacking potatoes worldwide. The first step for effective pest control by RNAi is the development of effective and reliable target genes. RESULTS Our results revealed that continuous ingestion of dsLdRan for 3 days successfully silenced the target gene, inhibited larval growth and killed 100% L. decemlineata larvae. When the bioassay began at the second-, third/fourth-instar larval stages, the larval lethality mainly occurred at the fourth larval instar and prepupal stages, respectively. Importantly, consumption of dsLdRan for 3 days by the newly-emerged males and females effectively knocked down the target transcript, reduced fresh weights and caused 100% of lethality within a week. The LdRan females possessed underdeveloped ovaries. CONCLUSION Considering that the larvae, adults and eggs are simultaneously sited on the potato plants, bacterially-expressed dsLdRan is a potential RNAi-based strategy for managing L. decemlineata in the potato field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen-Hui Shen
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-western Oasis, Ministry of Agriculture, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Horn T, Narov KD, Panfilio KA. Persistent Parental RNAi in the Beetle Tribolium castaneum Involves Maternal Transmission of Long Double-Stranded RNA. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100064. [PMID: 36620196 PMCID: PMC9744488 DOI: 10.1002/ggn2.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/11/2023]
Abstract
Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle Tribolium castaneum, an RT-qPCR strategy to distinguish the presence of double-stranded RNA (dsRNA) from endogenous mRNA is reported. It is found that injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, it is shown that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, a phylogenomics profiling approach of candidate proteins is also presented. A visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by sequence-based evidence, is demonstrated. Repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi, are thereby documented. Overall, practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission for long-term, systemic knockdown are elucidated.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
| | - Kalin D. Narov
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| |
Collapse
|
40
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
Affiliation(s)
- Zhudong Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China
| | - Longsheng Xing
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | | | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China.
| |
Collapse
|
41
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
42
|
Recombinant Cathepsin L of Tribolium castaneum and Its Potential in the Hydrolysis of Immunogenic Gliadin Peptides. Int J Mol Sci 2022; 23:ijms23137001. [PMID: 35806001 PMCID: PMC9266932 DOI: 10.3390/ijms23137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.
Collapse
|
43
|
Nakajima Y, Ogura A. Genomics and effective trait candidates of edible insects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Lata D, Coates BS, Walden KKO, Robertson HM, Miller NJ. Genome size evolution in the beetle genus Diabrotica. G3 (BETHESDA, MD.) 2022; 12:jkac052. [PMID: 35234880 PMCID: PMC8982398 DOI: 10.1093/g3journal/jkac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.56 and 1.64 gigabase pairs and between 2.26 and 2.59 Gb, respectively, for the Diabrotica subgroups fucata and virgifera; the Acalymma vittatum genome size was around 1.65 Gb. This result indicated that a substantial increase in genome size occurred in the ancestor of the virgifera group. Further analysis of the fucata group and the virgifera group genome sequencing reads indicated that the genome size difference between the Diabrotica subgroups could be attributed to a higher content of transposable elements, mostly miniature inverted-transposable elements and gypsy-like long terminal repeat retroelements.
Collapse
Affiliation(s)
- Dimpal Lata
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Nicholas J Miller
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
45
|
Silva CP, Dias RO, Bernardes V, Barroso IG, Cardoso C, Ferreira C, Terra WR. Recruitment of lysosomal cathepsins B, L and D as digestive enzymes in Coleoptera. INSECT MOLECULAR BIOLOGY 2022; 31:225-240. [PMID: 34918424 DOI: 10.1111/imb.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The recruitment of the lysosomal cathepsins B (CAB), L (CAL) and D (CAD) as luminal digestive enzymes was investigated in 3 species of beetles. Gene expression was determined by RNA-seq in different regions of the midgut and in the carcasses from the transcriptomes of Dermestes maculatus, Tenebrio molitor and Zabrotes subfasciatus. These data together with phylogenetic analyses, allowed us to identify the sequences of the gene coding for digestive and lysosomal CABs, CADs and CALs in T. molitor and Z. subfasciatus and observe the absence of digestive cathepsins in D. maculatus. Comparisons of structures based on the overall similarity of modelled structures were performed and subsite residues in the lysosomal and digestive CALs were identified by molecular docking. The data showed that S2 subsites are very variable, probably as an adaption to a luminal digestive role. The survey of sequences of the gene coding for cathepsins in the genomes of 13 beetle species from different phylogenetic groups showed that expansion of CAL and CAB genes occurred only in the Cucujiformia clade. Several digestive CABs have a reduced occluding loop, probably to act as digestive enzymes. Pollen-feeding was proposed to be the selective pressure to recruit cathepsins as digestive enzymes in Cucujiformia beetles.
Collapse
Affiliation(s)
- Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanessa Bernardes
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| |
Collapse
|
46
|
Lin R, Yang M, Yao B. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. PLoS One 2022; 17:e0263462. [PMID: 35143545 PMCID: PMC8830634 DOI: 10.1371/journal.pone.0263462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Detoxification enzymes play significant roles in the interactions between insects and host plants, wherein detoxification-related genes make great contributions. As herbivorous pests, aphids reproduce rapidly due to parthenogenesis. They are good biological materials for studying the mechanisms that allow insect adaptation to host plants. Insect detoxification gene families are associated with insect adaptation to host plants. The Aphidinae is the largest subfamily in the Aphididae with at least 2483 species in 256 genera in 2 tribes: the Macrosiphini (with 3/4 of the species) and the Aphidini. Most aphid pests on crops and ornamental plants are Aphidinae. Members of the Aphidinae occur in nearly every region of the world. The body shape and colour vary significantly. To research the role that detoxification gene families played in the process of aphid adaptation to host evolution, we analyzed the phylogeny and evolution of these detoxification gene families in Aphidinae. In general, the P450/GST/CCE gene families contract, whereas the ABC/UGT families are conserved in Aphidinae species compared to these families in other herbivorous insects. Genus-specific expansions of P450 CYP4, and GST Delta have occurred in the genus Acyrthosiphon. In addition, the evolutionary rates of five detoxification gene families in the evolution process of Aphidinae are different. The comparison of five detoxification gene families among nine Aphidinae species and the estimated relative evolutionary rates provided herein support an understanding of the interaction between and the co-evolution of Aphidinae and plants.
Collapse
Affiliation(s)
- Rongmei Lin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (RL); (BY)
| | - Mengquan Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bowen Yao
- School of Science, Beijing University of Chemical Technology, Chaoyang District, Beijing, China
- * E-mail: (RL); (BY)
| |
Collapse
|
47
|
Diversity and Molecular Evolution of Odorant Receptor in Hemipteran Insects. INSECTS 2022; 13:insects13020214. [PMID: 35206787 PMCID: PMC8878081 DOI: 10.3390/insects13020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Insects’ behavior and ecology are closely related to their chemosensory systems, during which odorant receptors (ORs) play an essential role in host recognition. Although OR gene evolution has been studied in many insect orders, a comprehensive evolutionary analysis and expression of OR gene gain and loss events among diverse hemipteran species are still needed. In this study, we identified and analyzed the OR genes from hemipteran species systematically. The number of OR genes discovered in each species ranged from less than ten to hundreds. Gene gain and loss events of OR have occurred in several species in the seven major clades classified through phylogenetic analysis. Then, we discovered the amino acid differences between species to understand the molecular evolution of OR in the order Hemiptera through positive selection. This study lays a foundation for subsequent investigations into the molecular mechanisms of Hemiptera olfactory receptors involved in host recognition. Abstract Olfaction is a critical physiologic process for insects to interact with the environment, especially plant-emitted volatiles, during which odorant receptors (ORs) play an essential role in host recognition. Although OR gene evolution has been studied in many insect orders, a comprehensive evolutionary analysis and expression of OR gene gain and loss events among diverse hemipteran species are still required. In this study, we identified and analyzed 887 OR genes from 11 hemipteran species. The number of OR genes discovered in each species ranged from less than ten to hundreds. Phylogenetic analysis revealed that all identified Hemiptera OR genes were classified into seven major clades. Gene gain and loss events of OR have occurred in several species. Then, by positive selection, we discovered the amino acid differences between species to understand the molecular evolution of OR in the order Hemiptera. Additionally, we discussed how evolutionary analysis can aid the study of insect–plant communication. This study lays a foundation for subsequent investigations into the molecular mechanisms of Hemiptera olfactory receptors involved in host recognition.
Collapse
|
48
|
Genomic insight into the scale specialization of the biological control agent Novius pumilus (Weise, 1892). BMC Genomics 2022; 23:90. [PMID: 35100986 PMCID: PMC8805230 DOI: 10.1186/s12864-022-08299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the genus Novius Mulsant, 1846 (= Rodolia Mulsant, 1850) (Coleoptera, Coccinellidae), play important roles in the biological control of cotton cushion scale pests, especially those belonging to Icerya. Since the best-known species, the vedalia beetle Novius cardinalis (Mulsant, 1850) was introduced into California from Australia, more than a century of successful use in classical biological control, some species of Novius have begun to exhibit some field adaptations to novel but related prey species. Despite their economic importance, relatively little is known about the underlying genetic adaptations associated with their feeding habits. Knowledge of the genome sequence of Novius is a major step towards further understanding its biology and potential applications in pest control. RESULTS We report the first high-quality genome sequence for Novius pumilus (Weise, 1892), a representative specialist of Novius. Computational Analysis of gene Family Evolution (CAFE) analysis showed that several orthogroups encoding chemosensors, digestive, and immunity-related enzymes were significantly expanded (P < 0.05) in N. pumilus compared to the published genomes of other four ladybirds. Furthermore, some of these orthogroups were under significant positive selection pressure (P < 0.05). Notably, transcriptome profiling demonstrated that many genes among the significantly expanded and positively selected orthogroups, as well as genes related to detoxification were differentially expressed, when N. pumilus feeding on the nature prey Icerya compared with the no feeding set. We speculate that these genes are vital in the Icerya adaptation of Novius species. CONCLUSIONS We report the first Novius genome thus far. In addition, we provide comprehensive transcriptomic resources for N. pumilus. The results from this study may be helpful for understanding the association of the evolution of genes related to chemosensing, digestion, detoxification and immunity with the prey adaptation of insect predators. This will provide a reference for future research and utilization of Novius in biological control programs. Moreover, understanding the possible molecular mechanisms of prey adaptation also inform mass rearing of N. pumilus and other Novius, which may benefit pest control.
Collapse
|
49
|
Pélissié B, Chen YH, Cohen ZP, Crossley MS, Hawthorne DJ, Izzo V, Schoville SD. Genome resequencing reveals rapid, repeated evolution in the Colorado potato beetle. Mol Biol Evol 2022; 39:6511499. [PMID: 35044459 PMCID: PMC8826761 DOI: 10.1093/molbev/msac016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, non-mutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to non-pest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.
Collapse
Affiliation(s)
- Benjamin Pélissié
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA
| | - Zachary P Cohen
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael S Crossley
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Victor Izzo
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
50
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A scaffold-level genome assembly of a minute pirate bug, Orius laevigatus (Hemiptera: Anthocoridae), and a comparative analysis of insecticide resistance-related gene families with hemipteran crop pests. BMC Genomics 2022; 23:45. [PMID: 35012450 PMCID: PMC8751118 DOI: 10.1186/s12864-021-08249-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Syngenta Biotechnology Inc, Research Triangle Park, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|