1
|
Grimm K, Prilop L, Schön G, Gelderblom M, Misselhorn J, Gerloff C, Zittel S. Cerebellar Modulation of Sensorimotor Associative Plasticity Is Impaired in Cervical Dystonia. Mov Disord 2023; 38:2084-2093. [PMID: 37641392 DOI: 10.1002/mds.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND In recent years, cervical dystonia (CD) has been recognized as a network disorder that involves not only the basal ganglia but other brain regions, such as the primary motor and somatosensory cortex, brainstem, and cerebellum. So far, the role of the cerebellum in the pathophysiology of dystonia is only poorly understood. OBJECTIVE The objective of this study was to investigate the role of the cerebellum on sensorimotor associative plasticity in patients with CD. METHODS Sixteen patients with CD and 13 healthy subjects received cerebellar transcranial direct current stimulation (ctDCS) followed by a paired associative stimulation (PAS) protocol based on transcranial magnetic stimulation that induces sensorimotor associative plasticity. Across three sessions the participants received excitatory anodal, inhibitory cathodal, and sham ctDCS in a double-blind crossover design. Before and after the intervention, motor cortical excitability and motor symptom severity were assessed. RESULTS PAS induced an increase in motor cortical excitability in both healthy control subjects and patients with CD. In healthy subjects this effect was attenuated by both anodal and cathodal ctDCS with a stronger effect of cathodal stimulation. In patients with CD, anodal stimulation suppressed the PAS effect, whereas cathodal stimulation had no influence on PAS. Motor symptom severity was unchanged after the intervention. CONCLUSIONS Cerebellar modulation with cathodal ctDCS had no effect on sensorimotor associative plasticity in patients with CD, in contrast with the net inhibitory effect in healthy subjects. This is further evidence that the cerebello-thalamo-cortical network plays a role in the pathophysiology of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kai Grimm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Prilop
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Crisafulli O, Ravizzotti E, Mezzarobba S, Cosentino C, Bonassi G, Botta A, Abbruzzese G, Marchese R, Avanzino L, Pelosin E. A gait-based paradigm to investigate central body representation in cervical dystonia patients. Neurol Sci 2023; 44:1311-1318. [PMID: 36534193 DOI: 10.1007/s10072-022-06548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cervical dystonia (CD) is a common adult-onset idiopathic form of dystonia characterized by an abnormal head posture caused by an excessive activity of the neck muscles. The position of the head is important to direct viewpoint in the rounding environment, and the body orientation, during gait, must be coherent with the subjective straight ahead (SSA). An alteration of the SSA, as in the case of CD patients, could affect gait when visual input is not available. The aim of this study was to probe the behavior of patients with CD during blindfolded walking, investigating the ability to walk straight ahead based only on somatosensory and vestibular information. METHODS In this observational cross-sectional study, patients with CD and healthy control subjects (HC) were compared. All participants were evaluated through a gait analysis during blindfolded walking on a GAITRite carpet, relying on their own sense of straightness. RESULTS Patients with CD showed lower values of path length (p < 0.001), a lower number of steps on the carpet (p < 0.001). A higher number of CD patients deviated during the task, walking out of the carpet, (p < 0.005) compared to HS. No relation was found between the dystonic side and the gait trajectory deviation. A significant correlation was found between pain symptom and gait performance. CONCLUSIONS CD patients showed dysfunctions in controlling dynamic body location during walking without visual afferences, while the dystonic side does not seem to be related to the lateral deviation of the trajectory. Our results would assume that a general proprioceptive impairment could lead to an improper body position awareness in patients with CD.
Collapse
Affiliation(s)
- O Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - E Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - S Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - C Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - G Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, 16043, Chiavari, Italy
| | - A Botta
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - G Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - R Marchese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - L Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | - E Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
3
|
McClelland VM, Lin JP. Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:1-22. [PMID: 37338693 DOI: 10.1007/978-3-031-26220-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is now widely accepted as a network disorder, with multiple brain regions and their interconnections playing a potential role in the pathophysiology. This model reconciles what could previously have been viewed as conflicting findings regarding the neuroanatomical and neurophysiological characteristics of the disorder, but there are still significant gaps in scientific understanding of the underlying pathophysiology. One of the greatest unmet challenges is to understand the network model of dystonia in the context of the developing brain. This article outlines how research in childhood dystonia supports and contributes to the network theory and highlights aspects where data from paediatric studies has revealed novel and unique physiological insights, with important implications for understanding dystonia across the lifespan.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, UK
| |
Collapse
|
4
|
Maria Pani S, Saba L, Fraschini M. Clinical applications of EEG power spectra aperiodic component analysis: a mini-review. Clin Neurophysiol 2022; 143:1-13. [DOI: 10.1016/j.clinph.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
|
5
|
Celletti C, Ferrazzano G, Belvisi D, Ferrario C, Tarabini M, Baione V, Fabbrini G, Conte A, Galli M, Camerota F. Instrumental Timed Up and Go test discloses abnormalities in patients with Cervical Dystonia. Clin Biomech (Bristol, Avon) 2021; 90:105493. [PMID: 34715549 DOI: 10.1016/j.clinbiomech.2021.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Background Cervical dystonia is a movement disorder characterized by involuntary and sustained contraction of the neck muscles that determines abnormal posture. The aim of this study was to investigate whether dystonic posture in patients with cervical dystonia affects walking and causes postural changes. Methods Patients with cervical dystonia and a group of age-matched healthy controls underwent an instrumental evaluation of the Timed Up and Go Test. Findings All the spatio-temporal parameters of the sub-phases of the Timed up and go test had a significantly higher duration in cervical dystonia patients compared to the control group while no differences in flection and extension angular amplitudes were observed. Indeed, we found that Cervical Dystonia patients had abnormalities in turning, as well as in standing-up and sitting-down from a chair during the Timed up and go test than healthy controls. Interpretation Impairment in postural control in cervical dystonia patients during walking and postural changes prompts to develop rehabilitation strategies to improve postural stability and reduce the risk of fall in these patients.
Collapse
Affiliation(s)
- C Celletti
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, Italy.
| | - G Ferrazzano
- Department of Human Neurosciences, Sapienza, University of Rome, Italy
| | - D Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - C Ferrario
- Department of Mechanical Engineering, Politecnico di Milano, 20124 Milan, Italy; DEIB, Dept of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - M Tarabini
- Department of Mechanical Engineering, Politecnico di Milano, 20124 Milan, Italy
| | - V Baione
- Department of Human Neurosciences, Sapienza, University of Rome, Italy
| | - G Fabbrini
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - A Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - M Galli
- DEIB, Dept of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - F Camerota
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, Italy
| |
Collapse
|
6
|
Zito GA, Tarrano C, Jegatheesan P, Ekmen A, Béranger B, Rebsamen M, Hubsch C, Sangla S, Bonnet C, Delorme C, Méneret A, Degos B, Bouquet F, Brissard MA, Vidailhet M, Gallea C, Roze E, Worbe Y. Somatotopy of cervical dystonia in motor-cerebellar networks: Evidence from resting state fMRI. Parkinsonism Relat Disord 2021; 94:30-36. [PMID: 34875561 DOI: 10.1016/j.parkreldis.2021.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Cervical dystonia is the most frequent form of isolated focal dystonia. It is often associated with a dysfunction in brain networks, mostly affecting the basal ganglia, the cerebellum, and the somatosensory cortex. However, it is unclear if such a dysfunction is somato-specific to the brain areas containing the representation of the affected body part, and may thereby account for the focal expression of cervical dystonia. In this study, we investigated resting state functional connectivity in the areas within the motor cortex and the cerebellum containing affected and non-affected body representations in cervical dystonia patients. METHODS Eighteen patients affected by cervical dystonia and 21 healthy controls had resting state fMRI. The functional connectivity between the motor cortex and the cerebellum, as well as their corresponding measures of gray matter volume and cortical thickness, were compared between groups. We performed seed-based analyses, selecting the different body representation areas in the precentral gyrus as seed regions, and all cerebellar areas as target regions. RESULTS Compared to controls, patients exhibited increased functional connectivity between the bilateral trunk representation area of the motor cortex and the cerebellar vermis 6 and 7b, respectively. These functional abnormalities did not correlate with structural changes or symptom severity. CONCLUSIONS Our findings indicate that the abnormal function of the motor network is somato-specific to the areas encompassing the neck representation. Functional abnormalities in discrete relevant areas of the motor network could thus contribute to the focal expression of CD.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Clément Tarrano
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Prasanthi Jegatheesan
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Asya Ekmen
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Benoît Béranger
- Center for NeuroImaging Research CENIR, Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging SCAN, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, CH, Switzerland.
| | - Cécile Hubsch
- Department of Neurology, Rothschild Foundation, 25-29 Rue Manin, 75019, Paris, France.
| | - Sophie Sangla
- Department of Neurology, Rothschild Foundation, 25-29 Rue Manin, 75019, Paris, France.
| | - Cécilia Bonnet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Cécile Delorme
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Aurélie Méneret
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Bertrand Degos
- Neurology Unit, Assistance Publique-Hôpitaux de Paris, Avicenne University Hospital, Sorbonne Paris Nord, 125 Rue de Stalingrad, 93000, Bobigny, France; Center for Interdisciplinary Research in Biology, Collège de France, Inserm U1050, CNRS UMR 7241, PSL University, 11 place Marcelin Berthelot, 75231, Paris, France.
| | - Floriane Bouquet
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Marion Apoil Brissard
- Department of Neurology, University of Caen Normandie Hospital Center, Av. de la Côte de Nacre, 14000, Caen, France.
| | - Marie Vidailhet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Cécile Gallea
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Emmanuel Roze
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Yulia Worbe
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
7
|
Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M, Koch G, Priori A, Rothwell JC, Sadnicka A, Spampinato D, Ugawa Y, Wessel MJ, Ferrucci R. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2021; 21:1092-1122. [PMID: 34813040 DOI: 10.1007/s12311-021-01344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium.,Service Des Neurosciences, UMons, 7000, Mons, Belgium
| | - Georgios P D Argyropoulos
- Division of Psychology, Faculty of Natural Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville. Victoria, Australia
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Danny Spampinato
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy. .,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
8
|
Welniarz Q, Worbe Y, Gallea C. The Forward Model: A Unifying Theory for the Role of the Cerebellum in Motor Control and Sense of Agency. Front Syst Neurosci 2021; 15:644059. [PMID: 33935660 PMCID: PMC8082178 DOI: 10.3389/fnsys.2021.644059] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
For more than two decades, there has been converging evidence for an essential role of the cerebellum in non-motor functions. The cerebellum is not only important in learning and sensorimotor processes, some growing evidences show its implication in conditional learning and reward, which allows building our expectations about behavioral outcomes. More recent work has demonstrated that the cerebellum is also required for the sense of agency, a cognitive process that allows recognizing an action as our own, suggesting that the cerebellum might serve as an interface between sensorimotor function and cognition. A unifying model that would explain the role of the cerebellum across these processes has not been fully established. Nonetheless, an important heritage was given by the field of motor control: the forward model theory. This theory stipulates that movements are controlled based on the constant interactions between our organism and its environment through feedforward and feedback loops. Feedforward loops predict what is going to happen, while feedback loops confront the prediction with what happened so that we can react accordingly. From an anatomical point of view, the cerebellum is at an ideal location at the interface between the motor and sensory systems, as it is connected to cerebral, striatal, and spinal entities via parallel loops, so that it can link sensory and motor systems with cognitive processes. Recent findings showing that the cerebellum participates in building the sense of agency as a predictive and comparator system will be reviewed together with past work on motor control within the context of the forward model theory.
Collapse
Affiliation(s)
- Quentin Welniarz
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France
| | - Yulia Worbe
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cecile Gallea
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France
| |
Collapse
|
9
|
Kaňovský P, Rosales R, Otruba P, Nevrlý M, Hvizdošová L, Opavský R, Kaiserová M, Hok P, Menšíková K, Hluštík P, Bareš M. Contemporary clinical neurophysiology applications in dystonia. J Neural Transm (Vienna) 2021; 128:509-519. [PMID: 33591454 DOI: 10.1007/s00702-021-02310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Raymond Rosales
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Department of Neurology and Psychiatry, The Neuroscience Institute, University of Santo Tomás Hospital, Manila, Philippines
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Bareš
- 1st Department of Neurology, Masaryk University Medical School and St. Anne University Hospital, Brno, Czech Republic
| |
Collapse
|
10
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
11
|
Sakellariou DF, Dall'Orso S, Burdet E, Lin JP, Richardson MP, McClelland VM. Abnormal microscale neuronal connectivity triggered by a proprioceptive stimulus in dystonia. Sci Rep 2020; 10:20758. [PMID: 33247213 PMCID: PMC7695825 DOI: 10.1038/s41598-020-77533-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated modulation of functional neuronal connectivity by a proprioceptive stimulus in sixteen young people with dystonia and eight controls. A robotic wrist interface delivered controlled passive wrist extension movements, the onset of which was synchronised with scalp EEG recordings. Data were segmented into epochs around the stimulus and up to 160 epochs per subject were averaged to produce a Stretch Evoked Potential (StretchEP). Event-related network dynamics were estimated using a methodology that features Wavelet Transform Coherency (WTC). Global Microscale Nodal Strength (GMNS) was introduced to estimate overall engagement of areas into short-lived networks related to the StretchEP, and Global Connectedness (GC) estimated the spatial extent of the StretchEP networks. Dynamic Connectivity Maps showed a striking difference between dystonia and controls, with particularly strong theta band event-related connectivity in dystonia. GC also showed a trend towards higher values in dystonia than controls. In summary, we demonstrate the feasibility of this method to investigate event-related neuronal connectivity in relation to a proprioceptive stimulus in a paediatric patient population. Young people with dystonia show an exaggerated network response to a proprioceptive stimulus, displaying both excessive theta-band synchronisation across the sensorimotor network and widespread engagement of cortical regions in the activated network.
Collapse
Affiliation(s)
- Dimitris F Sakellariou
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK.,Machine Learning & Artificial Intelligence Solutions Global Unit, Real World Solutions, IQVIA, London, N1 9JY, UK
| | - Sofia Dall'Orso
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Etienne Burdet
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK. .,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
12
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
13
|
Mantel T, Dresel C, Welte M, Meindl T, Jochim A, Zimmer C, Haslinger B. Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia. Sci Rep 2020; 10:10179. [PMID: 32576918 PMCID: PMC7311401 DOI: 10.1038/s41598-020-67295-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Adductor-type spasmodic dysphonia (ADSD) manifests in effortful speech temporarily relievable by botulinum neurotoxin type A (BoNT-A). Previously, abnormal structure, phonation-related and resting-state sensorimotor abnormalities as well as peripheral tactile thresholds in ADSD were described. This study aimed at assessing abnormal central tactile processing patterns, their spatial relation with dysfunctional resting-state connectivity, and their BoNT-A responsiveness. Functional MRI in 14/12 ADSD patients before/under BoNT-A effect and 15 controls was performed (i) during automatized tactile stimulus application to face/hand, and (ii) at rest. Between-group differential stimulation-induced activation and resting-state connectivity (regional homogeneity, connectivity strength within selected sensory(motor) networks), as well as within-patient BoNT-A effects on these differences were investigated. Contralateral-to-stimulation overactivity in ADSD before BoNT-A involved primary and secondary somatosensory representations, along with abnormalities in higher-order parietal, insular, temporal or premotor cortices. Dysphonic impairment in ADSD positively associated with left-hemispheric temporal activity. Connectivity was increased within right premotor (sensorimotor network), left primary auditory cortex (auditory network), and regionally reduced at the temporoparietal junction. Activation/connectivity before/after BoNT-A within-patients did not significantly differ. Abnormal ADSD central somatosensory processing supports its significance as common pathophysiologic focal dystonia trait. Abnormal temporal cortex tactile processing and resting-state connectivity might hint at abnormal cross-modal sensory interactions.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.,Department of Neurology, Johannes Gutenberg University, Langenbeckstrasse, 1, Mainz, Germany
| | - Michael Welte
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.
| |
Collapse
|
14
|
Semenova U, Popov V, Tomskiy A, Shaikh AG, Sedov A. Pallidal 1/f asymmetry in patients with cervical dystonia. Eur J Neurosci 2020; 53:2214-2219. [PMID: 32237251 DOI: 10.1111/ejn.14729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Lateralized differences in pallidal outflow are putatively linked to asymmetric tonic contractions of the neck muscles in cervical dystonia (CD). At the population level, the interhemispheric asymmetry has been traditionally studied for the estimation of the spectral power in specified frequency bands. Broadband spectral features, however, were not taken into consideration. The contemporary analysis revealed that the aperiodic (1/f) broadband activity could be a neurophysiological marker of the excitation/inhibition ratio. During deep brain stimulation (DBS) surgery, we measured bilateral pallidal local field potentials (LFP) in nine CD patients, examining the effects of lateralized asymmetry on 1/f broadband activity. All patients showed a trend towards an asymmetric difference in the 1/f broadband activity. The ipsilateral 1/f slope was significantly higher in internal (GPi) segment of the globus pallidus that is on the contralateral side of the direction of the dystonia. We also found lateralized differences in the beta oscillations for GPi and in the alpha oscillations for GPe. Our findings emphasize the importance of mainstreaming broadband activity in the estimation of LFP spectral features together with periodic features and provide further evidence for the pallidal asymmetry in CD patients.
Collapse
Affiliation(s)
- Ulia Semenova
- Laboratory of Human Cell Neurophysiology, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Valentin Popov
- Laboratory of Human Cell Neurophysiology, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Functional Neurosurgery, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey Tomskiy
- Department of Functional Neurosurgery, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA.,Neurological Institute, University Hospitals, Cleveland, OH, USA.,Neurology Service, Louis Stokes Cleveland VA Medical Centre, Cleveland, OH, USA
| | - Alexey Sedov
- Laboratory of Human Cell Neurophysiology, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
15
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
17
|
Behrangrad S, Zoghi M, Kidgell D, Jaberzadeh S. Does cerebellar non-invasive brain stimulation affect corticospinal excitability in healthy individuals? A systematic review of literature and meta-analysis. Neurosci Lett 2019; 706:128-139. [PMID: 31102706 DOI: 10.1016/j.neulet.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Numerous studies have indicated that non-invasive brain stimulation (NIBS) of the cerebellum could modulate corticospinal excitability (CSE) in young healthy individuals. However, there is no systematic review and meta-analysis that clarifies the effects of cerebellar NIBS on CSE. The aim of this study was to provide a meta-analytic summary of the effects of cerebellar NIBS on CSE. Seven search engines were used to identify any trial evaluating CSE before and after one session of cerebellar NIBS in healthy individuals up to June 2018. Twenty-six studies investigating the corticospinal responses following cerebellar NIBS were included. Meta-analysis was used to pool the findings from included studies. Effects were expressed as mean differences (MD) and the standard deviation (SD). Risk of bias was assessed with the Cochrane tool. Meta-analysis found that paired associative stimulation (PAS) with 2 ms interval, a combination of PAS with 21.5 ms interval and anodal transcranial direct current stimulation, and repetitive transcranial magnetic stimulation with a frequency of < 5 Hz increase CSE (P PAS2 < 0.00001, P PAS21.5 +a-tDCS = 0.02, P rTMS = 0.04). However, continuous theta burst stimulation, a combination of PAS with 25 ms interval and anodal transcranial direct current stimulation, and PAS with a 6 ms interval decreased CSE (P PAS6 < 0.00001, P cTBS < 0.00001, P PAS25 +a-tDCS = 0.003). The results of this review show that cerebellar NIBS techniques are a promising tool for increasing CSE.
Collapse
Affiliation(s)
- Shabnam Behrangrad
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia.
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| | - Dawson Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| |
Collapse
|
18
|
Odorfer TM, Homola GA, Reich MM, Volkmann J, Zeller D. Increased Finger-Tapping Related Cerebellar Activation in Cervical Dystonia, Enhanced by Transcranial Stimulation: An Indicator of Compensation? Front Neurol 2019; 10:231. [PMID: 30930842 PMCID: PMC6428698 DOI: 10.3389/fneur.2019.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Cervical dystonia is a movement disorder causing abnormal postures and movements of the head. While the exact pathophysiology of cervical dystonia has not yet been fully elucidated, a growing body of evidence points to the cerebellum as an important node. Methods: Here, we examined the impact of cerebellar interference by transcranial magnetic stimulation on finger-tapping related brain activation and neurophysiological measures of cortical excitability and inhibition in cervical dystonia and controls. Bilateral continuous theta-burst stimulation was used to modulate cerebellar cortical excitability in 16 patients and matched healthy controls. In a functional magnetic resonance imaging arm, data were acquired during simple finger tapping before and after cerebellar stimulation. In a neurophysiological arm, assessment comprised motor-evoked potentials amplitude and cortical silent period duration. Theta-burst stimulation over the dorsal premotor cortex and sham stimulation (neurophysiological arm only) served as control conditions. Results: At baseline, finger tapping was associated with increased activation in the ipsilateral cerebellum in patients compared to controls. Following cerebellar theta-burst stimulation, this pattern was even more pronounced, along with an additional movement-related activation in the contralateral somatosensory region and angular gyrus. Baseline motor-evoked potential amplitudes were higher and cortical silent period duration shorter in patients compared to controls. After cerebellar theta-burst stimulation, cortical silent period duration increased significantly in dystonia patients. Conclusion: We conclude that in cervical dystonia, finger movements—though clinically non-dystonic—are associated with increased activation of the lateral cerebellum, possibly pointing to general motor disorganization, which remains subclinical in most body regions. Enhancement of this activation together with an increase of silent period duration by cerebellar continuous theta-burst stimulation may indicate predominant disinhibitory effects on Purkinje cells, eventually resulting in an inhibition of cerebello-thalamocortical circuits.
Collapse
Affiliation(s)
| | - György A Homola
- Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Brugger F, Peters A, Georgiev D, Kägi G, Balint B, Bhatia KP, Day BL. Sensory trick efficacy in cervical dystonia is linked to processing of neck proprioception. Parkinsonism Relat Disord 2018; 61:50-56. [PMID: 30553617 DOI: 10.1016/j.parkreldis.2018.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Muscle vibration activates muscle spindles and when applied over posterior neck muscles during stance modulates global body orientation. This is characterised by a tonic forward sway response that is reportedly diminished or absent in patients with idiopathic cervical dystonia. OBJECTIVE To investigating the impact of the sensory trick on vibration-induced postural responses. METHODS 20 patients with idiopathic cervical dystonia and a sensory trick, 15 patients without a trick, and 16 healthy controls were recruited. Neck muscle vibration was applied bilaterally over the upper trapezius under three different conditions: 1) Quiet standing; 2) standing while performing the trick (or trick-like movement in non-responders); 3) standing while elevating the flexed arm without touching any part of the body. Centre of pressure position and whole-body orientation in the sagittal plane were analysed. RESULTS Patients with a sensory trick responded similarly to healthy controls: neck muscle vibration led to an initial forward sway of the body that slowly increased during the prolonged vibration for all three conditions. This response was mainly mediated by ankle flexion. In patients without a trick, the initial sagittal sway was significantly reduced in all three conditions and the later slow increase was absent. Performance of the trick did not have an effect on any aspect of the response in either cervical dystonia group. CONCLUSIONS The whole-body response to neck vibration in cervical dystonia differs depending on the effectiveness of the sensory trick to alleviate the dystonic neck posture. Variable pathophysiology of proprioceptive processing may be the common factor.
Collapse
Affiliation(s)
- Florian Brugger
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK; Department of Neurology, Kantonsspital, St. Gallen, Switzerland.
| | - Amy Peters
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK; Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Georg Kägi
- Department of Neurology, Kantonsspital, St. Gallen, Switzerland
| | - Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Brian L Day
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
20
|
Conte A, Belvisi D, De Bartolo MI, Manzo N, Cortese FN, Tartaglia M, Ferrazzano G, Fabbrini G, Berardelli A. Abnormal sensory gating in patients with different types of focal dystonias. Mov Disord 2018; 33:1910-1917. [DOI: 10.1002/mds.27530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | | | | | - Nicoletta Manzo
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Matteo Tartaglia
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Giovanni Fabbrini
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| |
Collapse
|
21
|
Georgescu EL, Georgescu IA, Zahiu CDM, Şteopoaie AR, Morozan VP, Pană AŞ, Zăgrean AM, Popa D. Oscillatory Cortical Activity in an Animal Model of Dystonia Caused by Cerebellar Dysfunction. Front Cell Neurosci 2018; 12:390. [PMID: 30459559 PMCID: PMC6232371 DOI: 10.3389/fncel.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
The synchronization of neuronal activity in the sensorimotor cortices is crucial for motor control and learning. This synchrony can be modulated by upstream activity in the cerebello-cortical network. However, many questions remain over the details of how the cerebral cortex and the cerebellum communicate. Therefore, our aim is to study the contribution of the cerebellum to oscillatory brain activity, in particular in the case of dystonia, a severely disabling motor disease associated with altered sensorimotor coupling. We used a kainic-induced dystonia model to evaluate cerebral cortical oscillatory activity and connectivity during dystonic episodes. We performed microinjections of low doses of kainic acid into the cerebellar vermis in mice and examined activities in somatosensory, motor and parietal cortices. We showed that repeated applications of kainic acid into the cerebellar vermis, for five consecutive days, generate reproducible dystonic motor behavior. No epileptiform activity was recorded on electrocorticogram (ECoG) during the dystonic postures or movements. We investigated the ECoG power spectral density and coherence between motor cortex, somatosensory and parietal cortices before and during dystonic attacks. During the baseline condition, we found a phenomenon of permanent adaptation with a change of baseline locomotor activity coupled to an ECoG gamma band increase in all cortices. In addition, after kainate administration, we observed an increase in muscular activity, but less signs of dystonia together with modulations of the ECoG power spectra with an increase in gamma band in motor, parietal and somatosensory cortices. Moreover, we found reduced coherence in all measured frequency bands between the motor cortex and somatosensory or parietal cortices compared to baseline. In conclusion, examination of cortical oscillatory activities in this animal model of chronic dystonia caused by cerebellar dysfunction reveals a disruption in the coordination of neuronal activity across the cortical sensorimotor/parietal network, which may underlie motor skill deficits.
Collapse
Affiliation(s)
- Elena Laura Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandru Răzvan Şteopoaie
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Petru Morozan
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Ştefan Pană
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|